

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
($\mathrm{V}^{+}-\mathrm{V}^{-}$) Voltage Differential
25 V
Input Current
100 mA
Peak Output Current
1.5A

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature $300^{\circ} \mathrm{C}$

Recommended Operating

 Conditions| V+ V- Differential Voltage | Min |
| :--- | :---: |
| | 0 |
| Temperature | Max |
| Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ | 70 |
| 8-Pin Cavity Package | |
| 14-Pin Cavity Package | 1150 mW |
| Molded Package | 1410 mW |
| Metal Can (TO-5) Package | 1080 mW |
| * Derate 8-pin cavity package $7.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; de- | |
| rate 14-pin cavity package $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate | |
| molded package $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate metal | |
| can (TO-5) package $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. | |

Electrical Characteristics (Notes 2 and 3) See test circuit.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{d}} \mathrm{ON}$	Turn-On Delay Time	$\mathrm{C}_{\text {IN }}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\text {IN }}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F}$			15	30	ns
$t_{\text {RISE }}$	Rise Time	$\mathrm{C}_{\text {IN }}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\text {IN }}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F}$			25	50	ns
t_{d} OFF	Turn-Off Delay Time	$\begin{aligned} & \mathrm{C}_{\mathbb{I N}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathbb{I N}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F} \\ & \text { (Note 4) } \end{aligned}$			30	60	ns
$t_{\text {FALL }}$	Fall Time	$\begin{aligned} & \mathrm{C}_{\mathrm{IN}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=0 \Omega \\ & \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F} \end{aligned}$	(Note 4)	60	90	120	ns
			(Note 5)	100	150	250	ns
PW	Pulse Width (50\% to 50\%)	$\begin{aligned} & \mathrm{C}_{\mathrm{IN}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=0 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F}(\text { Note } 5) \end{aligned}$			500		ns
$\mathrm{V}_{\mathrm{O}+}$	Positive Output Voltage Swing	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=-1 \mathrm{~mA}$		$\mathrm{V}+$-1.0	$\mathrm{V}+-0.7 \mathrm{~V}$		V
$\mathrm{V}_{\mathrm{O}-}$	Negative Output Voltage Swing	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$			$\mathrm{V}-+0.7 \mathrm{~V}$	$\mathrm{V}-+1.5 \mathrm{~V}$	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range for the DS0025C.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis
Note 4: Parameter values apply for clock pulse width determined by input pulse width.
Note 5: Parameter values for input width greater than output clock pulse width.

Timing Diagram

Typical Application

TL/F/5852-4

AC Test Circuit

*Q1 is selected high speed NPN switching transistor.

Typical Performance

TL/F/5852-7
$P_{A C}=\left(V^{+}-V^{-}\right)^{2 f C_{L}}$

TL/F/5852-9

$$
C_{L}<\frac{\left(\mathrm{P}_{\mathrm{MAX}}\right)(1 \mathrm{k})-\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{2}(\mathrm{DC})}{(\mathrm{f})(1 \mathrm{k})\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{2}}<\frac{\left(\mathrm{I}_{\mathrm{pk}}\right)\left(\mathrm{t}_{\mathrm{r}}\right)}{\mathrm{V}^{+}-\mathrm{V}^{-}}
$$

DUTY CYCLE (\%)

$$
P_{D C}=\frac{\left.V^{+}-V^{-}\right)^{2}(D C)}{1 k}
$$

TL/F/5852-10

$$
\begin{aligned}
& I_{\text {MAX }}=\text { Peak Current delivered by driver } \\
& I_{\text {IIN }} \frac{V_{B E}}{R 1}=\frac{0.6}{1 \mathrm{k}}
\end{aligned}
$$

Applications Information

Circuit Operation

Input current forced into the base of Q_{1} through the coupling capacitor $C_{I N}$ causes Q_{1} to be driven into saturation, swinging the output to $V^{-}+V_{C E}($ sat $)+V_{\text {Diode }}$.
When the input current has decayed, or has been switched, such that Q_{1} turns off, Q_{2} receives base drive through R_{2}, turning Q_{2} on. This supplies current to the load and the output swings positive to $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE}}$.

TL/F/5852-11
FIGURE 1. DS0025 Schematic (One-Half Circuit)
It may be noted that Q_{1} must switch off before Q_{2} begins to supply current, hence high internal transients currents from V- to V^{+}cannot occur.

Fan-Out Calculation

The drive capability of the DSOO25 is a function of system requirements, i.e. speed, ambient temperature, voltage swing, drive circuitry, and stray wiring capacity.
The following equations cover the necessary calculations to enable the fan-out to be calculated for any system condition.

Transient Current

The maximum peak output current of the DS0025 is given as 1.5 A . Average transient current required from the driver can be calculated from:

$$
\begin{equation*}
\mathrm{I}=\frac{\mathrm{C}_{\mathrm{L}}\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)}{\mathrm{t}_{\mathrm{r}}} \tag{1}
\end{equation*}
$$

Typical rise times into 1000 pF load is 25 ns . For $\mathrm{V}^{+}-\mathrm{V}^{-}$ $=20 \mathrm{~V}, \mathrm{I}=0.8 \mathrm{~A}$.

Transient Output Power

The average transient power (P_{ac}) dissipated, is equal to the energy needed to charge and discharge the output capacitive load $\left(\mathrm{C}_{\mathrm{L}}\right)$ multiplied by the frequency of operation (f).
$P_{A C}=C_{L} \times\left(V^{+}-V^{-}\right)^{2} \times f$
For $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{P}_{\mathrm{AC}}=$ 400 mW .
Internal Power
" 0 " State Negligible (<3 mW)
"1" State

$$
\begin{equation*}
\mathrm{P}_{\mathrm{int}}=\frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{2}}{\mathrm{R}_{2}} \times \text { Duty Cycle } \tag{3}
\end{equation*}
$$

$=80 \mathrm{~mW}$ for $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{DC}=20 \%$

Package Power Dissipation

Total average power $=$ transient output power + internal power.

Example Calculation

How many MM506 shift registers can be driven by a DS0025CN driver at 1 MHz using a clock pulse width of 200 ns, rise time $30-50 \mathrm{~ns}$ and 16 V amplitude over the temperature range $0^{\circ}-70^{\circ} \mathrm{C}$?
Power Dissipation:
At $70^{\circ} \mathrm{C}$ the DS0025CN can dissipate 870 mW when soldered into printed circuit board.

Transient Peak Current Limitation:

From equation (1), it can be seen that at 16 V and 30 ns , the maximum load that can be driven is limited to 2800 pF .

Average Internal Power:

Equation (3), gives an average power of 50 mW at 16 V and a 20% duty cycle.
For one-half of the DS0025C, $870 \mathrm{~mW} \div 2$ can be dissipated.
$435 \mathrm{~mW}=50 \mathrm{~mW}+$ transient output power.
$385 \mathrm{~mW}=$ transient output power.
Using equation (2) at $16 \mathrm{~V}, 1 \mathrm{MHz}$ and 350 mW , each half of the DS0025CN can drive a 1367 pF load. This is less than the load imposed by the transient current limitation of equation (1) and so a maximum load of 1367 pF would prevail.
From the data sheet for the MM506, the average clock pulse load is 80 pF . Therefore the number of devices driven is $1367 / 80$ or 17 registers.
For further information please refer to National Semiconductors Application Note AN-76.

Physical Dimensions inches (millimeters)

DS0025C Two Phase MOS Clock Driver

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

