
Dual 3-Input/3-Ouput NOR Gate

The MC10111 is designed to drive up to three transmission lines simul- taneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines from a single point makes the MC10111 particularly useful in clock distribution applications where minimum clock skew is desired. Three V_{CC} pins are provided and each one should be used.

- $P_D = 80 \text{ mW typ/gate (No Load)}$
- t_{pd} = 2.4 ns typ (All Outputs Loaded)
- t_r , $t_f = 2.2$ ns typ (20%-80%)

9

B_{IN}

8

 V_{EE}

ON

ON Semiconductor

http://onsemi.com

CDIP-16

MARKING

DIAGRAMS

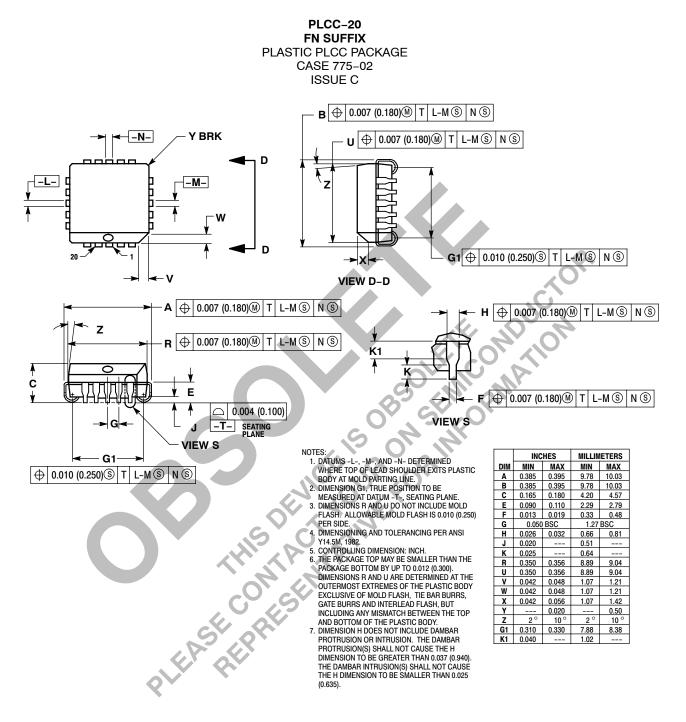
16 ______

ELECTRICAL CHARACTERISTICS

		Pin Under	Test Limits							
			–30°C		+25°C			+85°C		
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	Ι _Ε	8		42		30	38		42	mAdo
Input Current	I _{inH}	5, 6, 7		680			425		425	μAdd
	I _{inL}	5, 6, 7	0.5		0.5			0.3		μAdc
Output Voltage Logic 1	V _{OH}	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
		3 4	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	
Output Voltage Logic 0	V _{OL}	2	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc
1 5 5	0L	3	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	
		4	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	
Threshold Voltage Logic 1	V _{OHA}	2 3	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		Vdc
		4	-1.080		-0.980			-0.910	0	
Threshold Voltage Logic 0	V _{OLA}	2		-1.655			-1.630		-1.595	Vdc
		3 4		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	
Switching Times (50Ω Load)		4		-1.055			-1.030	<u>з</u> ,	-1.595	200
Propagation Delay	÷	0	1 4	3.5	1.4	2.4	25	1.5	3.8	ns
Propagation Delay	t _{5+2–} t _{5–2+}	2 2	1.4 1.4	3.5 3.5	1.4 1.4	2.4	3.5 3.5	1.5	3.8	
	t ₅₊₃₋	3	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t _{5–3+} t _{5+4–}	3 4	1.4 1.4	3.5 3.5	1.4 1.4	2.4 2.4	3.5 3.5	1.5 1.5	3.8 3.8	
	t ₅₋₄₊	4	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
Rise Time (20 to 80%)	t ₂₊	2	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	t ₃₊ t ₄₊	3	1.0 1.0	3.5 3.5		2.2 2.2	3.5 3.5	1.2 1.2	3.8 3.8	
Fall Time (20 to 80%)	t ₂₋			3.5		2.2	3.5	1.2	3.8	
((t ₃₋	3	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	t ₄₋	4	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
O	FA	2 3 4 COF	ESE	TATI						

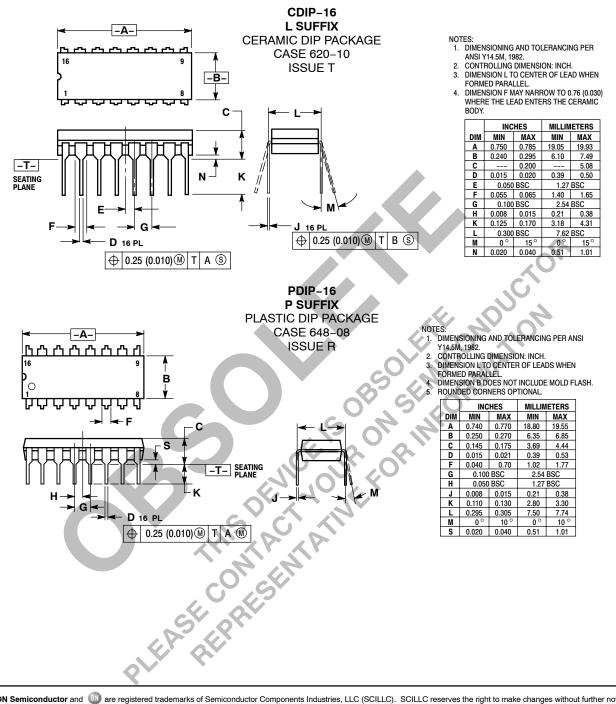
MC10111

ELECTRICAL CHARACTERISTICS (continued)


		TEST VOLTAGE VALUES (Volts)							
	@ Test To	emperature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}		
		−30°C	-0.890	-1.890	-1.205	-1.500	-5.2		
		+25°C	-0.810	-1.850	-1.105	-1.475	-5.2		
		+85°C	-0.700	-1.825	-1.035	-1.440	-5.2		
		Pin	TEST V						
Characteristic	Symbol	Under	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd	
Power Supply Drain Current	Ι _Ε	8					8	1, 15, 16	
Input Current	l _{inH}	5, 6, 7	*				8	1, 15, 16	
	I _{inL}	5, 6, 7		*			8	1, 15, 16	
Output Voltage Log	gic 1 V _{OH}	2 3 4					8 8 8	1, 15, 16 1, 15, 16 1, 15, 16	
Output Voltage Log	gic 0 V _{OL}	2 3 4	5 6 7				8 8 8	1, 15, 16 1, 15, 16 1, 15, 16	
Threshold Voltage Log	gic 1 V _{OHA}	2 3 4				5 6 7	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16	
Threshold Voltage Log	gic 0 V _{OLA}	2 3 4		S	5 6 7	2012	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16	
Switching Times (50Ω L	oad)			0, 0	Pulse In	Pulse Out	–3.2 V	+2.0 V	
Propagation Delay	$\begin{array}{c} t_{5+2-} \\ t_{5-2+} \\ t_{5+3-} \\ t_{5-3+} \\ t_{5+4-} \\ t_{5-4+} \end{array}$	2 2 3 3 4 4	ACE IS	SP-60	5 5 5 5 5 5 5	2 2 3 3 4 4	8 8 8 8 8 8	1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16	
Rise Time (20 to 8	80%) t ₂₊ t ₃₊ t ₄₊	2 3 4		3	Ŭ	2 3 4	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16	
Fall Time (20 to 8	80%) t ₂₋ t ₃₋ t ₄₋	2 3 4	Ņ		5 5 5	2 3 4	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16	

* Individually test each input using the pin connections shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.


MC10111

PACKAGE DIMENSIONS

MC10111

PACKAGE DIMENSIONS

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death agolocation with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agolocated with such unintended or unauthorized use persons, and reasonable attorney fees anising out of, directly or indirectly, any claim of personal in

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 For additional information, please contact your local Sales Representative