1/3-inch CCD Image Sensor for PAL Color Camera

Description

The ICX059AK is an interline CCD solid-state image sensor suitable for PAL color video cameras. High resolution is achieved through the use of $\mathrm{Ye}, \mathrm{Cy}, \mathrm{Mg}$, and G complementary color mosaic filters. At the same time, high sensitivity and low dark current are achieved through the adoption of HAD (HoleAccumulation Diode) sensors.
This chip features a field period readout system and
 an electronic shutter with variable charge-storage time.

Features

- High resolution, high sensitivity and low dark current
- Continuous variable-speed shutter 1/50s (Typ.), 1/120s to $1 / 10000$ s
- Low smear
- Excellent antiblooming characteristics
- Ye, Cy, Mg, and G complementary color mosaic filters on chip
- Horizontal register:

5 V drive

- Reset gate:

5 V drive

Optical black position
(Top View)

Device Structure

- Optical size:
- Number of effective pixels:
- Number of total pixels:
- Interline CCD image sensor
- Chip size:
- Unit cell size:
- Optical black:
- Number of dummy bits:
- Substrate material:

1/3-inch format
$752(\mathrm{H}) \times 582(\mathrm{~V})$ approx. 440K pixels
$795(\mathrm{H}) \times 596(\mathrm{~V}) \quad$ approx. 470 K pixels
$6.00 \mathrm{~mm}(\mathrm{H}) \times 4.96 \mathrm{~mm}(\mathrm{~V})$
$6.50 \mu \mathrm{~m}(\mathrm{H}) \times 6.25 \mu \mathrm{~m}(\mathrm{~V})$
Horizontal (H) direction: Front 3 pixels, rear 40 pixels
Vertical (V) direction: Front 12 pixels, rear 2 pixels
Horizontal 22
Vertical 1 (even field only)
Silicon

Block Diagram and Pin Configuration

(Top View)

Pin Description

Pin No.	Symbol	Description	Pin No.	Symbol	
1	V $_{\phi 4}$	Vertical register transfer clock	9	VDD	Output amplifier drain supply
2	V $_{\phi 3}$	Vertical register transfer clock	10	GND	GND
3	V $_{\phi 2}$	Vertical register transfer clock	11	SUB	Substrate (Overflow drain)
4	V $\phi 1$	Vertical register transfer clock	12	VL	Protective transistor bias
5	GND	GND	13	RG	Reset gate clock
6	VGG	Output amplifier gate bias	14	LH $\phi 1$	Horizontal register final stage transfer clock
7	Vss	Output amplifier source	15	$\mathrm{H} \phi 1$	Horizontal register transfer clock
8	Vout	Signal output	16	$\mathrm{H} \phi 2$	Horizontal register transfer clock

Absolute Maximum Ratings

Item		Ratings	Unit	Remarks
Substrate voltage SUB - GND		-0.3 to +55	V	
Supply voltage	Vdd, Vout, Vss - GND	-0.3 to +18	V	
	Vdd, Vout, Vss - SUB	-55 to +10	V	
Vertical clock input voltage	V $11, \mathrm{~V}$ ¢2, $\mathrm{V}_{\phi} 3, \mathrm{~V} \phi 4$ - GND	-15 to +20	V	
		to +10	V	
Voltage difference between vertical clock input pins		to +15	V	*1
Voltage difference between horizontal clock input pins		to +17	V	
$\mathrm{H}_{\phi 1}, \mathrm{H}_{\phi 2}-\mathrm{V}_{\phi} 4$		-17 to +17	V	
H\$1, H\$2, LH ${ }_{\text {1 }}$, RG, VGG - GND		-10 to +15	V	
$\mathrm{H}_{\phi 1}, \mathrm{H}_{\phi 2}$, LH ${ }_{1}$, RG, VGG - SUB		-55 to +10	V	
VL-SUB		-65 to +0.3	V	
$\mathrm{V}_{\phi 1}, \mathrm{~V}_{\phi 2}, \mathrm{~V}_{\phi 3}, \mathrm{~V}_{\phi 4}$, Vdd, Vout - VL		-0.3 to +30	V	
RG - VL		-0.3 to +24	V	
		-0.3 to +20	V	
Storage temperature		-30 to +80	${ }^{\circ} \mathrm{C}$	
Operating temperature		-10 to +60	${ }^{\circ} \mathrm{C}$	

*1 +27 V (Max.) when clock width $<10 \mu \mathrm{~s}$, clock duty factor $<0.1 \%$.

Bias Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Output amplifier drain voltage	Vdd	14.55	15.0	15.45	V	
Output amplifier gate voltage	VGG	3.8	4.2	4.65	V	
Output amplifier source	Vss	Grounded with 820Ω resistor				$\pm 5 \%$
Substrate voltage adjustment range	Vsub	9.0		18.5	V	*1
Fluctuation range after substrate voltage adjustment	$\Delta \mathrm{V}$ sub	-3		+3	\%	
Reset gate clock voltage adjustment range	VRgl	1.0		4.0	V	*1 *6
Fluctuation range after reset gate clock voltage adjustment	$\Delta \mathrm{V}$ RGL	-3		+3	\%	
Protective transistor bias	VL	*2				

DC Characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Output amplifier drain current	IDD		5		mA	
Input current	liN1			1	$\mu \mathrm{~A}$	${ }^{*} 3$
Input current	liN2			10	$\mu \mathrm{~A}$	${ }^{* 4}$

*1 Indications of substrate voltage (VsUB) • reset gate clock voltage (VrGL) setting value.
The setting values of substrate voltage and reset gate clock voltage are indicated on the back of the image sensor by a special code. Adjust substrate voltage (Vsub) and reset gate clock voltage (Vrgl) to the indicated voltage. Fluctuation range after adjustment is $\pm 3 \%$.

Vsub code one character indication	$\square \square$
VRGL code \quad one character indication	$\uparrow \uparrow$

Vrgl code Vsub code
Code and optimal setting correspond to each other as follows.

VrGL code	1	2	3	4	5	6	7
Optimal setting	1.0	1.5	2.0	2.5	3.0	3.5	4.0

Vsub code	E	f	G	h	J	K	L	m	N	P	Q	R	S	T	U	V	W	X	Y	Z
Optimal setting	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5
<Example> "5L" \rightarrow VRgL $=3.0 \mathrm{~V}$																				

*2 VL setting is the VVL voltage of the vertical transfer clock waveform.
*3 1) Current to each pin when 18 V is applied to Vdd, Vout, Vss and SUB pins, while pins that are not tested are grounded.
2) Current to each pin when 20 V is applied sequentially to $\mathrm{V}_{\phi 1}$, $\mathrm{V} \phi 2$, $\mathrm{V} \phi 3$ and $\mathrm{V} \phi 4$ pins, while pins that are not tested are grounded. However, 20V is applied to SUB pin.
3) Current to each pin when 15 V is applied sequentially to $R G$, $\mathrm{LH} \phi 1, \mathrm{H} \phi 1, \mathrm{H} \phi 2$ and VGG pins, while pins that are not tested are grounded. However, 15 V is applied to SUB pin.
4) Current to V p pin when 30 V is applied to $\mathrm{V}_{\phi 1}, \mathrm{~V}_{\phi 2}, \mathrm{~V}_{\phi 3}, \mathrm{~V}_{\phi 4}$, V_{Dd} and $\mathrm{V}_{\text {out }}$ pins or when, 24 V is applied to RG pin or when, 20V is applied to VgG, Vss, $\mathrm{H}_{\phi 1}$, $\mathrm{H} \phi 2$ and $L \phi_{\phi}$ pins, while Vl pin is grounded. However, GND and SUB pins are left open.
*4 Current to SUB pin when 55 V is applied to SUB pin, while pins that are not tested are grounded.

Clock Voltage Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Waveform diagram	Remarks
Readout clock voltage	Vvt	14.55	15.0	15.45	V	1	
Vertical transfer clock voltage	Vvi1, VvH2	-0.05	0	0.05	V	2	$\mathrm{VVH}=(\mathrm{VVH1}+\mathrm{VVH2}) / 2$
	Vvh3, Vvh4	-0.2	0	0.05	V	2	
	Vvl1, Vvl2, Vvl3, VvL4	-9.0	-8.5	-8.0	V	2	$\mathrm{VVL}=(\mathrm{VVL3}+\mathrm{VVL4}) / 2$
	$\mathrm{V} \phi \mathrm{V}$	7.8	8.5	9.05	V	2	Vфv $=$ VvHn $-\operatorname{VvLn}(\mathrm{n}=1$ to 4)
	I VvH1 - Vvi2 I			0.1	V	2	
	Vvi3 - Vvi	-0.25		0.1	V	2	
	VvH4- VV\%	-0.25		0.1	V	2	
	Vvhe			0.5	V	2	High-level coupling
	VVHL			0.5	V	2	High-level coupling
	VVLH			0.5	V	2	Low-level coupling
	VVLL			0.5	V	2	Low-level coupling
Horizontal transfer clock voltage	Vфн, Vф나	4.75	5.0	5.25	V	3	*5
	Vhl, VLhl	-0.05	0	0.05	V	3	*5
Reset gate clock voltage	V¢RG	4.5	5.0	5.5	V	4	*6
	Vrglh - Vrgal			0.8	V	4	Low-level coupling
Substrate clock voltage	Vфsub	22.5	23.5	24.5	V	5	

*5 The horizontal final stage transfer clock input pin LH\$1 is connected to the horizontal transfer clock input pin Ho1.
*6 The reset gate clock voltage need not be adjusted when reset gate clock is driven when the specifications are as given below. In this case, the reset gate clock voltage setting indicated on the back of the image sensor has not significance.

Item	Symbol	Min.	Typ.	Max.	Unit	Waveform diagram	Remarks
Reset gate clock voltage	VRGL	-0.2	0	0.2	V	4	
	V $\phi R G$	8.5	9.0	9.5	V	4	

Clock Equivalent Circuit Constant

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Capacitance between vertical transfer clock and GND	Cфvı1, Cфv3		1000		pF	
	Cфv2, Cфv4		560		pF	
Capacitance between vertical transfer clocks	CфV12, CфV34		470		pF	
	Cфv23, Cфv41		390		pF	
	CфV13		180		pF	
	CфV24		100		pF	
Capacitance between horizontal transfer clock and GND	CфH1, CфН 2		47		pF	
Capacitance between horizontal transfer clocks	Сфнн		51		pF	
Capacitance between horizontal final stage transfer clock and GND	Cф내		8		pF	
Capacitance between reset gate clock and GND	CфRG		8		pF	
Capacitance between substrate clock and GND	Cфsub		270		pF	
Vertical transfer clock series resistor	$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$		80		Ω	
Vertical transfer clock ground resistor	Rgnd		15		Ω	
Horizontal transfer clock series resistor	Rфн		15		Ω	

Vertical transfer clock equivalent circuit

Horizontal transfer clock equivalent circuit

Drive Clock Waveform Conditions

(1) Readout clock waveform

(2) Vertical transfer clock waveform

$\mathrm{VVH}_{\mathrm{V}}=\left(\mathrm{VVH}_{1}+\mathrm{VVH}_{2}\right) / 2$
$\mathrm{VVL}=(\mathrm{VVL3}+\mathrm{VVL4}) / 2$
$\mathrm{V} \phi \mathrm{V}=\mathrm{Vv} \mathrm{Vn}-\mathrm{VvLn}(\mathrm{n}=1$ to 4$)$

(3) Horizontal transfer clock waveform

(4) Reset gate clock waveform

$V_{\text {rglh }}$ is the maximum value and $V_{\text {rgll }}$ is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG.
In addition, Vrgl is the average value of Vrglh and Vrgll.
Vrgl $=\left(V_{\text {rgll }}+V_{\text {rgll }}\right) / 2$
Assuming $V_{\text {rgh }}$ is the minimum value during the interval twh, then:
$V_{\phi R G}=V_{R G H}-V_{R G L}$
(5) Substrate clock waveform

Clock Switching Characteristics

Note) Because the horizontal final stage transfer clock $\mathrm{LH} \phi 1$ is connected to the horizontal transfer clock $\mathrm{H} \phi 1$, specifications will be the same as $\mathrm{H} \phi 1$.

Item		Symbol	twh			twl			tr			tf			Unit	Remarks	
		Min.	Typ.	Max.													
Readout clock			VT	2.3	2.5						0.5			0.5		$\mu \mathrm{s}$	During readout
Vertical transfer clock		V ${ }_{1}$, $\mathrm{V} \boldsymbol{\phi}_{2}$, Vфз, Vф4										15		250	ns	*1	
	During imaging	$\mathrm{H}_{\phi 1}, \mathrm{LH} \phi_{1}$	18	24		19.5	26			10	17.5		10	17.5	ns	*2	
		H中2	21	26		19	24			10	15		10	15			
	During parallel-serial conversion	$\mathrm{H}_{\phi 1}$, LH ${ }_{\text {1 }}$		6.41						0.01			0.01		$\mu \mathrm{s}$		
		H中2					6.41			0.01			0.01				
Reset gate clock		фRG	11	13			51			3			3		ns		
Substrate clock		фSUB	1.5	1.8							0.5			0.5	$\mu \mathrm{s}$	During drain charge	

*1 When vertical transfer clock driver CXD1250 is used.
${ }^{*} \mathrm{tf} \geq \mathrm{tr}-2 \mathrm{~ns}$, and the cross-point voltage (VCR) for the $\mathrm{H}_{\phi} \cdot \mathrm{LH} \phi_{1}$ rising side of the $\mathrm{H} \phi_{1} \cdot \mathrm{LH} \phi_{1}$ and $\mathrm{H} \phi_{2}$ waveforms must be at least 2.5 V .

Item	Symbol	two			Unit	Remarks
		Min.	Typ.	Max.		
Horizontal transfer clock	$\mathrm{H} \phi 1 \cdot \mathrm{LH} \phi 1, \mathrm{H} \phi 2$	16	20		ns	${ }^{2} 3$

*3 The overlap period for twh and twl of horizontal transfer clocks $\mathrm{H} \phi 1$. LH ${ }_{\phi 1}$ and $\mathrm{H} \phi 2$ is two.

Image Sensor Characteristics
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Min.	Typ.	Max.	Unit	Measurement method	Remarks
Sensitivity	S	260	330		mV	1	
Saturation signal	Ysat	540			mV	2	$\mathrm{Ta}=60^{\circ} \mathrm{C}$
Smear	Sm		0.009	0.015	\%	3	
Video signal shading	SHy			20	\%	4	Zone 0, I
				25	\%	4	Zone 0 to II'
Uniformity between video signal channels	$\Delta \mathrm{Sr}$			10	\%	5	
	$\Delta \mathrm{Sb}$			10	\%	5	
Dark signal	Ydt			2	mV	6	$\mathrm{Ta}=60^{\circ} \mathrm{C}$
Dark signal shading	$\Delta \mathrm{Ydt}$			1	mV	7	$\mathrm{Ta}=60^{\circ} \mathrm{C}$
Flicker Y	Fy			2	\%	8	
Flicker R-Y	Fcr			5	\%	8	
Flicker B-Y	Fcb			5	\%	8	
Line crawl R	Lcr			3	\%	9	
Line crawl G	Lcg			3	\%	9	
Line crawl B	Lcb			3	\%	9	
Line crawl W	Lcw			3	\%	9	
Lag	Lag			0.5	\%	10	

Zone Definition of Video Signal Shading

Measurement System

Note) Adjust the amplifier gain so that the gain between [$\left.{ }^{*} \mathrm{~A}\right]$ and $\left[{ }^{*} \mathrm{Y}\right]$ and between [$\left.{ }^{*} \mathrm{~A}\right]$ and $\left[{ }^{*} \mathrm{C}\right.$] equal 1 .

Image Sensor Characteristics Measurement Method

© Measurement conditions

1) In the following measurements, the substrate voltage and the reset gate clock voltage are set to the values indicated on the device, and the device drive conditions are at the typical values of the bias and clock voltage conditions.
2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black level (OB) is used as the reference for the signal output, which is taken as the value of Y signal output or chroma signal output of the measurement system.
© Color coding of this image sensor \& Composition of luminance (Y) and chroma (color difference) signals

As shown in the left figure, fields are read out. The charge is mixed by pairs such as A1 and A2 in the A field. (pairs such as B in the B field)
As a result, the sequence of charges output as signals from the horizontal shift register (Hreg) is, for line A1, $(G+C y)$, $(M g+Y e),(G+C y)$, and $(M g+Y e)$.

These signals are processed to form the Y signal and chroma (color difference) signal. The Y signal is formed by adding adjacent signals, and the chroma signal is formed by subtracting adjacent signals. In other words, the approximation:

$$
\begin{aligned}
Y & =\{(G+C y)+(M g+Y e)\} \times 1 / 2 \\
& =1 / 2\{2 B+3 G+2 R\}
\end{aligned}
$$

is used for the Y signal, and the approximation:

$$
\begin{aligned}
R-Y & =\{(M g+Y e)-(G+C y)\} \\
& =\{2 R-G\}
\end{aligned}
$$

is used for the chroma (color difference) signal. For line A2, the signals output from Hreg in sequence are

$$
(M g+C y),(G+Y e),(M g+C y),(G+Y e) .
$$

The Y signal is formed from these signals as follows:

$$
\begin{aligned}
Y & =\{(G+Y e)+(M g+C y)\} \times 1 / 2 \\
& =1 / 2\{2 B+3 G+2 R\}
\end{aligned}
$$

This is balanced since it is formed in the same way as for line A1.
In a like manner, the chroma (color difference) signal is approximated as follows:

$$
\begin{aligned}
-(B-Y) & =\{(G+Y e)-(M g+C y)\} \\
& =-\{2 B-G\}
\end{aligned}
$$

In other words, the chroma signal can be retrieved according to the sequence of lines from $R-Y$ and $-(B-Y)$ in alternation. This is also true for the B field.

© Definition of standard imaging conditions

1) Standard imaging condition I:

Use a pattern box (luminance $706 \mathrm{~cd} / \mathrm{m}^{2}$, color temperature of 3200 K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S ($t=1.0 \mathrm{~mm}$) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.
2) Standard imaging condition II:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S $(\mathrm{t}=1.0 \mathrm{~mm})$ as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

1. Sensitivity

Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of $1 / 250$ s, measure the Y signal (Y s) at the center of the screen and substitute the value into the following formula.
$S=Y s \times \frac{250}{50}[\mathrm{mV}]$
2. Saturation signal

Set to standard imaging condition II. After adjusting the luminous intensity to 10 times the intensity with average value of the Y signal output, 200 mV , measure the minimum value of the Y signal.
3. Smear

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity to 500 times the intensity with average value of the Y signal output, 200 mV . When the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value $\mathrm{YSm}[\mathrm{mV}]$ of the Y signal output and substitute the value into the following formula.
$\mathrm{Sm}=\frac{\mathrm{YSm}}{200} \times \frac{1}{500} \times \frac{1}{10} \times 100$ [\%] (1/10V method conversion value)
4. Video signal shading

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the Y signal output is 200 mV . Then measure the maximum ($\mathrm{Ymax}[\mathrm{mV}$]) and minimum (Ymin [mV]) values of the Y signal and substitute the values into the following formula.
$\mathrm{SHy}=(\mathrm{Ymax}-\mathrm{Ymin}) / 200 \times 100[\%]$
5. Uniformity between video signal channels

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , and then measure the maximum (Crmax, Cbmax $[\mathrm{mV}]$) and minimum (Crmin, Cbmin $[\mathrm{mV}])$ values of the $R-Y$ and $B-Y$ channels of the chroma signal and substitute the values into the following formula.

```
\DeltaSr = | (Crmax - Crmin)/200 | > 100 [%]
```

$\Delta \mathrm{Sb}=|(\mathrm{Cbmax}-\mathrm{Cbmin}) / 200| \times 100[\%]$
6. Dark signal

Measure the average value of the Y signal output (Ydt [mV]) with the device ambient temperature $60^{\circ} \mathrm{C}$ and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.
7. Dark signal shading

After measuring 6, measure the maximum (Ydmax [mV]) and minimum (Ydmin [mV]) values of the Y signal output and substitute the values into the following formula.
$\Delta Y d t=Y d m a x-Y d m i n[m V]$
8. Flicker

1) Fy

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , and then measure the difference in the signal level between fields ($\Delta \mathrm{Yf}[\mathrm{mV}]$). Then substitute the value into the following formula.
$F y=(\Delta Y f / 200) \times 100[\%]$
2) $\mathrm{Fcr}, \mathrm{Fcb}$

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , insert an R or B filter, and then measure both the difference in the signal level between fields of the chroma signal ($\Delta \mathrm{Cr}, \Delta \mathrm{Cb}$) as well as the average value of the chroma signal output ($\mathrm{CAr}, \mathrm{CAb}$). Substitute the values into the following formula.
$\mathrm{Fci}=(\Delta \mathrm{Ci} / \mathrm{CAi}) \times 100[\%](\mathrm{i}=\mathrm{r}, \mathrm{b})$
9. Line crawls

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal output is 200 mV , and then insert a white subject and R, G, and B filters and measure the difference between Y signal lines for the same field ($\Delta \mathrm{Ylw}, \Delta \mathrm{Ylr}, \Delta \mathrm{Ylg}, \Delta \mathrm{Ylb}[\mathrm{mV}])$. Substitute the values into the following formula.
$\mathrm{Lci}=(\Delta \mathrm{Yl} / 200) \times 100[\%](\mathrm{i}=\mathrm{w}, \mathrm{r}, \mathrm{g}, \mathrm{b})$
10. Lag

Adjust the Y signal output value generated by strobe light to 200 mV . After setting the strobe light so that it strobes with the following timing, measure the residual signal (Ylag). Substitute the value into the following formula.

Lag $=($ Ylag $/ 200) \times 100[\%]$

Drive Circuit

Spectral Sensitivity Characteristics
(Includes lens characteristics, excludes light source characteristics)

Sensor Readout Clock Timing Chart

Drive Timing Chart (Vertical Sync)

Drive Timing Chart (Horizontal Sync)

Notes on Handling

1) Static charge prevention

CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.
a) Either handle bare handed or use non-chargeable gloves, clothes or material.

Also use conductive shoes.
b) When handling directly use an earth band.
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
d) Ionized air is recommended for discharge when handling CCD image sensor.
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.

2) Soldering

a) Make sure the package temperature does not exceed $80^{\circ} \mathrm{C}$.
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero cross On/Off type and connect it to ground.
3) Dust and dirt protection
a) Operate in clean environments (around class 1000 is appropriate).
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)
c) Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass.
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.
4) Do not expose to strong light (sun rays) for long periods, color filters will be discolored.
5) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
6) CCD image sensors are precise optical equipment that should not be subject to mechanical shocks.
Package Outline Unit: mm

