Electronic viewfinder driver BA7149F

The BA7149F is an electronic viewfinder driver for video cameras. It separates the synchronous signal from the input video signal, and outputs the vertical deflection drive output and horizontal deflection signals. HD and VD output signals with guaranteed phase difference are also provided for on-screen displays (OSD). The differences between the BA7149F and the BA7148F are the horizontal blanking, horizontal AFC output, HD output phase and pulse width.

- Applications

Video cameras

- Features

1) Operates off a 5 V power supply.
2) Few attached components required.
3) Built-in vertical deflection circuit.
4) SOP 16pin package.
5) Built-in wide-bandwidth amplifier.
6) Compatible with 10μ sec flyback pulses.
7) Built-in HD and VD output terminals.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Applied voltage	$\mathrm{V}_{\mathrm{cc} \text { max. }}$	8.0	V
Power dissipation	Pd	500^{*}	mW
Operating temperature	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

* Reduced by 5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
- Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	V cc	4.5	5.0	5.5	V

- Block diagram

- Pin descriptions

Pin No.	Function	Pin No.	Function
1	Vertical control input	9	HD output
2	Power supply 1	10	GND 2
3	Vertical deflection drive (POS)	11	Video input
4	GND 1	12	Power supply 2
5	Vertical deflection drive (NEG)	13	Video output
6	Vertical oscillator external resistor	14	Phase comparator output
7	Vertical oscillator external capacitor	15	Horizontal oscillator external resistor
8	VD output	16	Horizontal AFC output

－Electrical characteristics（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit
Operating current dissipation	Icc	31.0	42.0	55.0	mA
〈VIDEO AMP〉					
Voltage gain	Gv	5.3	6.0	6.7	dB
D range	Drv	3.20	3.50	－	Vp．P
Frequency characteristic	fc	－2．0	0.0	＋ 2.0	dB
Minimum sync separation voltage	$V_{\text {syn }}$ Min．	－	45	120	mVp．p
Horizontal blanking width	TH．bL	9.6	10.7	11.4	$\mu \mathrm{s}$
Vertical blanking width	Tv．bl	870	970	1070	$\mu \mathrm{s}$
〈Horizontal〉					
Free－running frequency	f． O	13.9	15.7	17.5	kHz
Capture range	$\Delta \mathrm{fCAP}$	± 2.1	± 3.0	－	kHz
AFC output pulse width	THP	10.2	11.1	12.0	$\mu \mathrm{s}$
AFC lock－in phase	ТнРн	－1．9	－1．2	－0．5	$\mu \mathrm{s}$
Pulse voltage low	VHpL	0.5	1.1	1.7	V
〈Vertical〉					
Free－running frequency	fv．o	51.3	54.8	58.2	Hz
Pin 3 maximum output amplitude	Vvp．max．	2.10	2.70	－	Vp．p
Pin 5 maximum output amplitude	Vvo．max．	2.10	2.70	－	Vp．p
$\left\langle\mathrm{HD}_{\mathrm{D}} \cdot \mathrm{V}_{\mathrm{D}}\right\rangle$					
Phase difference	Thvo	17.3	21.3	25.3	$\mu \mathrm{s}$
Ho pulse width	Tно	8.7	9.9	11.1	$\mu \mathrm{s}$
\checkmark pulse width	Tvo	860	960	1060	$\mu \mathrm{s}$
Pulse voltage low	Vhv．L	－	0.1	0.3	V
Pulse voltage high	Vhv． H	4.7	4.9	－	V

ONot designed for radiation resistance．

- Input / output circuits

1 pin

Fig. 1

7pin

Fig. 4

13pin

Fig. 7

$$
2,3,4,5 \mathrm{pin}
$$

Fig. 2

8pin

Fig. 5

11pin

6pin

Fig. 3

9pin

Fig. 6

14pin

Fig. 9

15pin

Fig. 10

16pin

Fig. 11

- Circuit operation Input signals

Fig. 12

The video signal input to pin 11 is detected by the charging and discharging of an external capacitor. Sync separation is done in the SYNC SEPA block. The H. SYNC signal is sent to the H. OSC, and the V. SYNC signal is sync-separated in the vertical sync pulse interval and supplied to the V. OSC block.
The H. OSC block consists of a PLL that oscillates in sync with the sync-separated H. SYNC signal, and outputs the HD pulse and horizontal deflection pulse.
In the V. OSC block, a direct-control method is used with the sync signal. To synchronize the vertical oscillator cir-
cuit, the inherent oscillation period of the oscillation circuit is made slightly larger than the vertical sync signal period, so that the sync signal always enters slightly early.
The oscillator output alone is not enough to ensure stable operation for the vertical deflection output circuit, so it is amplified by the V. DRIVE block.
The horizontal and vertical blanking signals generated in the H. OSC and V. OSC blocks are used to erase the horizontal retrace line from the video signal input to pin 11.
The signal is inverted and amplified by a 6 dB inverting amplifier and output as a negative-polarity video signal.

- Application example

Fig. 13
*1 The resistors connected to pins 6 and 15 should have a tolerance of $\pm 2 \%$, and a temperature coefficient of ± 100 ppm or lower.
*2 The capacitor connected to pin7 should have a tolerance of $\pm 5 \%$, and a temperature coefficient of ± 250 ppm or lower.

- Operation notes

(1) H.OSC free-run frequency and capture range

The free-run frequency is determined by the $115 \mathrm{k} \Omega$ resistor connected between pin 15 and GND. The capture range is varied by the resistors and capacitor connected to pins 14 and 15.
The free-run frequency and capture range for this IC are guaranteed for these circuit constant values, and we recommend that you use them. The resistor $115 \mathrm{k} \Omega$ connected between pin15 and GND should have a tolerance of $\pm 2 \%$, and a temperature coefficient of \pm 100ppm or lower.
(2) V.OSC free-run frequency

The V.OSC free-run frequency is determined by the $15 \mathrm{k} \Omega$ resistor connected between pin 6 and GND, and the $0.1 \mu \mathrm{~F}$ capacitor connected between pin 7 and GND.
The free-run frequency and capture range for this IC are guaranteed for these circuit constant values, and we recommend that you use them. The resistor $15 \mathrm{k} \Omega$ connected between pin 6 and GND should have a tolerance of $\pm 2 \%$, and a temperature coefficient of \pm 100 ppm or lower, and the capacitor connected between pin 7 and GND should have a tolerance of \pm 5%, and a temperature coefficient of ± 250 ppm or lower.

- External dimensions (Units: mm)

(3) Use with PAL systems

In PAL systems, change the value of the resistor connected between pin 6 and GND to $18 \mathrm{k} \Omega$.
(4) PCB pattern

The large-signal systems and small-signal systems in the IC have been kept separate, and the external wring must also be done in such a way to prevent interference from occurring. In particular, to prevent the FBT return current from interfering with the V. OSC circuit on pins 6 and 7, do not directly connect the pin 4 GND and pin 6 and 7 GND.

Fig. 14

