14-MEMORY TONE/PULSE SWITCHABLE DIALER WITH HANDFREE AND LOCK FUNCTIONS

GENERAL DESCRIPTION

The W91473 series are Si-gate CMOS IC tone/pulse switchable dialers containing a 14-channel automatic dialing memory, including a 16 -digit $\times 3$ emergency dialing memory and a 16 -digit $\times 10$ channel repertory memory that provides a 32-digit mercury memory. These dialers also provide flash, clear, hold, lock, and one-key redial functions.

FEATURES

- DTMF/Pulse switchable dialer
- 32-digit LNB (last number buffer) memory
- 32-digit mercury memory
- 16 -digit $\times 3$ one-touch direct repertory memory
- 16 -digit $\times 10$ direct repertory memory
- Uses 7×5 keyboard
- Flash time: $98 \mathrm{mS}, 305 \mathrm{mS}$, or 600 mS (selectable by keypad option)
- Minimum tone output duration: 93 mS
- Minimum intertone pause: 93 mS
- On-chip power-on reset
- Uses 3.579545 MHz crystal or ceramic resonator
- Packaged in 22, 24, or 28 -pin plastic DIP
- The different dialers in the W91473 series are shown in the following table:

TYPE NO.	PULSE (ppS)	MEMORY	MERCURY MEMORY	HOLD	HANDFREE	LOCK	PACKAGE
W91473	10	14	Yes	Yes	-	-	22
W91473L	10	14	-	-	-	Yes	22
W91473A	10	14	Yes	Yes	Yes	-	24
W91473AL	10	14	-	-	Yes	Yes	24
W91473B	$10 / 20$	14	Yes	Yes	Yes	-	28
W91473BL	$10 / 20$	14	Yes	Yes	Yes	Yes	28
W91473C	$10 / 20$	14	Save Memory	Yes	Yes	-	28
W91473CL	$10 / 20$	14	Save Memory	Yes	Yes	Yes	28
W91473D	10	14	Save Memory	-	-	-	22
W91473DL	10	14	Save Memory	-	-	Yes	22

PIN CONFIGURATIONS

W91473 SERIES

PIN DESCRIPTION

SYMBOL	22-PIN	24-PIN	28-PIN	I/O	FUNCTION
ColumnRow Inputs	$\begin{gathered} \hline 1-7 \\ \& \\ 18-22 \end{gathered}$	$\begin{gathered} 1-7 \\ \& \\ 20-24 \end{gathered}$	$\begin{gathered} 1-8 \\ \& \\ 24-28 \end{gathered}$	1	The keyboard input may be used with either the standard 7×5 keyboard or an inexpensive single contact (form A) keyboard. Electronic input with $\mu \mathrm{C}$ can also be used. A valid key entry is defined by a single row being connected to a single column.
XT, $\overline{X T}$	9, 10	9, 10	11, 12	I, O	A built-in inverter provides oscillation with an inexpensive 3.579545 MHz crystal or ceramic resonator.
$\frac{\mathrm{T} / \mathrm{P}}{\mathrm{MUTE}}$	11	11	13	O	The T/P $\overline{\text { MUTE }}$ is a conventional CMOS N-channel open drain output. The output transistor is switched on during pulse and tone mode dialing sequence and flash break. Otherwise, it is switched off.
$\overline{\mathrm{DP}}$	13	15	17	O	N -channel open drain dialing pulse output (Figure 1). Flash key causes $\overline{\mathrm{DP}}$ to go active when in pulse mode and tone mode.
MODE	15	17	19	1	Pulling mode pin to Vss places the dialer in tone mode. Pulling mode pin to VdD places the dialer in pulse mode ($10 \mathrm{ppS}, \mathrm{M} / \mathrm{B}=2: 3$). Leaving mode pin floating places the dialer in pulse mode ($10 \mathrm{ppS}, \mathrm{M} / \mathrm{B}=1: 2$).
$\overline{\text { HKS }}$	12	14	16	1	Hook switch input. $\overline{H K S}=1$: On-hook state. Chip in sleep mode, no operation. $\overline{\mathrm{HKS}}=0$: Off-hook state. Chip enabled for normal operation. $\overline{H K S}$ pin is pulled to VDD by internal resistor.

W91473 SERIES

Pin Description, continued

SYMBOL	22-PIN	24-PIN	28-PIN	I/O	FUNCTION		
HPM MUTE	$\begin{gathered} 17 \\ \text { (only for } \\ \text { W91473/D } \\ \text {) } \end{gathered}$	$\begin{gathered} 19 \\ \text { (only for } \\ \text { W91473A) } \end{gathered}$	23	0	The HPM MUTE is a conventional inverter output. During pulse dialing, flash, hold, and mercury mute functions, this pin will output an active high. It remains in a low state at all other times.		
NC	-	-	$\begin{gathered} 8,22 \\ (\mathrm{~W} 91473 \\ \text { B/C) } \end{gathered}$	-	No connection.		
$\overline{\text { LOCK }}$	$\begin{gathered} 17 \\ \text { (W91473L } \\ \text { /DL) } \end{gathered}$	$\begin{gathered} 19 \\ \text { (W91473 } \\ \text { AL) } \end{gathered}$	$\begin{gathered} 22 \\ \text { (W91473 } \\ \text { BL/CL) } \end{gathered}$	1	The function of below:	LOCK FUN 9" dialing mal dialing ialing in	pin is shown
DTMF	14	16	18	0	In pulse mode, times. In tone single tone. Detailed timing shown in Figur	mains de, out agram REQU Actual 699 766 848 948 1216 1332 1472	ow state at all s a dual or tone mode is
Vdd, Vss	16, 8	1, 8	20, 10	1	Power input pins.		

Pin Description, continued

SYMBOL	22-PIN	24-PIN	28-PIN	1/0	FUNCTION				
$\overline{\mathrm{HFI}}$, HFO		12, 13	14, 15	I, O	Handfree control pins. A low pulse on the $\overline{\mathrm{HFI}}$ input pin toggles the handfree control state. Status of the handfree control state is listed in the following table: CURRENT STATE NEXT STATE				
					Hook Sm	HFO	O Input	HFO	Dialing
						Low	$\overline{\mathrm{HFI}} \mathrm{T}_{\text {I }}$	High	Yes
					On Hook	High	h $\overline{\text { HFI }} \sigma_{\text {L }}$	Low	No
					Off Hook	High	h ${ }_{\text {HFJ }} \sigma_{\text {I }}$	Low	Yes
					On Hook		Off Hook	Low	Yes
					Off Hook	Low	On Hook	Low	No
					Off Hook	High	On Hook	High	Yes
					The $\overline{\mathrm{HFI}}$ pin is pulled to VDD by an internal resistor.				
KT	-	-	9	O	Keytone signal output. The keytone will be generated in all valid keys are pressed in tone mode. Frequency is 600 Hz and duration is 35 mS .				
DRS	-	-	21	I	Dial rate selection. This pin is pulled to VDD by an internal resistor.				
					DRS		TONE/PULSE	$\begin{array}{\|l\|} \hline \text { DIAL } \\ \text { RATE } \\ \hline \end{array}$	M/B
						VD	Pulse	10 ppS	2:3
					F	ating	Pulse	10 ppS	1:2
						ss	Tone	-	
						SD	Pulse	10 ppS	1:2
					F	ating	Pulse	20 ppS	1:2
						ss	Tone	-	-

W91473 SERIES

Electronics Corp.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Keyboard Operation

C1	C2	C3	C4	C5	C6	C7
1	2	3	S	M00	M05	EM1
4	5	6		M01	M06	EM2
7	8	9	CLR	M02	M07	EM3
${ }^{*} /$ T	0	$\#$	R/P	M03	M08	H
F1	F2	F3	R	M04	M09	${ }^{*}$ MER

Note:

- S : Store function key

W91473 SERIES

inbond
 Electronics Corp.

- F1, F2, F3: Flash keys
- R: One-key redial
- H: Hold function key
- MOj: Direct repertory memory
- EMi: One-touch memory for emergency call
- */T: * \& P \rightarrow T
- CLR: Clear key
- R/P: Redial and pause function key
- MER: One-touch memory for mercury code dialing

Note: $\mathrm{Dn}=0$ to $9,{ }^{*}, ~ \#, ~ M 0 j=M 00$ to M09 ($\mathrm{j}=0$ to 9).

Normal Dialing

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits.

Redialing

1. OFF HOOK, D1, D2,,\ldots, Dn BUSY, Come ON HOOK, OFF HOOK

The R/P key can execute redial function only as first key-in after off-hook. Otherwise, it will execute pause function.
2.

\& $\overline{\mathrm{HFI}}^{\sigma} \pm$), \square D2,\ldots, Dn R
a. The one-key redial function timing diagram is shown in Figure 4.
 to go low for 2.2 seconds. Break time and a 600 mS pause will automatically be added.
c. If the Rey is pressed before the pulses for the number dialed out are completed, it will be ignored.

W91473 SERIES

Number Store

S, Moj (or EMi or MER)

D1, D2, ..., Dn will be stored in memory location but will not be dialed out.
R/P and */T keys can be stored as a digit in memory. In store mode, R / P is the pause function key.
The store mode can be released after the store function is executed or the state of the hook switch is changed.
2.

D1, D2, ..., Dn will be stored in memory location M0j and will not be dialed out.
3.

S, Mn
a. D1, D2, ..., Dn will be stored in memory location and will be dialed out.
b. The S key must be pressed after completion of the dialing sequence.
4.

D1, D2, ..., Dn will be stored in memory location M0j and will be dialed out.
Repertory Dialing

Access Pause

1. The pause function can be stored in memory.
2. The pause function is executed in normal dialing, redialing, or memory dialing.
3. The pause function timing diagram is shown in Figure 5.

Pulse-to-Tone (${ }^{*} / \mathrm{T}$)

1. If the mode switch is set to pulse mode, then the output signal will be:

$$
\begin{aligned}
& \text { D1, D2, ..., Dn, Pause (3.6s), D1', D2', ..., Dn' } \\
& \begin{array}{ll}
\text { (Pulse) } & \text { (Tone) }
\end{array}
\end{aligned}
$$

2. If the mode switch is set to tone mode, then the output signal will be:
$\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn},{ }^{*}, \mathrm{D} 1$ ', D2', ..., Dn'

(Tone)
(Tone) (Tone)

3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode only by going on-hook.
4. The $\mathrm{P} \rightarrow \mathrm{T}$ function timing diagram is shown in Figure 6.
5. */ T key cannot be stored as a digit in memory.

Save

1. OFF HOOK (or ON HOOK \& $\overline{\overline{\mathrm{HFl}}^{{ }^{1}}-}$), $\mathrm{S}, \mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}$ S, SAVE
D1, D2, ... Dn, will be stored in SAVE memory but will not be dialed out.
2.

$\& \overline{\overline{\mathrm{HFI}}^{\sigma} \mathrm{I}}$

S, SAVE
D1, D2, .., Dn, will be stored in SAVE memory and will be dialed out.
3. \qquad $\& \overline{\overline{\mathrm{HFI}}^{{ }^{\sigma}} \mathrm{I}}$) SAVE The content of SAVE memory will be dialed out.

Flash (F = F1, F2, F3)

1. Flash key cannot be stored as a digit in memory and it has first priority among keyboard functions.
2. The system will return to the initial state after the break time is finished.
3. The flash function timing diagram is shown in Figure 7.

W91473 SERIES

Clear key
1.

Redial and one-key redial buffer will be cleared.
2. \square
\square
Location MOj buffer content will be cleared.
3. \square
\square
\square
Location MOj buffer content will be cleared.

CHAIN DIALING

Relationship between the memory and the chain dialing buffer:

Memory		Chain Dialing Buffer
Digit	Location	
16	M00	
${ }^{16}$	M01	Section 1
${ }^{\circ} \mathrm{G}$	${ }^{\circ} \mathrm{G}$	
${ }^{\circ} \mathrm{G}$	M08	Section 2
${ }^{\circ} \mathrm{G}$	M09	
${ }^{\circ} \mathrm{G}$	EM1	Section 3
${ }^{\circ} \mathrm{G}$	EM2	
16	EM3	
32	Normal Dialing	Section 4

The chain dialing buffer may be divided into four sections, allowing up to four numbers to be dialed out in sequence. For example, if the user enters M01, M03, EM1, and normal dialing (manual dialing), the content of sections 1 to 4 will be M01, M03, EM1, and normal dialing (manual dialing). When numbers are entered into the chain dialing buffer, there is no need to wait until the previous dialing sequence has been completed. Numbers may be entered directly, one after the other, even while previous numbers are being dialed out.
1.
Manual Dialing ${ }^{\circ}$ œ Repertory Dialing

Redial buffer content = Manual dialing + Repertory dialing.
2.

Repertory Dialing
${ }^{\circ}$ œ Manual Dialing
Redial buffer content = Repertory dialing + Manual dialing.
3.

Repertory Dialing ${ }^{\circ} \propto$ Repertory Dialing
Redial buffer content = Repertory dialing + Repertory dialing.
4.

Redialing ${ }^{\circ} \propto$ Manual Dialing
Redial buffer content = Redialing + Manual dialing.

The primary redial content may not be manual dialing. Otherwise, the last redial content will be overwritten.
5.
Redialing ${ }^{\circ} \propto$ Repertory Dialing

Redial buffer content = Redialing + Repertory dialing.
Redialing is valid only as the first key-in after off-hook or after the handfree dialing function is toggled on.

The second sequence should not be performed until the first sequence is completely dialed out.
6.

Manual Dialing
Redial buffer content $=$ One key Redialing

The one-key redial may only be used after dialing out of a manual dialing sequence is completed.
7.

Repertory Dialing 2(M2) ${ }^{\circ}$ ® One key Redialing
or
Repertory Dialing 1(M1) ${ }^{\circ}$ ® One key Redialing ${ }^{\circ}$ ®
Repertory Dialing 2(M2), ON HOOK, OFF HOOK, Redialing

M1 and M2 represent any of the repertory dialing memories.
The first redialing will dial out M1; the second will dial out M1, M2.
If dialing out of the repertory dialing memories has not been completed, the one-key redial key will be ignored.
Dialing of the second repertory dialing memory (M2) should not be performed until the one-key redialing operation is completed.
Notes:
Chain dialing (cascaded dialing) allows for memory or manual dialing while a previous dialing sequence is still being dialed out.More than one sequence of manual dialing is not permitted. Entering more than one manual dialing sequence will inhibit redialing. Chain dialing of more than four sections is not permitted.

	Manual Dialing
	$\circ{ }^{\circ}$ M1 Manual Dialing (two sections of manual dialing)

If more than four sections are entered, all sections after the fourth section will be ignored and redialing will be inhibited.

Manua	${ }^{\circ} \propto \mathrm{M} 1$	${ }^{\circ}$ ¢ M2	${ }^{\circ}$ ¢ M3	${ }^{\circ}$ œ M4	(over 4 sections, ignore	M

and inhibit redial)
There is a 2.0 sec. inter-chain dialing pause for cascaded dialing.

W91473 SERIES

MERCURY DIALING

1. Up to 32 digits may be stored.
2. Mercury dialing is activated only as the first key-in after off-hook or handfree dialing is activated.
3. The timing diagram for the mercury memory function is given below.

Mercury Function Timing Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-Vss	-0.3 to +7.0	V
Input/Output Voltage	VIL	$\mathrm{Vss}-0.3$	V
	VIH	$\mathrm{VDD}+0.3$	V
	VoL	$\mathrm{Vss}-0.3$	V
	VOH	$\mathrm{VDD}+0.3$	V
Power Dissipation	PD	120	mW
Operating Temperature	ToPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temprature	TsTG	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS

(Vdd-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.58 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, all outputs unloaded)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VDD		2.0	-	5.5	V
Operating Current	IOP	Tone	-	0.3	0.5	mA
		Pulse	-	0.15	0.3	
Standby Current	ISR	HKS $=0$, No load \& No key entry	-	-	15	$\mu \mathrm{A}$
Memory Retention Current	IMR	$\overline{H K S}=1, \mathrm{VDD}=1.0 \mathrm{~V}$	-	-	0.2	$\mu \mathrm{A}$
DTMF Output Voltage	VTO	Row group, RL=5 $\mathrm{K} \Omega$	130	150	170	VrmS
Pre-emphasis	-	Col/Row, $\text { VDD }=2.0 \text { to } 5.5 \mathrm{~V}$	1	2	3	dB
DTMF Distortion	THD	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega, \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-30	-23	dB
DTMF Output DC Level	VTDC	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega, \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	1.0	-	3.0	V
DTMF Output Sink Current	ITL	$\mathrm{VTO}=0.5 \mathrm{~V}$	0.2	-	-	mA
$\overline{\mathrm{DP}}$ Output Sink Current	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.5	-	-	mA
T/P MTUE Output Sink Current	IMI	$\mathrm{VMO}=0.5 \mathrm{~V}$	0.5	-	-	mA
HPM MUTE Output Sink Current	IHPMI	V TO $=0.5 \mathrm{~V}$	0.5	-	-	mA
HPM MUTE Output drive Current	IHPMH	V TH $=2.0 \mathrm{~V}$	0.5	-	-	mA
$\overline{\text { HKS I/P Pull-high Resistor }}$	RKH		-	300	-	$\mathrm{K} \Omega$
Key Tone Output Current	IKTH	$\mathrm{VKTH}=2.0 \mathrm{~V}$	0.5	-	-	mA
	IKTL	$\mathrm{VKTH}=0.5 \mathrm{~V}$	0.5	-	-	
HFO Drive/Sink Current	IHFH	$\mathrm{VHFH}=2.0 \mathrm{~V}$	0.5	-	-	mA
	IHFL	$\mathrm{VHFL}=0.5$	0.5	-	-	
Keypad Input Drive Current	IKD	$\mathrm{VI}=0 \mathrm{~V}$	30	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	IKS	$\mathrm{VI}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
Keypad Resistance			-	-	5.0	$\mathrm{K} \Omega$

AC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Keypad Active in Debounce	TKID	-	-	20	-	mS
Key Release Debounce	TKRD	-	-	20	-	mS
Pre-digit Pause ${ }^{1}$	TPDP1	$M / B=2 / 3$	-	40	-	mS
	10 ppS	$M / B=1 / 2$	-	33.3	-	
Pre-digit Pause ${ }^{2}$	TPDP2	$M / B=2 / 3$	-	20	-	mS
	20 ppS	$M / B=1 / 2$	-	16.7	-	
Interdigit Pause (Auto dialing)	TIDP	10 ppS	-	800	-	mS
		20 ppS	-	500	-	
Make/Break Ratio	M/B	$M / B=2 / 3$	-	40:60	-	\%
		$M / B=1 / 2$	-	33:67	-	
Tone Output Duration	TTD	Auto Dialing	-	93	-	mS
Intertone Pause	TITP	Auto Dialing	-	93	-	mS
Flash Break Time	TFB	-	-	98	-	mS
			-	305	-	
			-	600	-	
Pause Time	TP	-	-	3.6	-	S
Key Tone Frequency	FKT	-	-	600	-	Hz
Key Tone Duration	TKTD	-	-	35	-	mS
One-key Redialing Pause Time	TPR	-	-	600	-	mS
One-key Redialing Break Time	TRB	-	-	2.2	-	S
First key-in Pause Time	TFKP	-	-	600	-	mS

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100 \Omega, \mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$.
2. Crystal oscillator accuracy directly affects these times.

TIMING WAVEFORMS

Figure 1. Pulse Mode Diagram (Normal Dialing)

Figure 2. Tone Mode Diagram (Normal Dialing)
Timing waveforms, continued

Figure 3(a).
Note: The H KEY cannot be enabled when chip is disabled.

Figure 3(b).
Note: The $\overline{\mathrm{HFI}}$ and $\overline{\mathrm{HKEY}}$ inputs will toggle the HFO signal; as soon as either $\overline{\mathrm{HFI}}$ or $\overline{\mathrm{HKEY}}$ is activated, the HFO signal will go high and previous inputs will be ignored.

Timing waveforms, continued

Figure 3(c).
Note: Changing the state of the $\overline{\text { HKS }}$ signal from high to low will initialize the HFO and HPM MUTE signals.

Figure 4. Pulse Mode One-key Redialing Timing Diagram (when not first key)

Timing waveforms, continued

Figure 5. Pause Function Timing Diagram

Figure 6. Pulse-to-Tone Function Timing Diagram

Timing waveforms, continued

Figure 7. Flash Operation Timing Diagram

W91473 SERIES

Headquarters
No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-7197006
Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-7190505
FAX: 886-2-7197502

Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.
123 Hoi Bun Rd., Kwun Tong, Winbond Microelectronics Corp.
Kowloon, Hong Kong Winbond Systems Lab.
TEL: 852-27516023
FAX: 852-27552064

