

No.3591A

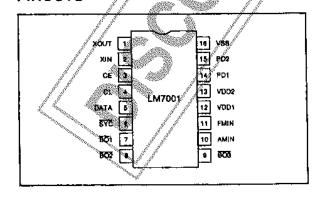
LM7001, LM7001M

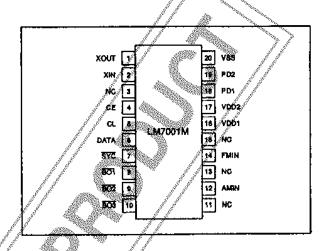
Direct PLL Frequency Synthesizers

OVERVIEW

The LM7001 and LM7001M are direct PLL frequency synthesizers that provide accurate reference frequencies for long-wave and medium-wave AM and FM tuners. They incorporate a 24-bit shift register and latch, programmable divider, reference divider and phase detector charge pump.

The LM7001 and LM7001M feature an AM frequency range of 500 kHz to 10 MHz and FM ranges of 5 to 30 MHz and 45 to 130 MHz. Seven software-selectable reference frequencies are available in the range 1 to 100 kHz. A 400 kHz microcontroller clock output and an 8 Hz real-time clock output are also provided.

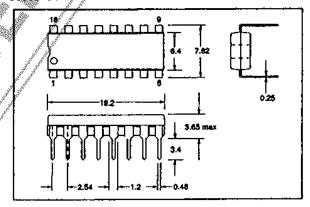

The LM7001 and LM7001M operate from a 5 V supply and are available in 16-pin DIPs and 20-pin MFPs, respectively.

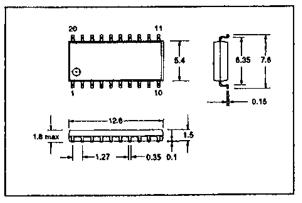

FEATURES

- High-speed AM/FM programmable divider
- Seven software-selectable reference frequencies in the range 1 to 100 kHz
- Three on-chip, open-drain bandswitching output

 drivers
- 400 kHz clock output for microcontroller system
- · 8 Hz timebase output for real-time clock
- Three-wire serial control
- 5 V supply
- 16-pin DIP (LM7001) and 20-pin MFP (LM7001M)

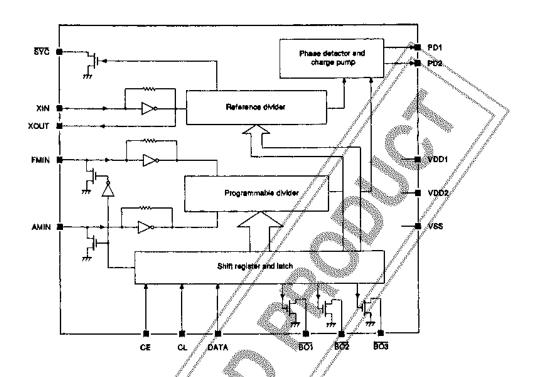
PINOUTS




PACKAGE DIMENSIONS

Unit: mm

3006B-DIP16


3036B-MFP20

Specifications and information herein are subject to change without notice.

SANYO Electric Co., Ltd. Semiconductor Division Natsume Bldg., 18-6, 2-chome, Yushima, Bunkyo-ku, TOKYO 113 JAPAN

BLOCK DIAGRAM

PIN DESCRIPTION

Nor	Humber		Dascription
LM7001	LM7001M	/ Name	Description
1	1	XQUT	7/2 MHz crystal oscillator output
2	2	XIN	7.2 MHz crystal oscillator input
<u>-</u>	3 //	NC	No connection
3	4/	CE	Chip enable
4	//5	CL //	Clock input
5	// 6	DATA	Serial data input
6	* * * * * * * * * * * * * * * * * * *	SPC	400 kHz controller clock output
7		8 01	Bandswitching output 1. Can be used for an 8 Hz timebase output
8//	9	<u> </u>	Bandswitching output 2
<i>y</i> /9/	10	BO3	Bandswitching output 3
//- (8)	11	NC	No connection
18	12,//	AMIN	AM local oscillator input
- 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	/13/	NC	No connection
11	14	FMIN	FM local oscillator input
_	15	NC	No connection
12	16	VDD1	5 V supply
13	17	VDD2	5 V backup supply

Number			Baseletlan			
LM7001	LM7001M	- Name	Description			
14	18	PD1	Phase detector charge pump output 1			
15	19	PD2	Phase detector charge pump output 2			
16	20	VSS	Ground			

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD} max	-03 16 7.0	٧
Logic-level input voltage range	V _{IN1} max	-0.3 to 7.0	ν
Analog input voltage range	V _{IN2} max	-0.3 to V _{DQ} + 0.3	٧
SYC output voltage range	Vouri max	-0.3,46,7.0	٧
BO1, BO2 and BO3 output voltage range	Vours/max	_0.3 to 13	٧
PD1, PD2 and XOUT output voltage range	Vguta max	-6.3 to V _{DO} + 0.3	٧
BO1, BO2 and BO3 output current range	Jour max	0 to 3	mA
Power dissipation	Pe	300	mW
Operating temperature range	Tope	-40 to 85	deg. C
Storage temperature range	16.	-55 to 125	deg. C

Recommended Operating Conditions

 $T_a = 25 \text{ deg. C}$

	Parameter	Symbol	Rating	Unit
Complex wells as		y ₀₀₁	5	٧
Supply voltage		And And April April 1	5	٧
Construction of		V _{OO1}	4.5 to 6.5	V
Supply voltage range		V ₀₀₂	3.5 to 6.5	٧

Electrical Characteristics T. = -40 to 85 deg. C

Parameter		01/4	Rating			Unit
Parameter	Symbol	Condition -	min	typ	max	
CE_CE, DATA HIGH-level input voltage	Viн		2.2	-	6.5	V
CE, CL, DATA EQW-level input voltage	V:L		0	-	0.7	٧
SYC output voltage	Vouts		0	-	6.5	٧
BO1, BO2 and BO3 output voltage	V _{0u12}		0	-	13	٧
XIN input frequency	foys	Sine wave, capacitive coupling	1.0	7.2	8.0	MHz

Parameter	Symbol Condition	Condition		Unit		
4 04 04 14 01 10 1	e Shummi	Contactions	min	typ	max	UIII
FMIN input frequency	fin2	Sine wave, capacitive coupling, S = 1. See notes 1 and 5.	45		130	MHz
Time apprendency	INX	Sine wave, capacitive coupling, S = 1. See notes 2 and 5.	5	7	30	MHz
AMIN input frequency	tina	Sine wave, capacitive coupling, S = 0	0.5	//- 4	10	MHz
Crystal oscillator frequency	İXTAL	Crystal impedance ≤ 30 Ω	5.0	7.2	8.0	MHz
XIN input voltage	V _{IN1}	Sine wave, capacitive coupling	0,5	2	1.5	٧
FMIN input voltage	V _{IN2}	Sine wave, capacitive coupling	0.1	-	1/5	٧
AMIN input voltage	V _{IN3}	Sine wave, capacitive coupling	0.1	.	/_1.5	٧
XIN internal feedback resistance	R _{f1}	get and a second se		1.0	-	MΩ
FMIN internal feedback resistance	R _{I2}		-	500	1	kΩ
AMIN internal feedback resistance	R _{f3}			500	-	kΩ
CE, CL, DATA HIGH-level input current	l ₁ H	VIN = 6.5 V	•	114-	5.0	μΑ
CE, CL, DATA LOW-level input current	ել	VIN = 0 V	-//	_	5.0	μА
FMIN, AMIN LOW-level output voltage	V _{OL1}	Ιουτ = 0.5 mA		_	3.5	٧
SYC LOW-level output voltage	V _{OL2}	lout ≤ 0.1 mA. See note 3.	//0.02	-	0.3	٧
BO1 to BO3 LOW-level output voltage	V _{OL3}	four = 20 mA	_	_	1.0	٧
SYC output leakage current	loff1	Vout = 6.5 V		-	5.0	Ац
BO1 to BO3 output leakage current	forf2	Vout ≥ 13 V		-	3.0	μА
PD1 to PD2 HiGH-level output voltage	Voh	ющ = →0.1 mA	0.5V _{DD}	_	-	٧
PD1 to PD2 LOW-level output of postage	You	Тоет = 0.1/mA	-	_	0.3	٧
PD1 to PD2 HIGH-level leakage current	1 08 FH	Vour = Voo	_	0.01	10.0	nA
PD1 to PD2 LOW-level feakage current	OFFL	Vout = 0 V	-	0.01	10.0	лА
Supply current	I _{DD1}	See note 4.	-	25	40	mA
oupply current	1002	PLL inhibited		2.0	3.5	mA
FMIN input capacitance	/ Cin		1	2	3	ρF

- 1. $f_{mi} = 25,50$ or 100 kHz

- f_{ref} ≠ 25, 50 or 100 kHz
 f_{ref} ≠ 25, 50 or 100 kHz
 V_{DD} = 3.5 to 6.5 V
 f_{IN2} = 130 MHz, V_{IN2} = 100 mV. XIN and XOUT are connected to a 7.2 MHz crystal. All other input pins are connected to V_{SS} and all output pins are open.
- 5. S is the divider select bit in the serial data input string.

FUNCTIONAL DESCRIPTION

Input Data Format

The LM7001 and LM7001M are controlled from a three-wire serial bus, which comprises chip-enable, clock and serial data inputs. The 24-bit serial data input comprises 14 divider select bits (D0 to D13), two test

control bits (T0 and T1), three bandswitching output control bits (B0 to B2), one unebase control bit (TB), three reference frequency select bits (R0 to R2) and one divider select bit (S) as shown in figure 2.

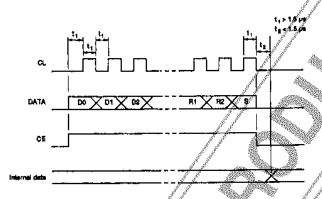


Figure 1. Input waveform diagram

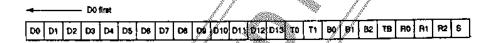


Figure 2. Imput data format

Divider Ratio Select

Bits D0 to D13 select the FMIN divider ratio. Bits D4 to D13 select the AMIN divider ratio as shown in figure

3. The S bit selects the FMIN divide function when set to 1, and AMIN, when cleared to 0.

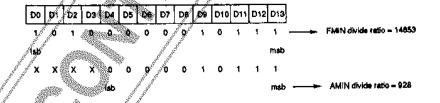


Figure 3. Divider ratio select

Test Control

Bits TO and T1 should be cleared to 0 for normal operation.

Bandswitching and Timebase Control

Bits B0 to B2 and bit TB select the state of the bandswitching outputs $\overline{BO1}$ to $\overline{BO3}$ as shown in table 1.

Table 1. Bandswitching output select

	In	put		Outout		
B0	B 1	B2	TB	B01	B02	B03
0	0	0	0		See note 1	
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	0	0	1	1
1	0	0	0	1	0	0
1	0	1	0	1	0	1
1	1	0	0	1	1	,O
1	1	1	0	1	1	1
0	0	0	1	ТВ	See n	ote 2.
×	1	O.	1	ТВ	1	0
×	0	1	1	ТВ	0	1
×	1	1	1	TB	1	1
1	0	0	1	ТВ	0	0

Notes

- 1. Bits R0, R1 and R2 select the state of BO1, BO2 and BO3 as shown in table 2.
- 2. Bits R0, R1 and R2 select the state of BO2 and BO3 as shown in table 2.
- 3. The timebase frequency is 8 Hz when TB is set to
- 4. \times = don't care

Reference Frequency Select

Bits R0 to R2 select the reference frequency as shown in table 2. In addition, bits R0 to R2 select the bandswitching outputs BO1 to BO3 when bits B0 to B2 are all 0.

Table 2. Reference frequency select

RO	R1	R2	1 (kHz)	B01	802	B03
0	0	0	1 _m (kHz)	1	1/2	0
0	0	1 20 mars	50	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
0	1	70	25		1	0
0	1,//,	1	5	0	0	1
1	J 0 1	0	10	2" X"	0	1
1	/ O _	j	9 //	1	0	1
1/	1	0	9	0	1	1
/ 1	1	1	1//	0	0	1

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.