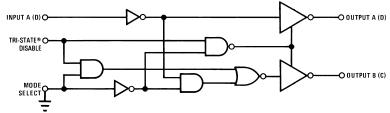


March 1992

DS1692/DS3692 TRI-STATE® Differential Line Drivers

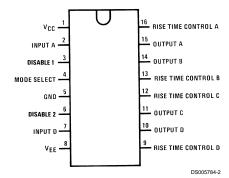
General Description

The DS1692/DS3692 are low power Schottky TTL line drivers electrically similar to the DS1691A/DS3691 but tested to meet the requirements of MIL-STD-188-114A (see Application Note AN-216). MIL-STD-188-114A type 1 driver specifications can be met by adding an external three resistor voltage divider to the output of the DS3692/1692. The DS3692/1692 feature 4 buffered outputs with high source and sink current capability with internal short circuit protection.


With the mode select pin low, the DS1692/DS3692 are dual differential line drivers with TRI-STATE outputs. They feature ±10V output common-mode range in TRI-STATE and 0V output unbalance when operated with ±5V supply.

Multipoint applications in differential mode with waveshaping capacitors is not allowed.

Features


- Short circuit protection for both source and sink outputs
- 100Ω transmission line drive capability
- Low I_{CC} and I_{EE} power consumption: Differential mode: I_{CC} = 9 mA/driver typ, I_{EE} = 5 mA/driver typ
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Adaptable as MIL-STD-188-114A type 1 driver

Logic Diagram (1/2 Circuit Shown)

DS005784-1

Connection Diagram

*Contact Product Marketing for availability.

Top View
Order Number DS1692J, DS3692J,
DS3692M or DS3692N
See NS Package Number J16A, M16A* or N16A

Inputs			Outputs		
Mode	A (D)	Disable1 (2)	A (D)	B (C)	
0	0	0	0	1	
0	0	1	TRI-STATE	TRI-STATE	
0	1	0	1	0	
0	1	1	TRI-STATE	TRI-STATE	

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1999 National Semiconductor Corporation

DS005784

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Distributors for availability and speci	tications.
Supply Voltage	
V _{CC}	7V
V_{EE}	-7V
Maximum Power Dissipation (Note 1) a	t 25°C
Cavity Package	1509 mW
Molded Package	1476 mW
Input Voltage	15V
Output Voltage (Power OFF)	±15V
Storage Temperature	-65°C to +150°C
Lead Temperature (Soldering, 4 sec.)	260°C

Operating Conditions

	Min	Max	Units
Supply Voltage			
DS1692			
V_{CC}	4.5	5.5	V
V_{EE}	-4.5	-5.5	V
DS3692			
V_{CC}	4.75	5.25	V
V_{EE}	-4.75	-5.25	V
Temperature (T _A)			
DS1692	-55	+125	°C
DS3692	0	+70	°C

Note 1: Derate cavity package 10.1 mW/°C; derate molded package 11.9 mW/°C above 25°C.

Electrical Characteristics

DS1692/DS3692 (Notes 3, 4, 5)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DS1692, V _{CC} =	5V ±10%, DS3692, V _{CC} = 5V ±5%,	V _{EE} CONNECTION	N TO GROUND	, MODE S	ELECT ≤ 0.8	BV	
Vo	Differential Output Voltage	R _L = ∞	V _{IN} = 2V	2.5	3.6		V
$\overline{V_O}$	V _{A,B}		V _{IN} = 0.8V	-2.5	-3.6		V
V _T	Differential Output Voltage	$R_L = 100\Omega$	V _{IN} = 2V	2	2.6		V
$\overline{V_T}$	V _{A,B}	V _{CC} ≥ 4.75V	V _{IN} = 0.8V	-2	-2.6		V
$V_{OS}, \overline{V_{OS}}$	Common-Mode Offset	$R_L = 100\Omega$	•		2.5	3	V
	Voltage						
$ V_T - \overline{V_T} $	Difference in Differential	$R_L = 100\Omega$			0.05	0.4	V
	Output Voltage						
$ V_{OS} - \overline{V_{OS}} $	Difference in Common-	$R_L = 100\Omega$			0.05	0.4	V
	Mode Offset Voltage						
V _{SS}	$ V_T - \overline{V_T} $	$R_L = 100\Omega, V_C$	_{CC} ≥ 4.75V	4.0	4.8		V
l _{ox}	TRI-STATE Output Current	V _O ≤ −10V			-0.002	-0.15	mA
		V _O ≥ 15V			0.002	0.15	mA
I _{SA}	Output Short Circuit Current	V _{IN} = 0.4V	V _{OA} = 6V		80	150	mA
			$V_{OB} = 0V$		-80	-150	mA
I _{SB}	Output Short Circuit Current	V _{IN} = 2.4V	$V_{OA} = 0V$		-80	-150	mA
			V _{OB} = 6V		80	150	mA
I _{cc}	Supply Current				18	30	mA
DS1692, V _{CC} =	5V ±10%, V _{EE} = -5V ±10%, DS369	2, V _{CC} = 5V ±5%	s, V _{EE} = -5 ±5%	, MODE S	ELECT ≤ 0.8	BV	
Vo	Differential Output Voltage	R _L = ∞	V _{IN} = 2.4V	7	8.5		V
$\overline{V_O}$	V _{A,B}		V _{IN} = 0.4V	-7	-8.5		V
V _T	Differential Output Voltage	$R_L = 200\Omega$	V _{IN} = 2.4V	6	7.3		V
$\overline{V_{T}}$	V _{A,B}		V _{IN} = 0.4V	-6	-7.3		V
$ V_T - \overline{V_T} $	Output Unbalance	$ V_{CC} = V_{EE} ,$	$R_L = 200\Omega$		0.02	0.4	V
l _{ox}	TRI-STATE Output Current		V _O = 10V		0.002	0.15	mA
			V _O = -10V		-0.002	-0.15	mA
l _s +	Output Short Circuit Current	V _O = 0V	V _{IN} = 2.4V		-80	-150	mA
l _s -			V _{IN} = 0.4V		80	150	mA
I _{SLEW}	Slew Control Current				±140		μA
I _{cc}	Positive Supply Current	V _{IN} = 0.4V, R _L	= ∞		18	30	mA
I _{EE}	Negative Supply Current	V _{IN} = 0.4V, R _L = ∞			-10	-22	mA

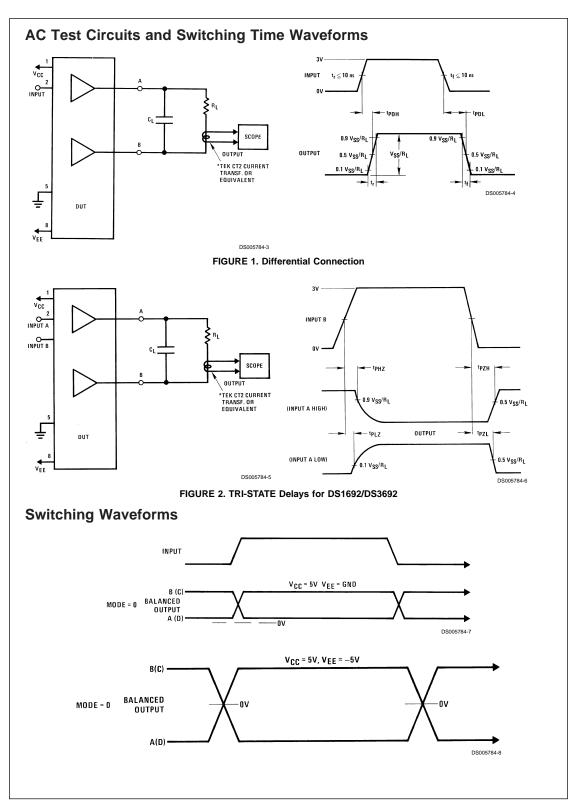
Electrical Characteristics

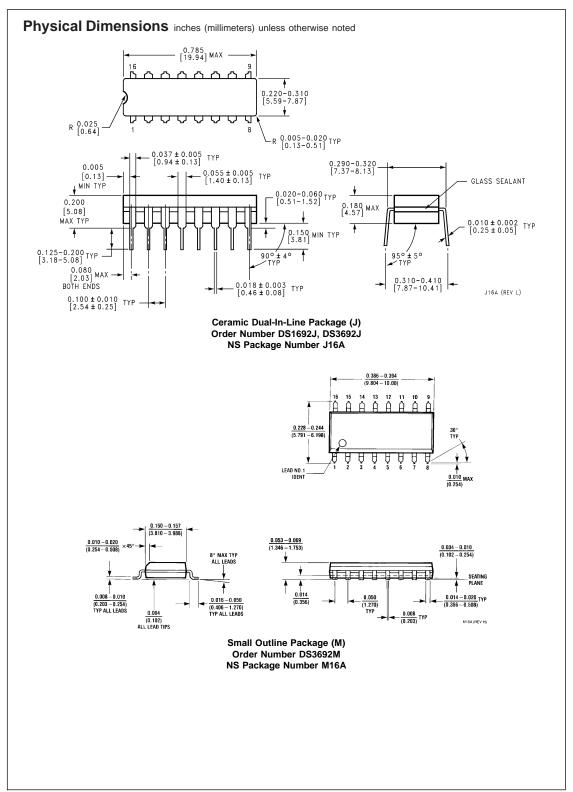
 $V_{EE} \le 0V \text{ (Notes 3, 4)}$

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IH}	High Level Input Voltage			2			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 2.4V			1	40	μA
		V _{IN} ≤ 15V			10	100	μA
I _{IL}	Low Level Input Current	V _{IN} = 0.4V			-30	-200	μA
V _I	Input Clamp Voltage	I _{IN} = -12 mA				-1.5	V
I _{XA}	Output Leakage Current	$V_{CC} = V_{EE} = 0V$	V _O = 15V		0.01	0.15	mA
I _{XB}	Power OFF		V _O = -15V		-0.01	-0.15	mA

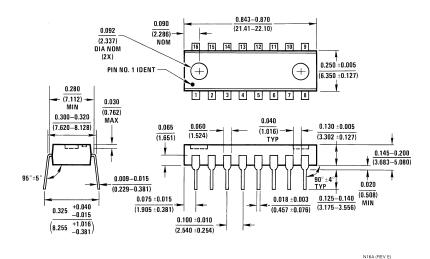
Switching Characteristics

 $T_A = 25^{\circ}C$


Symbol	Parameter	Conditions	Min	Тур	Max	Units		
V _{CC} = 5V, MODE SELECT = 0.8V								
t _r	Differential Output Rise Time	$R_L = 100\Omega$, $C_L = 500 pF$ (Figure 1)		120	200	ns		
t _f	Differential Output Fall Time	$R_L = 100\Omega$, $C_L = 500$ pF (Figure 1)		120	200	ns		
t _{PDH}	Output Propagation Delay	$R_L = 100\Omega$, $C_L = 500 pF$ (Figure 1)		120	200	ns		
t _{PDL}	Output Propagation Delay	$R_L = 100\Omega$, $C_L = 500 pF$ (Figure 1)		120	200	ns		
t _{PZL}	TRI-STATE Delay	$R_L = 100\Omega$, $C_L = 500$ pF (Figure 2)		180	250	ns		
t _{PZH}	TRI-STATE Delay	$R_L = 100\Omega$, $C_L = 500$ pF (Figure 2)		180	250	ns		
t _{PLZ}	TRI-STATE Delay	$R_L = 100\Omega$, $C_L = 500$ pF (Figure 2)		80	150	ns		
t _{PHZ}	TRI-STATE Delay	$R_L = 100\Omega$, $C_L = 500 pF$ (Figure 2)		80	150	ns		
V _{CC} = 5V,	V _{EE} = -5V, MODE SELECT = 0.8V							
t _r	Differential Output Rise Time	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 1)		190	300	ns		
t _f	Differential Output Fall Time	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 1)		190	300	ns		
t _{PDL}	Output Propagation Delay	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 1)		190	300	ns		
t _{PDH}	Output Propagation Delay	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 1)		190	300	ns		
t _{PZL}	TRI-STATE Delay	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 2)		180	250	ns		
t _{PZH}	TRI-STATE Delay	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 2)		180	250	ns		
t _{PLZ}	TRI-STATE Delay	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 2)		80	150	ns		
t _{PHZ}	TRI-STATE Delay	$R_L = 200\Omega$, $C_L = 500$ pF (Figure 2)		80	150	ns		


Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.

Note 3: Unless otherwise specified, min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1692 and across the 0°C to $+70^{\circ}$ C range for the DS3692. All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}$ C. V_{CC} and V_{EE} as listed in operating conditions.


Note 4: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 5: Only one output at a time should be shorted.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dual-In-Line Package (N) Order Number DS3692N NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com

National Semiconductor

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.