Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

PFC and PWM Controller

ADE-204-036D (Z)

Preliminary Rev.4 Sep. 2001

Description

The HA16141P/FP and the HA16142P/FP are power supply controller ICs combining an AC-DC converter switching controllers for power factor correction and off-line power supply switching controllers. PFC (Power factor correction) section employs average current mode PWM and off-line power supply control section employs peak current mode PWM.

The HA16142P/FP is the change version of HA16141P/FP's PWM maximum on duty cycle.

The PFC operation can be turned on and off by external control signal. Use of this on/off function makes it possible to disable PFC operation at a low line voltage, or to perform remote control operation from the transformer secondary side. The PFC power supply boosted output voltage is not only fed to an error amplifier input signal but also fed to as the boost voltage monitor circuit. \overline{PG} signal is put out if the boost voltage is out-of-spec.

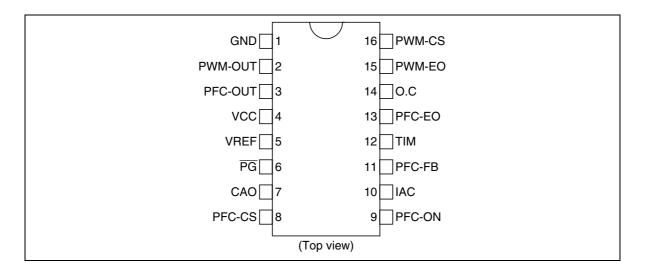
The PWM controller, which begins operation at the same time as release of the IC's UVLO (under-voltage lockout) is suitable for auxiliary power supply use in a multi-output power supply system.

Features

- Synchronized PFC and PWM timing
- Self oscillation with fixed frequency

PFC : 100 kHz (±15 %) PWM : 200 kHz (±15 %)

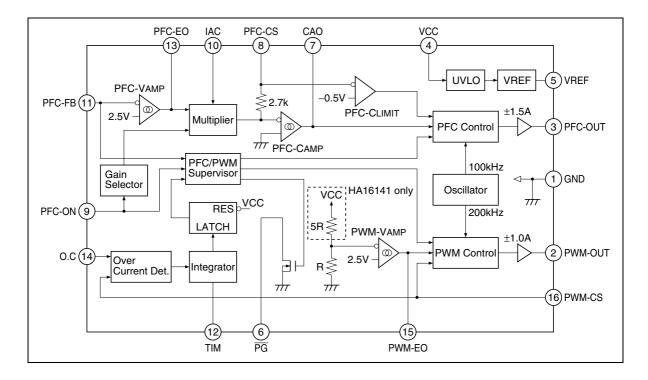
- PFC function on/off control
- PFC boosted output voltage monitor
- High-output current gate drivers

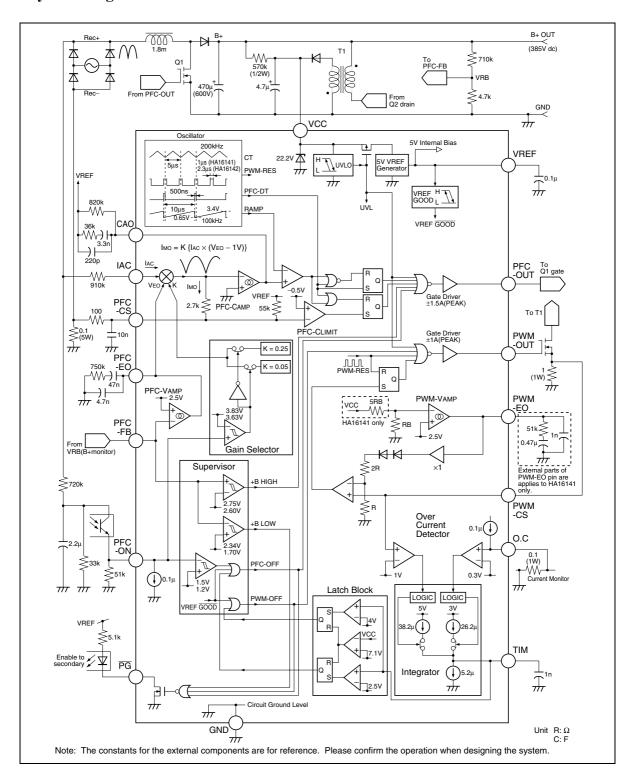

PFC driver peak current : ±1.5 A typ. PWM driver peak current : ±1.0 A typ.

PWM maximum on duty cycle

72% min (HA16141P/FP)

49.5% max (HA16142P/FP)

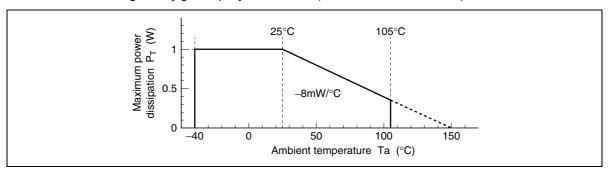

Pin Arrangement


Pin Description

Pin No.	Symbol	Function
1	GND	Ground
2	PWM-OUT	Power MOS FET driver output (PWM control)
3	PFC-OUT	Power MOS FET driver output (PFC control)
4	VCC	Supply voltage
5	VREF	Reference voltage
6	PG	Power Good signal output (open-drain output)
7	CAO	Average current control error amp. output
8	PFC-CS	PFC control current sense signal input
9	PFC-ON	PFC function on/off signal input
10	IAC	Multiplier reference current input
11	PFC-FB	PFC control error amp. input
12	TIM	Overcurrent timer time setting
13	PFC-EO	PFC control error amp. output
14	O.C	Overcurrent detector signal input
15	PWM-EO	PWM control error amp. output (photocoupler input also possible) (HA16141 only)
		PWM control feedback voltage signal input (HA16142 only)
16	PWM-CS	PWM control current sense signal input

Block Diagram

System Diagram


Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Rating	Unit	Note
Supply voltage	V _{cc}	20	V	
Peak PFC-OUT current	lpk-pfc	±1.5	Α	3
Peak PWM-OUT current	lpk-pwm	±1.0	Α	3
DC PFC-OUT current	ldc-pfc	±0.15	Α	
DC PWM-OUT current	ldc-pwm	±0.10	Α	
Terminal voltage	Vi-group1	–0.3 to $V_{\rm cc}$	V	4
	Vi-group2	-0.3 to Vref	V	5
CAO voltage	Vcao	-0.3 to Veoh-ca	V	
PFC-EO voltage	Vpfc-eo	-0.3 to Veoh-pfc	V	
PWM-EO voltage	Vpwm-eo	-0.3 to Veoh-pwm	V	
PFC-ON voltage	Vpfc-on	-0.3 to +7	V	
IAC voltage	Vi-ac	-0.3 to +5	V	
IAC current	li-ac	0.8	mA	
PFC-CS voltage	Vi-cs	-1.5 to +0.3	V	
TIM voltage	Vi-tim	-0.3 to +6	V	
VREF current	lo-ref	-20	mA	
PG voltage	Vo-pg	-0.3 to +7	V	
PG current	lo-pg	15	mA	
Power dissipation	$P_{\scriptscriptstyle T}$	1	W	6
Operating temperature	Topr	-40 to +105	°C	
Storage temperature	Tstg	-55 to +150	°C	
Junction temperature	Tj	150	°C	

Notes: 1. Rated voltages are with reference to the GND pin.

- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. Shows the transient current when driving a capacitive load.
- 4. Group1 is the rated voltage for the following pins: PFC-OUT, PWM-OUT
- 5. Group2 is the rated voltage for the following pins: VREF, PFC-FB, PWM-CS
- 6. This is the value when the ambient temperature (Ta) is 25°C or below. If Ta exceeds 25°C, the graph below applies. For the SOP package, this value is based on actual measurements on a 10% wiring density glass epoxy circuit board (40 mm × 40 mm × 1.6 mm).

Electrical Characteristics

 $(Ta = 25^{\circ}C, V_{cc} = 14 \text{ V})$

	Symbol	Min	Тур	Max	Unit	Test Conditions
Start threshold	V _H	12.2	13.0	13.8	V	
Shutdown threshold	V _L	9.4	10.0	10.6	V	
UVLO hysteresis	dV_{UVL}	2.6	3.0	3.4	V	
Start-up current	Is	150	200	300	μΑ	V _{cc} = 12V
Is temperature stability	dl _s /dTa		-0.3	_	%/°C	*1
Operating current	I _{cc}	4	7	9	mA	IAC = 100μA, C _L = 0F
Latch current		230	310	375	μΑ	V _{cc} = 9V
Shunt zener voltage	V _z	21.2	22.2	23.2	V	I _{cc} = 14mA
Vz temperature stability	dV _z /dTa	_	+4	_	mV/°C	I _{cc} = 14mA *1
Minimum duty cycle	Dmin-pfc		_	0	%	CAO = 3.6V
Maximum duty cycle	Dmax-pfc	90	95	98	%	CAO = 0V
Rise time	t,-pfc	_	30	100	ns	C _L = 1000p
Fall time	t,-pfc	_	30	100	ns	C ₁ = 1000p
Peak current	lpk-pfc	_	1.5	_	Α	C ₁ = 0.01μF * ¹
Low voltage	Vol1-pfc	_	0.05	0.2	V	lout = 20mA
	Vol2-pfc	_	0.35	1.4	V	lout = 200mA
	Vol3-pfc	_	0.03	0.7	V	lout = 10mA, V _{cc} = 5V
High voltage	Voh1-pfc	13.5	13.9	_	V	lout = -20mA
	Voh2-pfc	12.6	13.3	_	V	lout = -200mA
Minimum duty cycle	Dmin-pwm	_	_	0	%	PWM-EO = 1.3V PWM-CS = 0V
Maximum duty cycle	Dmax-pwm	72	80	88	%	PWM-EO = 5V PWM-CS = 0V *2
		42.5	46	49.5	%	PWM-EO = 5V PWM-CS = 0V *3
Rise time	t _r -pwm	_	30	100	ns	C _L = 1000p
Fall time	t _r -pwm	_	30	100	ns	C _L = 1000p
Peak current	lpk-pwm	_	1.0	_	Α	$C_L = 0.01 \mu F^{*1}$
Low voltage	Vol1-pwm	_	0.05	0.2	V	lout = 20mA
			0 E	2.0	W	lout = 200mA
	Vol2-pwm	_	0.5	2.0	V	lout - Loonin t
	Vol2-pwm Vol3-pwm	_	0.03	0.7	V	$lout = 10mA, V_{cc} = 5V$
High voltage						
High voltage	Vol3-pwm	13.5 12.0	0.03	0.7	V	lout = 10mA, $V_{cc} = 5V$
High voltage Output voltage	Vol3-pwm Voh1-pwm		0.03	0.7	V	$lout = 10mA, V_{cc} = 5V$ $lout = -20mA$
	Vol3-pwm Voh1-pwm Voh2-pwm	12.0	0.03 13.9 13.0	0.7 — —	V V V	$lout = 10mA, V_{cc} = 5V$ $lout = -20mA$ $lout = -200mA$
Output voltage	Vol3-pwm Voh1-pwm Voh2-pwm Vref	12.0	0.03 13.9 13.0 5.0	0.7 — — 5.1	V V V	$lout = 10mA, V_{cc} = 5V$ $lout = -20mA$ $lout = -200mA$ $lsource = 1mA$ $lsource = 1mA$
	Shutdown threshold UVLO hysteresis Start-up current Is temperature stability Operating current Latch current Shunt zener voltage Vz temperature stability Minimum duty cycle Maximum duty cycle Rise time Fall time Peak current Low voltage Minimum duty cycle Minimum duty cycle Rise time Fall time Fall time Fall time Peak current Fall time Peak current	Start threshold V _H Shutdown threshold V _L UVLO hysteresis dV _{UVL} Start-up current I _s Is temperature stability dI _s /dTa Operating current I _{cc} Latch current I _{LATCH} Shunt zener voltage V _z Vz temperature stability dV _z /dTa Minimum duty cycle Dmin-pfc Maximum duty cycle Dmax-pfc Fall time t _t -pfc Peak current Ipk-pfc Low voltage Vol1-pfc Vol2-pfc Vol3-pfc High voltage Voh1-pfc Woh2-pfc Minimum duty cycle Dmin-pwm Maximum duty cycle Dmin-pwm Fall time t _t -pwm Fall time t _t -pwm Peak current Ipk-pwm Low voltage Vol1-pwm	Start threshold V _H 12.2 Shutdown threshold V _L 9.4 UVLO hysteresis dV _{UVL} 2.6 Start-up current I _s 150 Is temperature stability dI _s /dTa — Operating current I _{cc} 4 Latch current I _{LATCH} 230 Shunt zener voltage V _z 21.2 Vz temperature stability dV _z /dTa — Minimum duty cycle Dmin-pfc — Maximum duty cycle Dmax-pfc 90 Rise time t _t -pfc — Peak current lpk-pfc — Vol2-pfc — Vol3-pfc — High voltage Voh1-pfc 13.5 Voh2-pfc 12.6 Minimum duty cycle Dmin-pwm — Maximum duty cycle Dmax-pwm 72 42.5 Rise time t _t -pwm — Fall time t _t -pwm — Peak current	Start threshold V _H 12.2 13.0 Shutdown threshold V _L 9.4 10.0 UVLO hysteresis dV _{uvL} 2.6 3.0 Start-up current I _s 150 200 Is temperature stability dI _s /dTa — −0.3 Operating current I _{cc} 4 7 Latch current I _{LATCH} 230 310 Shunt zener voltage V _z 21.2 22.2 Vz temperature stability dV _z /dTa — +4 Minimum duty cycle Dmin-pfc — — Maximum duty cycle Dmax-pfc 90 95 Rise time t _r -pfc — 30 Peak current Ipk-pfc — 1.5 Low voltage Vol1-pfc — 0.03 Vol2-pfc — 0.35 Vol2-pfc 13.5 13.9 Voh2-pfc 12.6 13.3 Minimum duty cycle Dmin-pwm —	Start threshold V₁ 12.2 13.0 13.8 Shutdown threshold VL 9.4 10.0 10.6 UVLO hysteresis dV ∪VL 2.6 3.0 3.4 Start-up current I₅ 150 200 300 Is temperature stability dI₂/dTa — −0.3 — Operating current I₂ 4 7 9 Latch current I₂ 230 310 375 Shunt zener voltage V₂ 21.2 22.2 23.2 Vz temperature stability dV₂/dTa — +4 — Minimum duty cycle Dmax-pfc 90 95 98 Rise time t,-pfc — 30 100 Fall time t,-pfc — 30 100 Peak current lpk-pfc — 1.5 — Low voltage Voh1-pfc 13.5 13.9 — Woh2-pfc 12.6 13.3 —	Start threshold V _H 12.2 13.0 13.8 V

Note: 1. Design spec.

2. Apply to HA16141.

3. Apply to HA16142.

Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, V_{cc} = 14 \text{ V})$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Oscillator	Initial accuracy	fpwm	170	200	230	kHz	Measured pin: PWM-OUT
		fpfc	85	100	115	kHz	Measured pin: PFC-OUT
	fpwm temperature stability	dfpwm/dTa	_	±0.1	_	%/°C	Ta = -40 to 105° C * ¹
	fpwm voltage stability	fpwm(line)	-1.5	+0.5	+1.5	%	V _{cc} = 12V to 18V
	Ramp peak voltage	Vramp-H	_	3.4	3.6	V	
	Ramp valley volatge	Vramp-L	_	0.65	_	V	*1
PFC-ON	PFC on voltage	Von-pfc	1.3	1.5	1.7	V	
	PFC off voltage	Voff-pfc	1.0	1.2	1.4	V	
	PFC on-off hysteresis	dVon-off	0.15	0.30	0.45	V	
	Input current	lpfc-on	_	0.1	1.0	μΑ	PFC-ON = 2V
Supervisor/ PG	PFC GOOD threshold voltage	Vb-good	2.29	2.34	2.39	V	Input pin: PFC-FB
	PFC FAIL threshold voltage	Vb-fail	1.66	1.70	1.74	V	Input pin: PFC-FB
	+B High PFC inhibit voltage	Vb-h	2.69	2.75	2.81	V	Input pin: PFC-FB
	+B High PFC restart voltage	Vb-res	2.54	2.60	2.66	V	Input pin: PFC-FB
	PG leak current	loff-pg	_	0.001	1.0	μΑ	PG = 5V
	PG shunt current	lon-pg	5	15	_	mA	PG = 3V *2
	Delay to PG	tg-pg	_	0.2	1	μs	Step signal (5 to 0V) to PFC-ON
O.C	O.C threshold voltage	V _{oc}	0.27	0.30	0.33	٧	
(Over Current Detector)	PWM-CS threshold voltage	V _{cs}	0.9	1.0	1.1	V	
	O.C input current	I _{oc}	_	-0.1	-1.0	μΑ	O.C = 0V
Integrator	Sink current	Isnk-tim	3.9	5.2	6.5	μΑ	TIM = 2V
	Source current O.C trigger	Isrc-tim1	-16	-21	-26	μΑ	TIM = 2V, O.C = 0.5V *1
	Source Current PWM-CS trigger	Isrc-tim2	-25	-33	-41	μА	TIM = 2V, PWM-CS = 2V *1
	Integrated time O.C trigger	t-tim1	88	110	132	μs	Step signal (0 to 1V) to O.C, Ctim = 1000p, Measured pin: \overline{PG}
	Integrated Time PWM-CS trigger	t-tim2	53	67	81	μs	Step signal (0 to 2V) to PWM-CS, Ctim = 1000p, Measured pin: \overline{PG}

Notes: 1. Design spec.

^{2.} Maximum rating of PG current is 15 mA. Use series resistor to limit PG current lower than 15 mA.

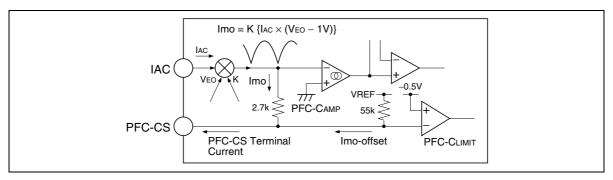
Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, V_{cc} = 14 V)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Latch	Threshold voltage for PFC stop	Vlch-pfc	2.4	2.5	2.6	V	Input pin: TIM
	Threshold Voltage for PWM stop	Vlch-sys	3.8	4.0	4.2	V	Input pin: TIM
	Latch Reset Voltage	Vcc-res	6.1	7.1	8.1	٧	
PWM-VAMP	Feedback V _{cc} voltage	Vfb-pwm	14.2	14.8	15.4	٧	PWM-EO = 2.5V *2
	Open loop gain	Av-pwm	_	45	_	dB	*1, *2
	High voltage	Veoh-pwm	5.1	5.7	6.3	V	V _{cc} = 14V, PWM-EO: Open
	Low voltage	Veol-pwm	_	0.1	0.3	V	V _{cc} = 16V, PWM-EO: Open * ²
	Source current	Isrc-pwm	_	-77	_	μΑ	*1 V _{CC} = 11V
	Sink current	Isnk-pwm	_	77	_	μΑ	*1 V _{CC} = 18V *2
	Transconductance respect to V _{cc}	Gm-pwm	19	27	35	μ A /V	V _{cc} = 15V, PWM-EO = 2.5V * ²
PWM current sense	Delay to output	td-cs	_	210	300	ns	PWM-EO = 5V, PWM-CS = 0 to 2V
PFC current	Threshold voltage	V _{LM}	-0.47	-0.50	-0.53	٧	
limit	Delay to output	td- _{LM}	_	280	500	ns	PFC-CS = 0 to -1V
PFC-VAMP	Feedback voltage	Vfb-pfc	2.45	2.50	2.55	٧	PFC-EO = 2.5V
	Input bias current	Ifb-pfc	-0.30	-0.07	+0.30	μΑ	Measured pin: PFC-FB
	Open loop gain	Av-pfc	_	65	_	dB	*1
	High voltage	Veoh-pfc	5.1	5.7	6.3	V	PFC-FB = 2.3V, PFC-EO: Open
	Low voltage	Veol-pfc	_	0.1	0.3	V	PFC-FB = 2.7V, PFC-EO: Open
	Source current	Isrc-pfc	-62	-77	-93	μА	PFC-FB = 1.0V, PFC-EO = 2.5V
	Sink current	Isnk-pfc	62	77	93	μΑ	PFC-FB = 4.0V, PFC-EO = 2.5V
	Transconductance	Gm-pfcv	120	160	200	μ A /V	PFC-FB = 2.5V, PFC-EO = 2.5V
Note: 4 5	Sink current	Isnk-pfc	62	77	93	μΑ	PFC-EO = PFC-FB = PFC-FB =

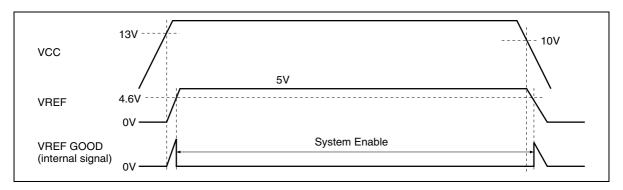
Note: 1. Design spec.

2. Apply to HA16141.

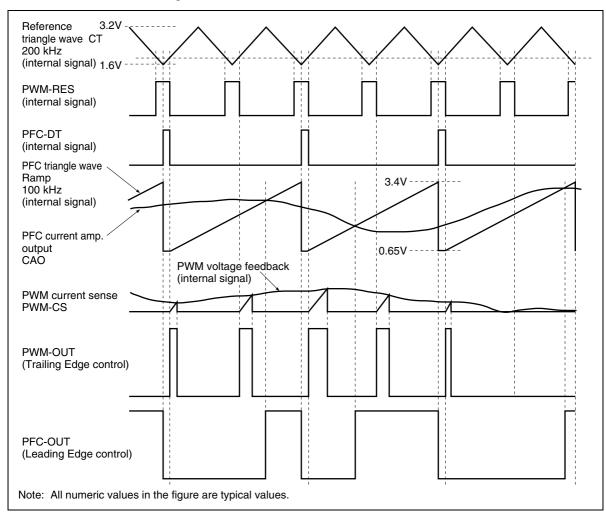

Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, V_{cc} = 14 V)$

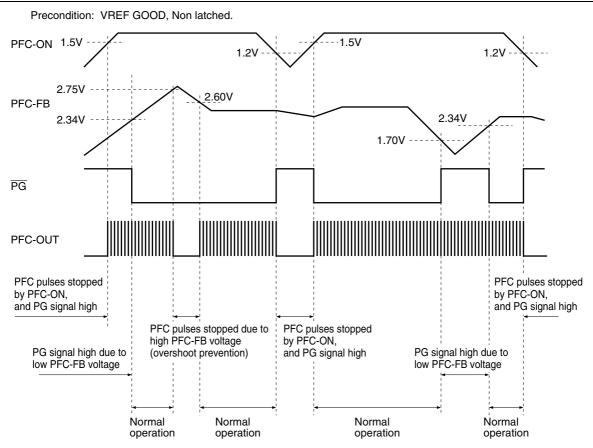
	Symbol	Min	Тур	Max	Unit	Test Conditions
Input offset voltage	Vio-ca	_	±7	_	mV	*1
Open loop gain	Av-ca	_	65	_	dB	*1
High voltage	Veoh-ca	5.1	5.7	6.3	V	
Low voltage	Veol-ca	_	0.1	0.3	V	
Source current	Isrc-ca	_	-77	_	μΑ	CAO = 2.5V *1
Sink current	Isnk-ca	_	77	_	μΑ	CAO = 2.5V *1
Transconductance	Gm-pfcc	120	160	200	μ A /V	*1
IAC PIN voltage	Viac	0.7	1.0	1.3	V	IAC = 100μA
Terminal offset current	Imo-offset	-56	-75	-94	μА	IAC = 0A, PFC-CS = 0V, Measured pin: PFC-CS
Output current (PFC-ON = 3.4V)	lmo1	_	-25	_	μА	PFC-EO = 2V, IAC = 100μΑ *1, *2
	lmo2	_	-75	_	μА	PFC-EO = 4V, IAC = 100μA *1, *2
Output current (PFC-ON = 3.9V)	lmo3	_	-5	_	μА	PFC-EO = 2V, IAC = 100μΑ *1, *2
	Imo4	_	-15	_	μΑ	PFC-EO = 4V, IAC = 100μA *1, *2
PFC-CS resistance	Rmo	_	2.7	_	kΩ	* 1
Threshold voltage for K = 0.05	$V_{\text{K-H}}$	3.71	3.83	3.95	V	
Threshold voltage for K = 0.25	$V_{\text{K-L}}$	3.51	3.63	3.75	V	
V _κ hysteresis voltage	dV _κ	0.15	0.20	0.25	V	*1
	Open loop gain High voltage Low voltage Source current Sink current Transconductance IAC PIN voltage Terminal offset current Output current (PFC-ON = 3.4V) Output current (PFC-ON = 3.9V) PFC-CS resistance Threshold voltage for K = 0.05 Threshold voltage for K = 0.25	Input offset voltage Vio-ca Open loop gain Av-ca High voltage Veoh-ca Low voltage Veol-ca Source current Isrc-ca Sink current Isnk-ca Transconductance Gm-pfcc IAC PIN voltage Viac Terminal offset current Imo-offset Output current (PFC-ON = 3.4V) Imo2 Output current (PFC-ON = 3.9V) FFC-CS resistance Rmo Threshold voltage for K = 0.05 Threshold voltage for K = 0.25	Input offset voltage	Input offset voltage	Input offset voltage	Input offset voltage


Notes: 1. Design spec.

2. Imo1 to Imo4 are defined as, Imo = (PFC-CS Terminal Current) – (Imo-offset)

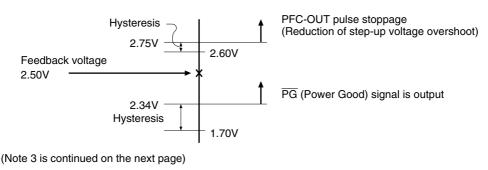


Internal Timing


1. UVLO

2. Oscillator, Gate driver output

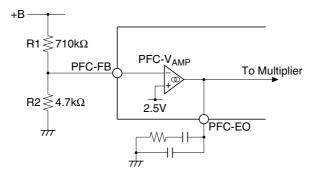
3. PFC controller status

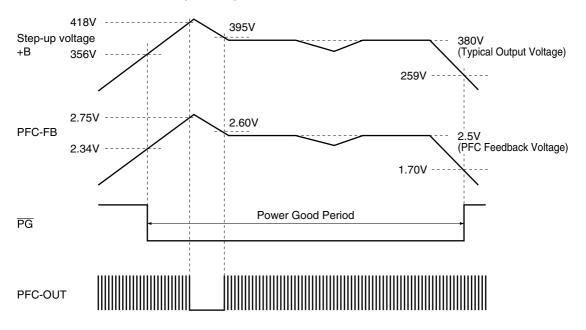

Notes: 1. All numeric values in the figure are typical values.

2. PFC-ON

The HA16141P/FP can perform on/off control of the PFC function using the PFC-ON pin. If an AC voltage that has undergone primary rectification and has been divided with an external resistance is input, PFC stoppage is possible in the event of a low input voltage. On/off control by means of a logic signal is also possible.

3. PFC-FB

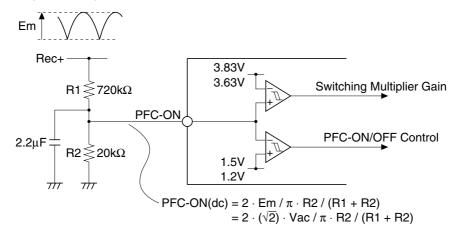

The input to this pin is the voltage obtained by dividing the stepped-up PFC output voltage. The pin voltage is fed back to the PFC control system, and is also used for step-up voltage logic decisions. This is outlined in the figure below.

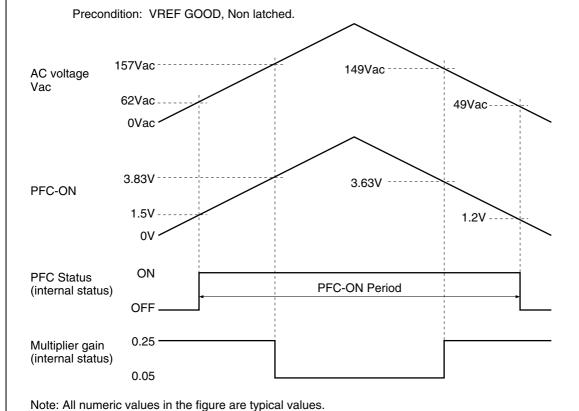

3. PFC controller status (cont.)

Notes: 3. PFC-FB (cont.)

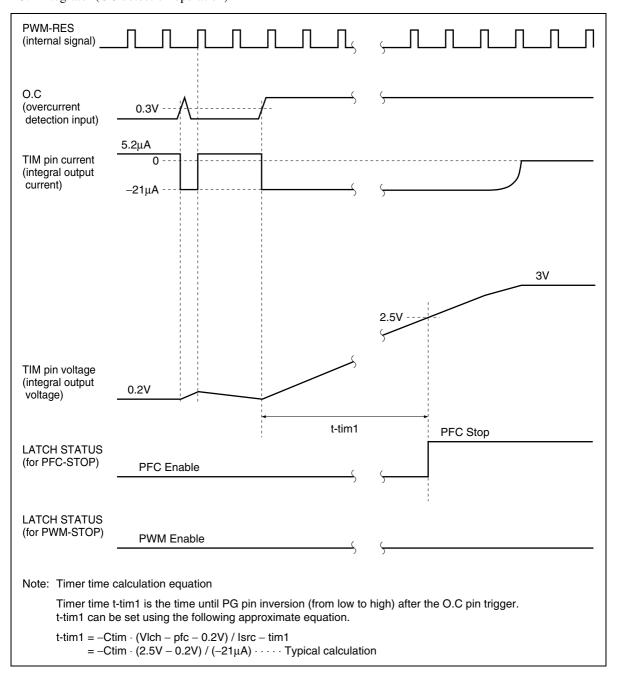
The actual input voltage to the PFC-FB pin is the step-up voltage divided with a resistance (see figure below). If R1 is set as 710 k Ω and R2 as 4.7 k Ω , the decision voltage at the step-up pin (+B) is as shown in the figure below.

Precondition: VREF GOOD, PFC-ON, Non latched.

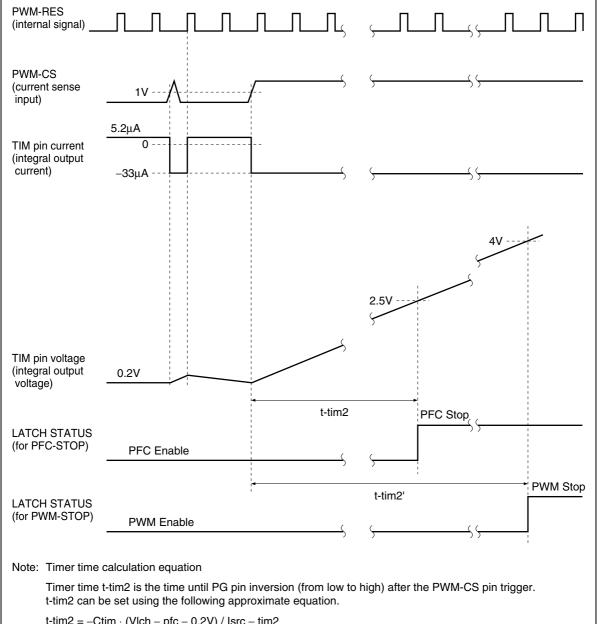



Notes: 4. All numeric values in the figure are typical values.

4. PFC-ON pin

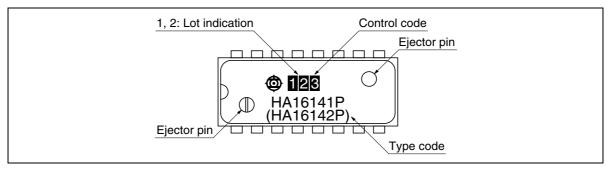

The following functions are effected by inputting an AC voltage that has undergone primary rectification and has been divided with an external resistance to the PFC-ON pin (see figure below).

- a) Turning PFC operation off when AC voltage is low
- b) Switching multiplier gain with AC 100 V system and 200 V system input



5. Integrator (OC detection operation)

6. Integrator (PWM-CS detection operation)



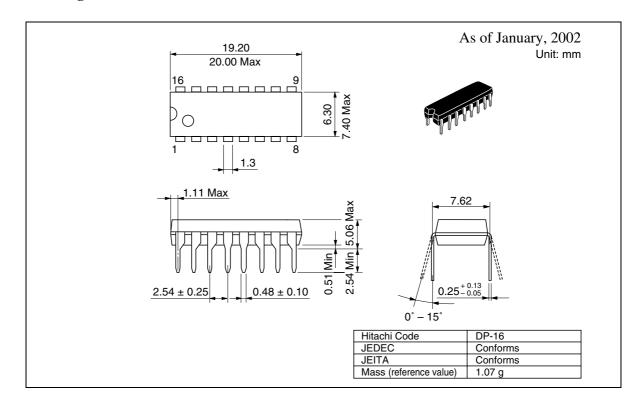
$$\begin{array}{l} t\text{-tim2} = -Ctim \cdot (Vlch - pfc - 0.2V) \, / \, Isrc - tim2 \\ = -Ctim \cdot (2.5V - 0.2V) \, / \, (-33\mu A) \cdot \cdot \cdot \cdot \cdot \, Typical \, calculation \end{array}$$

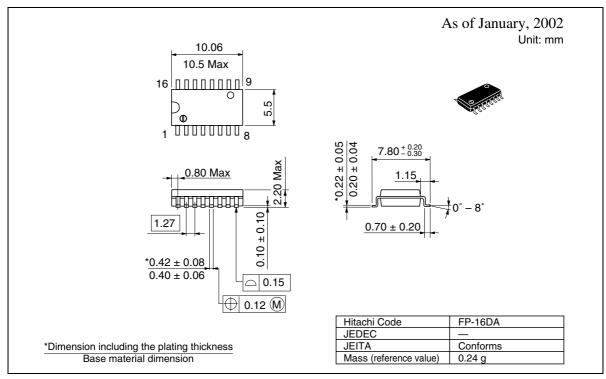
The time at which both the PFC and PWM functions are stopped by this timer can be calculated using the following approximate equation.

t-tim2' = 1.65 · t - tim2 · · · · · Typical calculation

Mark Pattern

Notes: 1. Example of lot indication.


For example, a product manufactured in May 2000 has the markings "0E" in positions $\fbox{1}$ $\fbox{2}$ in the above figure.


Prod	uction	Indication			
Month	Year	1	2		
May	2000	0	Е		
		<u></u>	<u> </u>		

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	Α	В	С	D	Е	F	G	Н	J	K	L	М

2. Laser marking is used.

Package Dimensions

Disclaimer

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Sales Offices

TACH

Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Öhte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109

URL http://www.hitachisemiconductor.com/

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose, CA 95134 Tel: <1> (408) 433-1990 Maidenhead

Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Fax: <1>(408) 433-0223 Berkshire SL6 8YA, United Kingdom Fax: <65>-6538-6933/6538-3877 Tel: <44> (1628) 585000

> Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen Postfach 201, D-85619 Feldkirchen

Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Fax: <44> (1628) 585200

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel: <65>-6538-6533/6538-8577

URL: http://semiconductor.hitachi.com.sg

Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel: <886>-(2)-2718-3666 Fax: <886>-(2)-2718-8180 Telex: 23222 HAS-TP URL: http://www.hitachi.com.tw

Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan. Colophon 6.0

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower World Finance Centre Harbour City, Canton Road

Tsim Sha Tsui, Kowloon Hong Kong Tel: <852>-2735-9218

Fax: <852>-2730-0281 URL: http://semiconductor.hitachi.com.hk

Rev.4, Sep. 2001, page 18 of 18