Precision Air-Core Tach/Speedo Driver with Return to Zero

Description

The CS8190 is specifically designed for use with air-core meter movements. The IC provides all the functions necessary for an analog tachometer or speedometer. The CS8190 takes a speed sensor input and generates sine and cosine related output signals to differentially drive an air-core meter.
Many enhancements have been added over industry standard
tachometer drivers such as the CS289 or LM1819. The output utilizes differential drivers which eliminates the need for a zener reference and offers more torque. The device withstands 60 V transients which decreases the protection circuitry required. The device is also more precise than existing devices allowing for fewer trims and for use in a speedometer.

Absolute Maximum Ratings

Supply Voltage ($<100 \mathrm{~ms}$ pulse transient) ... $\mathrm{V}_{\mathrm{CC}}=60 \mathrm{~V}$
(continuous)... $V_{C C}=24 \mathrm{~V}$
Operating Temperature ... $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature. \qquad $-40^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$ Junction Temperature \qquad ESD (Human Body Model) \qquad Lead Temperature Soldering

Wave Solder(through hole styles only)............. $10 \mathrm{sec} . \max , 260^{\circ} \mathrm{C}$ peak Reflow (SMD styles only)............. 60 sec . max above $183^{\circ} \mathrm{C}, 230^{\circ} \mathrm{C}$ peak

Block Diagram

Features

Direct Sensor Input

High Output Torque

Low Pointer Flutter

High Input Impedance

- Overvoltage Protection
- Return to Zero

Package Options

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
\square Supply Voltage Section					
I ${ }_{\text {CC }}$ Supply Current	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V},-40^{\circ} \mathrm{C}$, No Load		50	125	mA
V_{CC} Normal Operation Range		8.5	13.1	16.0	V
■ Input Comparator Section					
Positive Input Threshold		1.0	2.0	3.0	V
Input Hysteresis		200	500		mV
Input Bias Current *	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 8 \mathrm{~V}$		-10	-80	$\mu \mathrm{A}$
Input Frequency Range		0		20	KHz
Input Voltage Range	in series with $1 \mathrm{k} \Omega$	-1		$\mathrm{V}_{\text {CC }}$	V
Output $\mathrm{V}_{\text {SAT }}$	$\mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}$		0.15	0.40	V
Output Leakage	$\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$			10	$\mu \mathrm{A}$
Low V_{CC} Disable Threshold		7.0	8.0	8.5	V
Logic 0 Input Voltage		1			V

* Note: Input is clamped by an internal $12 \bar{V}$ Zener.

■ Voltage Regulator Section

Output Voltage		6.25	7.00	7.50	V
Output Load Current				10	mA
Output Load Regulation	0 to 10 mA		10	50	mV
Output Line Regulation	$8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V}$		20	150	mV
Power Supply Rejection	$\mathrm{V}_{\mathrm{CC}}=13.1 \mathrm{~V}, 1 \mathrm{Vp} / \mathrm{p} 1 \mathrm{kHz}$	34	46		dB
■ Charge Pump Section					
Inverting Input Voltage		1.5	2.0	2.5	V
Input Bias Current			40	150	nA
$\mathrm{V}_{\text {BIAS }}$ Input Voltage		1.5	2.0	2.5	V
Non Invert. Input Voltage	$\mathrm{I}_{\text {IN }}=1 \mathrm{~mA}$		0.7	1.1	V
Linearity*	@ 0, 87.5, 175, 262.5, +350Hz	-0.10	0.28	+0.70	\%
F/V ${ }_{\text {Out }}$ Gain	@ 350Hz, $\mathrm{C}_{\mathrm{T}}=0.0033 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=243 \mathrm{k} \Omega$	7	10	13	$\mathrm{mV} / \mathrm{Hz}$
Norton Gain, Positive	$\mathrm{I}_{\text {IN }}=15 \mu \mathrm{~A}$	0.9	1.0	1.1	I/I
Norton Gain, Negative	$\mathrm{I}_{\text {IN }}=15 \mu \mathrm{~A}$	0.9	1.0	1.1	I/I

\square Function Generator Section: $-40^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=13.1 \mathrm{~V}$ unless otherwise noted.

Return to Zero Threshold	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.2	6.0	7.0	V
Differential Drive Voltage $\left(\mathrm{V}_{\mathrm{COS}^{+}}-\mathrm{V}_{\mathrm{COS}}{ }^{-}\right)$	$\begin{aligned} & 8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V} \\ & \Theta=0^{\circ} \end{aligned}$	5.5	6.5	7.5	V
Differential Drive Voltage $\left(\mathrm{V}_{\mathrm{SIN}^{+}}-\mathrm{V}_{\mathrm{SIN}^{-}}\right)$	$\begin{aligned} & 8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V} \\ & \Theta=90^{\circ} \end{aligned}$	5.5	6.5	7.5	V
Differential Drive Voltage $\left(\mathrm{V}_{\mathrm{COS}^{+}}-\mathrm{V}_{\mathrm{COS}^{-}}\right)$	$\begin{aligned} & 8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V} \\ & \Theta=180^{\circ} \end{aligned}$	-7.5	-6.5	-5.5	v
Differential Drive Voltage ($\mathrm{V}_{\text {SIN }^{+}}-\mathrm{V}_{\text {SIN }}{ }^{-}$)	$\begin{aligned} & 8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V} \\ & \Theta=270^{\circ} \end{aligned}$	-7.5	-6.5	-5.5	V
Differential Drive Current Zero Hertz Output Angle	$8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V}$	-1.5	$\begin{aligned} & 33 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 42 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{deg} \end{aligned}$

Electrical Characteristics: continued					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
- Function Generator Section: continued					
Function Generator Error * Reference Figures 1-4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=13.1 \mathrm{~V} \\ & \Theta=0^{\circ} \text { to } 305^{\circ} \end{aligned}$	-2	0	+2	deg
Function Generator Error	$13.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V}$	-2.5	0	+2.5	deg
Function Generator Error	$13.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 11 \mathrm{~V}$	-1	0	+1	deg
Function Generator Error	$13.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 9 \mathrm{~V}$	-3	0	+3	deg
Function Generator Error	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 80^{\circ} \mathrm{C}$	-3	0	+3	deg
Function Generator Error	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C}$	-5.5	0	+5.5	deg
Function Generator Error	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	-3	0	+3	deg
Function Generator Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \Theta$ vs $\mathrm{F} / \mathrm{V}_{\text {OUT }}$	60	77	95	\%/V

* Note: Deviation from nominal per Table 1 after calibration at 0 and 270°.

Package Lead Description

PACKAGE LEAD \#		LEAD SYMBOL	FUNCTION
16L	20L		
1	1	CP+	Positive input to charge pump.
2	2	SQ ${ }_{\text {OUT }}$	Buffered square wave output signal.
3	3	$\mathrm{FREQ}_{\text {IN }}$	Speed or rpm input signal.
4, 5, 12, 13	4-7,14-17	Gnd	Ground Connections.
6	8	COS+	Positive cosine output signal.
7	9	COS-	Negative cosine output signal.
8	10	V_{CC}	Ignition or battery supply voltage.
9	11	BIAS	Test point or zero adjustment.
10	12	SIN-	Negative sine output signal.
11	13	SIN+	Positive sine output signal.
14	18	$V_{\text {REG }}$	Voltage regulator output.
15	19	$\mathrm{F} / \mathrm{V}_{\text {OUT }}$	Output voltage proportional to input signal frequency.
16	20	CP-	Negative input to charge pump.

Typical Performance Characteristics

Figure 1: Function Generator Output Voltage vs Degrees of Deflection

Figure 2: Charge Pump Output Voltage vs Output Angle
$\mathrm{F} / \mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V}+2 \mathrm{FREQ} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}} \times\left(\mathrm{V}_{\text {REG }}-0.7 \mathrm{~V}\right)$

Nominal Angle vs. Ideal Angle (After calibrating at $\mathbf{1 8 0}{ }^{\circ}$)
Note: Temperature, voltage, and nonlinearity not included.

Table 1: Function Generator Output Nominal Angle vs. Ideal Angle (After calibrating at 270°)

Ideal Θ Degrees	Nominal Θ Degrees	Ideal Θ Degrees	Nominal Θ Degrees	Ideal Θ Degrees	Nominal Θ Degrees	Ideal Θ Degrees	Nominal Θ Degrees	Ideal Θ Degrees	Nominal Θ Degrees	Ideal Θ Degrees	Nominal Θ Degrees
0	0	17	17.98	34	33.04	75	74.00	160	159.14	245	244.63
1	1.09	18	18.96	35	34.00	80	79.16	165	164.00	250	249.14
2	2.19	19	19.92	36	35.00	85	84.53	170	169.16	255	254.00
3	3.29	20	20.86	37	36.04	90	90.00	175	174.33	260	259.16
4	4.38	21	21.79	38	37.11	95	95.47	180	180.00	265	264.53
5	5.47	22	22.71	39	38.21	100	100.84	185	185.47	270	270.00
6	6.56	23	23.61	40	39.32	105	106.00	190	190.84	275	275.47
7	7.64	24	24.50	41	40.45	110	110.86	195	196.00	280	280.84
8	8.72	25	25.37	42	41.59	115	115.37	200	200.86	285	286.00
9	9.78	26	26.23	43	42.73	120	119.56	205	205.37	290	290.86
10	10.84	27	27.07	44	43.88	125	124.00	210	209.56	295	295.37
11	11.90	28	27.79	45	45.00	130	129.32	215	214.00	300	299.21
12	12.94	29	28.73	50	50.68	135	135.00	220	219.32	305	303.02
13	13.97	30	29.56	55	56.00	140	140.68	225	225.00		
14	14.99	31	30.39	60	60.44	145	146.00	230	230.58		
15	16.00	32	31.24	65	64.63	150	150.44	235	236.00		
16	17.00	33	32.12	70	69.14	155	154.63	240	240.44		

Note: Temperature, voltage, and nonlinearity not included.

The CS8190 is specifically designed for use with air-core meter movements. It includes an input comparator for sensing an input signal from an ignition pulse or speed sensor, a charge pump for frequency to voltage conversion, a bandgap voltage regulator for stable operation, and a function generator with sine and cosine amplifiers to differentially drive the motor coils.
From the simplified block diagram of Figure 5A, the input signal is applied to the $\mathrm{FREQ}_{\text {IN }}$ lead, this is the input to a high impedance comparator with a typical positive input threshold of 2.0 V and typical hysteresis of 0.5 V . The output of the comparator, $\mathrm{SQ}_{\mathrm{OUT}}$, is applied to the charge pump input CP+ through an external capacitor C_{T}. When the input signal changes state, C_{T} is charged or discharged through R3 and R4. The charge accumulated on C_{T} is mirrored to C 4 by the Norton Amplifier circuit comprising of Q1, Q2 and Q3. The charge pump output voltage, $\mathrm{F} / \mathrm{V}_{\text {OUT }}$, ranges from 2 V to 6.3 V depending on the input signal frequency and the gain of the charge pump according to the formula:

$$
\mathrm{F} / \mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V}+2 \times \mathrm{FREQ} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}} \times\left(\mathrm{V}_{\mathrm{REG}}-0.7 \mathrm{~V}\right)
$$

R_{T} is a potentiometer used to adjust the gain of the F / V output stage and give the correct meter deflection. The F / V output voltage is applied to the function generator which generates the sine and cosine output voltages. The output voltage of the sine and cosine amplifiers are derived from the on-chip amplifier and function generator circuitry. The various trip points for the circuit (i.e., 0°, $90^{\circ}, 180^{\circ}, 270^{\circ}$) are determined by an internal resistor divider and the bandgap voltage reference. The coils are differentially driven, allowing bidirectional current flow in the outputs, thus providing up to 305° range of meter deflection. Driving the coils differentially offers faster response time, higher current capability, higher output voltage swings, and reduced external component count. The key advantage is a higher torque output for the pointer.
The output angle, Θ, is equal to the F / V gain multiplied by the function generator gain:

$$
\Theta=\mathrm{A}_{\mathrm{F} / \mathrm{V}} \times \mathrm{A}_{\mathrm{FG}}
$$

where:

$$
\mathrm{A}_{\mathrm{FG}}=77^{\circ} / \mathrm{V}(\mathrm{typ})
$$

The relationship between input frequency and output angle is:

$$
\begin{aligned}
& \Theta=\mathrm{A}_{\mathrm{FG}} \times 2 \times \mathrm{FREQ} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}} \times\left(\mathrm{V}_{\mathrm{REG}}-0.7 \mathrm{~V}\right) \\
& \text { or, } \quad \Theta=970 \times \mathrm{FREQ} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}}
\end{aligned}
$$

The ripple voltage at the F / V converter's output is determined by the ratio of C_{T} and C 4 in the formula:

$$
\Delta \mathrm{V}=\frac{\mathrm{C}_{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{REG}}-0.7 \mathrm{~V}\right)}{\mathrm{C} 4}
$$

Ripple voltage on the F/V output causes pointer or needle flutter, especially at low input frequencies.
The response time of the F / V is determined by the time constant formed by R_{T} and $C 4$. Increasing the value of $C 4$ will reduce the ripple on the F / V output but will also increase the response time. An increase in response time causes a very slow meter movement and may be unacceptable for many applications.

The CS8190 has an undervoltage detect circuit that disables the input comparator when V_{CC} falls below 8.0 V (typical). With no input signal the F/V output voltage decreases and the needle moves towards zero. A second undervoltage detect circuit at 6.0 V (typical) causes the function generator to generate a differential SIN drive voltage of zero volts and the differential COS drive voltage to go as high as possible. This combination of voltages (Figure 1) across the meter coil moves the needle to the 0° position. Connecting a large capacitor $(>2000 \mu \mathrm{~F})$ to the V_{CC} lead (C 2 in Figure 6) increases the time between these undervoltage points since the capacitor discharges slowly and ensures that the needle moves towards 0° as opposed to 360°. The exact value of the capacitor depends on the response time of the system, the maximum meter deflection and the current consumption of the circuit. It should be selected by breadboarding the design in the lab.

Design Example

Maximum meter Deflection $=270^{\circ}$
Maximum Input Frequency $=350 \mathrm{~Hz}$

1. Select R_{T} and C_{T}

$$
\begin{aligned}
\Theta & =\mathrm{A}_{\mathrm{GEN}} \times \Delta_{\mathrm{F}} / \mathrm{V} \\
\Delta_{\mathrm{F}} / \mathrm{V} & =2 \times \mathrm{FREQ} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}} \times\left(\mathrm{V}_{\mathrm{REG}}-0.7 \mathrm{~V}\right) \\
\Theta & =970 \times \mathrm{FREQ} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}}
\end{aligned}
$$

Let $\mathrm{C}_{\mathrm{T}}=0.0033 \mu \mathrm{~F}$, Find R_{T}

$$
\begin{gathered}
\mathrm{R}_{\mathrm{T}}=\frac{270^{\circ}}{970 \times 350 \mathrm{~Hz} \times 0.0033 \mu \mathrm{~F}} \\
\mathrm{R}_{\mathrm{T}}=243 \mathrm{k} \Omega
\end{gathered}
$$

R_{T} should be a $250 \mathrm{k} \Omega$ potentiometer to trim out any inaccuracies due to IC tolerances or meter movement pointer placement.

2. Select R3 and R4

Resistor R3 sets the output current from the voltage regulator. The maximum output current from the voltage regulator is $10 \mathrm{~mA}, \mathrm{R} 3$ must ensure that the current does not exceed this limit.
Choose R3 $=3.3 \mathrm{k} \Omega$
The charge current for C_{T} is:

$$
\frac{\mathrm{V}_{\mathrm{REG}}-0.7 \mathrm{~V}}{3.3 \mathrm{k} \Omega}=1.90 \mathrm{~mA}
$$

C1 must charge and discharge fully during each cycle of the input signal. Time for one cycle at maximum frequency is 2.85 ms . To ensure that C_{T} is discharged, assume that the $(\mathrm{R} 3+\mathrm{R} 4) \mathrm{C}_{\mathrm{T}}$ time constant is less than 10% of the minimum input frequency pulse width.

$$
\mathrm{T}=285 \mu \mathrm{~s}
$$

Choose R4 $=1 \mathrm{k} \Omega$.
Charge time: $\quad \mathrm{T}=\mathrm{R} 3 \times \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{k} \Omega \times 0.0033 \mu \mathrm{~F}=10.9 \mu \mathrm{~s}$
Discharge time: $\mathrm{T}=(\mathrm{R} 3+\mathrm{R} 4) \mathrm{C}_{\mathrm{T}}=4.3 \mathrm{k} \Omega \times 0.0033 \mu \mathrm{~F}=14.2 \mu \mathrm{~s}$

Circuit Description and Application Notes: continued

3. Determine C4

C4 is selected to satisfy both the maximum allowable ripple voltage and response time of the meter movement.

$$
\mathrm{C} 4=\frac{\mathrm{C}_{\mathrm{T}}\left(\mathrm{~V}_{\mathrm{REG}}-0.7 \mathrm{~V}\right)}{\mathrm{V}_{\text {RIPPLE }}(\mathrm{MAX})}
$$

With $\mathrm{C} 4=0.47 \mu \mathrm{~F}$, the F / V ripple voltage is 44 mV .

The last component to be selected is the return to zero capacitor C 2 . This is selected by increasing the input signal frequency to its maximum so the pointer is at its maximum deflection and removing the power from the circuit. C2 should be large enough to ensure that the pointer always returns to the 0° position rather than 360° under all operating conditions.

Figure 7 shows how the CS8190 and the CS8441 are used to produce a Speedometer and Odometer circuit.

Figure 5A: Partial Schematic of Input and Charge Pump

Figure 5B: Timing Diagram of FREQ $_{\text {IN }}$ and I_{CP}

Figure 6
R1-3.9, 500mW
R2-10k Ω
R3-3k Ω
R4-1k Ω
R_{T} - Trim Resistor ± 20 PPM/DEG. C
C1-0.1 $\mu \mathrm{F}$
C2- 1. Stand alone Speedo or Tach with return to Zero, $2000 \mu \mathrm{~F}$ 2. With CS8441 application, $10 \mu \mathrm{~F}$

C3-0.1 $\mu \mathrm{F}$
C4-0.47 $\mu \mathrm{F}$
$\mathrm{C}_{\mathrm{T}}-0.0033 \mu \mathrm{~F}, \pm 30 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
D1-1A, 600 PIV
D2-50V, 500 mW Zener

Figure 7

Note 1: $\mathrm{C} 2(>2000 \mu \mathrm{~F})$ is needed if return to zero function is required.
Note 2: The product of C4 and R4 have a direct effect on gain and therefore directly effect temperature compensation.
Note 3: C4 Range; 20 pF to $.2 \mu \mathrm{~F}$.

Note 4: R4 Range; $100 \mathrm{k} \Omega$ to $500 \mathrm{k} \Omega$.
Note 5: The IC must be protected from transients above 60 V and reverse battery conditions.
Note 6: Additional filtering on the $F_{R E Q}$ IN lead may be required.

In some cases a designer may wish to use the CS8190 only as a driver for an air-core meter having performed the F / V conversion elsewhere in the circuit.
Figure 8 shows how to drive the CS8190 with a DC voltage ranging from 2 V to 6 V . This is accomplished by forcing a voltage on the $\mathrm{F} / \mathrm{V}_{\text {OUT }}$ lead. The alternative scheme shown in Figure 9 uses an external op amp as a buffer and operates over an input voltage range of 0 V to 4 V .

Figure 8. Driving the CS8190 from an external DC voltage.

An alternative solution is to use the CS4101 which has a separate function generator input lead and can be driven directly from a DC source.

Figure 9. Driving the CS8190 from an external DC voltage using an Op Amp Buffer.

Lead Count	D			
	Metric		English	
	Max	Min	Max	Min
16L PDIP*	19.69	18.67	. 775	. 735
20L SOIC*	13.00	12.60	. 512	. 496

PACKAGE THERMAL DATA

Thermal Data		16L PDIP*	20L SOIC*	
$\mathrm{R}_{\text {®JC }}$	typ	15	9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\overline{\mathrm{R}}$ ®JA	typ	50	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$

*Internally Fused Leads

Plastic DIP (N); 300 mil wide

Surface Mount Wide Body (DW); 300 mil wide

| Ordering Information |
| :--- | :--- |
| Part Number Description
 $\frac{\text { CS8190ENF16 }}{\text { CS8190EDWF20 }}$
 CS8190EDWFR20 20L PDIP (internally fused leads)
 20L SOIC (internally fused leads)
 (tape \& reel) |

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.

