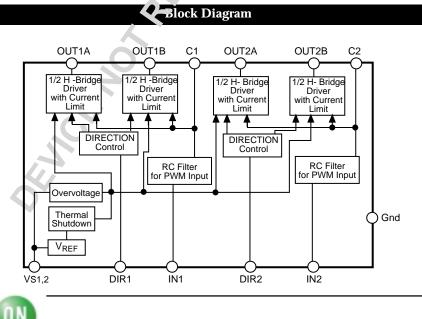


100mA Dual H-Bridge Air-Core Gauge Driver

Description

The CS3750 is a dual H-bridge four quadrant air-core gauge driver. The IC provides all the functions necessary to drive a tachometer or speedometer as part of a microprocessor based multiplexed system. Digital input control eliminates the need for any analog calibration of the gauge.

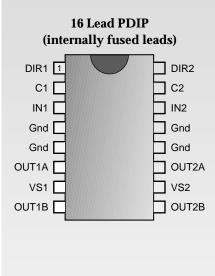

The controlling microprocessor sends out a PWM signal to each H bridge driver input (IN1, IN2). The PWM signal duty cycle is proportional to the H-bridge output. Output current (100mA max) direction is controlled by the DIRECTION input. PWM switching noise is minimized at each half bridge by an internal RC filter and external programmable capacitor.

The CS3750 is protected against 50V load dump, over voltage and thermal runaway fault conditions. Any of these faults causes the IC to shut down. Each high side of the output driver is current limited. A short circuit condition in one driver does not affect the others.

Absolute M. Smur Rating

Supply Voltage	
Internal Power Dissipation	
Logic Input Voltages	
Junction Temperature Range	-40°C to +150°C
Storage Temperature Range	55°C to +165°C
Lead Temperature Soldering	
	10 00000 1

Wave Solder (through hole styles only)......10 sec. max, 260°C peak Electrostatic Discharge (Human Body Model).....4kV



December, 2001 - Rev. 4

Features

- 2 Independent NPN H-Bridge Drivers
- No Analog Trim Required
- Used in Multiplexed Systems
- Quiet Gauge Operation
- Programmable Slew Rate Minimizes Switching Noise
- Fault Protection
 - Over Voltage Thermal Shutdown Short Circuit

Package Options

ON Semiconductor 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885–3600 Fax: (401)885–5786 N. American Technical Support: 800-282-9855 Web Site: www.cherry-semi.com

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	ι
Output Stage					
V _{OUT} Saturation Voltage	$I_{OUT} = 100 mA; V_{IN} = 0V$		0.25	0.50	I
(Low Side)	$I_{OUT} = 1mA; V_{IN} = 0V$		0.01	0.10	V
V _{OUT} Offset Voltage	$V_{C} = 5V; I_{OUT} = -30mA$		15	50	r
V _{OUT} Saturation High Side	$V_{IN} = 5V; I_{OUT} = -100 \text{mA}$	VS-2	VS-1.5	VS	I
Low Side	$V_{IN} = 0V; I_{OUT} = -1mA$		0.02	0.10	I
V _{OUT} Differential	$V_C = 5V$, $I_{OUT} = -100mA$			100	r
Matching Voltage					
Supply Current	$V_{IN} = V_{DIR} = 0;$		23	45	r
Input Stage					
V _{IN} LOW	V_{IN} decreasing; $V_{DIR} = 0V$	0.8	1.9		1
HIGH	V_{IN} increasing; $V_{DIR} = 0V$		2.0	3.5	V
Hysteresis	$V_{\rm DIR} = 0V$		100		r
I _{IN} LOW	$V_{IN} = 0.8V; V_{DIR} = 0V$		20	100	ł
HIGH	$V_{IN} = 3.5V$		0.4	100.0	ŀ
Output Slew Rate with respect to input	V_{IN} = 250Hz; R_{LOAD} = 150 Ω		0.2	0.8	١
Output Turn on Delay with respect to input	V_{IN} = 250Hz; R_{LOAD} = 150 Ω , note 1		1.5	6	ł
Output Turn off Delay with respect to input Direction	$V_{IN} = 250$ Hz; $R_{LOAD} = 150\Omega$, note 2		2.4	9	4
V _{DIR} LOW	$V_{\rm IN} = 5V; V_{\rm DIR}$ decreasing	0.8	1.9		
HIGH	$V_{IN} = 5V; V_{DIR}$ increasing	010	2.0	3.5	V
Hysteresis	$V_{\rm IN} = 5V$		100	0.0	r
I _{DIR} LOW	$V_{\rm IN} = 0V; V_{\rm DIR} = 0.8V$		40	100	
HIGH					L
	$V_{IN} = 0V; V_{DIR} = 3.5V$		0.4	100	
Output Slew Rate	$\begin{split} V_{IN} &= 0V; \ V_{DIR} = 3.5V \\ V_{IN} &= 5V; \ f_{DIR} = 250Hz; \ C = 0\mu F \end{split}$	0.2	0.4 1.5	100	ŀ
		0.2		100 2.0	4 7 7
Output Slew Rate with respect to DIR Output Fall Time	V_{IN} = 5V; f_{DIR} = 250Hz; C = 0 μF	0.2	1.5		ł
Output Slew Rate with respect to DIR Output Fall Time with respect to DIR	V_{IN} = 5V; f_{DIR} = 250Hz; C = 0 μF V_{IN} = 0V; V_{DIR} = 0V; C = 0 μF	0.2	1.5		4 7 4
Output Slew Rate with respect to DIR Output Fall Time with respect to DIR Output Turn on Delay	$V_{IN}=5V;f_{DIR}=250Hz;C=0\mu F$ $V_{IN}=0V;V_{DIR}=0V;C=0\mu F$ $V_{IN}=5V;R_{LOAD}=150\Omega$	0.2	1.5 0.2	2.0	4 7 4
Output Slew Rate with respect to DIR Output Fall Time with respect to DIR Output Turn on Delay with respect to DIR	$\begin{split} V_{IN} &= 5V; f_{DIR} = 250Hz; C = 0\mu F \\ V_{IN} &= 0V; V_{DIR} = 0V; C = 0\mu F \\ V_{IN} &= 5V; R_{LOAD} = 150\Omega \\ V_{DIR} &= 250Hz; C = 0\mu F, note 1 \end{split}$	0.2	1.5 0.2	2.0	ł
Output Slew Rate with respect to DIR Output Fall Time with respect to DIR Output Turn on Delay with respect to DIR Output Turn off Delay with respect to DIR	$\begin{split} V_{IN} &= 5V; \ f_{DIR} = 250Hz; \ C = 0\mu F \\ \\ V_{IN} &= 0V; \ V_{DIR} = 0V; \ C = 0\mu F \\ \\ V_{IN} &= 5V; \ R_{LOAD} = 150\Omega \\ \\ V_{DIR} &= 250Hz; \ C = 0\mu F, \ note \ 1 \\ \\ V_{IN} &= 5V; \ R_{LOAD} = 150\Omega \end{split}$	0.2	1.5 0.2 1	2.0 6	ł
Output Slew Rate with respect to DIR Output Fall Time with respect to DIR Output Turn on Delay with respect to DIR Output Turn off Delay with respect to DIR Protection Functions I _{OUT} Current Limit	$\begin{split} V_{IN} &= 5V; \ f_{DIR} = 250Hz; \ C = 0\mu F \\ \\ V_{IN} &= 0V; \ V_{DIR} = 0V; \ C = 0\mu F \\ \\ V_{IN} &= 5V; \ R_{LOAD} = 150\Omega \\ \\ V_{DIR} &= 250Hz; \ C = 0\mu F, \ note \ 1 \\ \\ V_{IN} &= 5V; \ R_{LOAD} = 150\Omega \end{split}$	0.2	1.5 0.2 1	2.0 6	ł
Output Slew Rate with respect to DIR Output Fall Time with respect to DIR Output Turn on Delay with respect to DIR Output Turn off Delay with respect to DIR Protection Functions I _{OUT} Current Limit (High Side Only)	$\begin{split} V_{IN} &= 5V; f_{DIR} = 250Hz; C = 0\mu F \\ V_{IN} &= 0V; V_{DIR} = 0V; C = 0\mu F \\ V_{IN} &= 5V; R_{LOAD} = 150\Omega \\ V_{DIR} &= 250Hz; C = 0\mu F, note 1 \\ V_{IN} &= 5V; R_{LOAD} = 150\Omega \\ V_{DIR} &= 250Hz; C = 0\mu F, note 2 \\ \end{split}$	100	1.5 0.2 1 2.5 225	2.0 6 9	H N H H
Output Slew Rate with respect to DIROutput Fall Time with respect to DIROutput Turn on Delay with respect to DIROutput Turn off Delay with respect to DIROutput Turn off Delay with respect to DIROutput Turn off Delay Blay With respect to DIROutput Turn off Delay With respect to DIROutput Turn off	$\begin{split} V_{IN} &= 5V; \ f_{DIR} = 250Hz; \ C = 0\mu F \\ V_{IN} &= 0V; \ V_{DIR} = 0V; \ C = 0\mu F \\ V_{IN} &= 5V; \ R_{LOAD} = 150\Omega \\ V_{DIR} &= 250Hz; \ C = 0\mu F, \ note \ 1 \\ V_{IN} &= 5V; \ R_{LOAD} = 150\Omega \\ V_{DIR} &= 250Hz; \ C = 0\mu F, \ note \ 2 \end{split}$		1.5 0.2 1 2.5 225 21.5	2.0 6	4 7 4 4 7
Output Slew Rate with respect to DIR Output Fall Time with respect to DIR Output Turn on Delay with respect to DIR Output Turn off Delay with respect to DIR Protection Functions I _{OUT} Current Limit (High Side Only)	$\begin{split} V_{IN} &= 5V; f_{DIR} = 250Hz; C = 0\mu F \\ V_{IN} &= 0V; V_{DIR} = 0V; C = 0\mu F \\ V_{IN} &= 5V; R_{LOAD} = 150\Omega \\ V_{DIR} &= 250Hz; C = 0\mu F, note 1 \\ V_{IN} &= 5V; R_{LOAD} = 150\Omega \\ V_{DIR} &= 250Hz; C = 0\mu F, note 2 \\ \end{split}$	100	1.5 0.2 1 2.5 225	2.0 6 9	H N H H

Note 1: Time required for output signal to rise to 90% of its amplitude after input signal switches.

Note 2: Time required for output signal to decrease to 10% of its amplitude after input signal switches.

	Packa	ge Pin Description	CS3750
PACKAGE PIN #	PIN SYMBOL	FUNCTION	00
16L PDIP (internally fused l	leads)		
1	DIR1	CMOS compatible input pin controls direction of current through OUT1	
2	C1	RC filter capacitor for OUT1 connected to Ground	
3	IN1	CMOS compatible input pin controls output OUT1A and 1B	
4,5,12,13	Gnd	Ground connection	
6	OUT1A	One half of H-bridge output stage 1	
7	VS1	Supply voltage	
8	OUT1B	One half of H-bridge output stage 1	
9	OUT2B	One half of H-bridge output stage 2	
10	VS2	Supply voltage	
11	OUT2A	One half of H-bridge output stage 2	
14	IN2	CMOS compatible input pin controls output OUT2A and 2B	
15	C2	RC filter capacitor for OUT2 connected to Ground	
16	DIR2	CMOS compatible input pin controls direction of current through OUT2	

Circuit Description

Output Stage

Each output stage contains 4 power NPN transistors arranged in a traditional H bridge configuration. Current flow through the two outputs (OUTxA, OUTxB) in each H-bridge is controlled by the logic signal DIRx.

PWM input signals from the microprocessor, are filtered on chip and sent to the output stage. The duty cycle of the PWM signal is proportional to output voltage. The RC filter reduces the noise of the PWM input signal by slowing its slew rate: i.e., the output signal is converted from a square wave to an exponential sawtooth waveform. An external capacitor (Cx) controls the slew rate for each H bridge.

Motor Direction Control

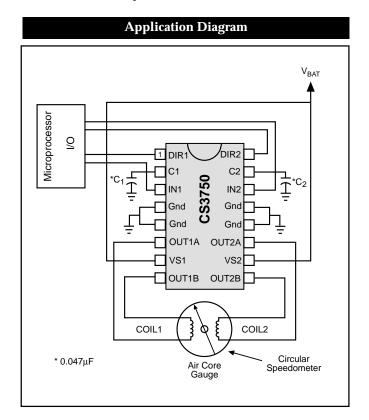
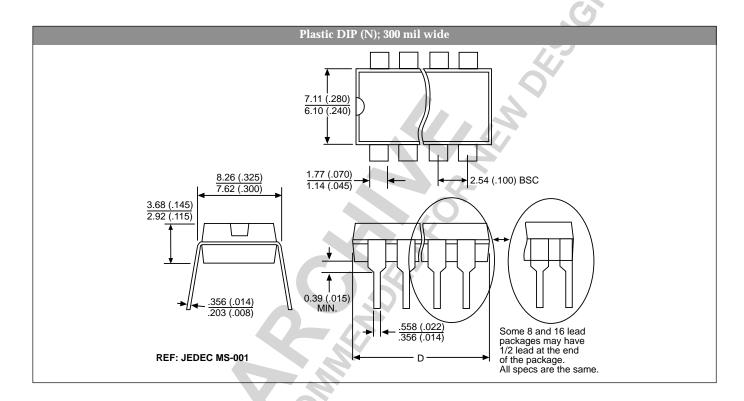

When the voltage on the control pin (INx) is low, both halves of the H bridge are off (Table 1). When INx is high, DIR controls the flow of current through the H-bridge. If DIRx=0, current flows from OUTxA out to the coil and back in through OUTxB. If DIRx=1, current flows from OUTxB out to the coil and back in through OUTxA.

Table 1. Logic Control of H-Bridge

Input	Direction	Outj	outs
INX	DIRX	OUTxA	OUTxB
0	Х	0	0
1	0	1	0
1	1	0	1

Protection

The high side driver transistor in each H-bridge is current limited as a protection against a short circuit fault condition. If an over voltage or a thermal runaway fault conditions occurs, all outputs shut down.


Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

	D			
Lead Count	Me	Metric English		glish
	Max	Min	Max	Min
16L PDIP (internally fused leads)	19.69	18.67	.775	.735

PACKAGE THERMAL DATA

Thermal	Data	16L PDIP	
		(internally fused leads)	
$R_{\Theta JC}$	typ	15	°C/W
$R_{\Theta JA}$	typ	50	°C/W

	JICK AC	
6		
	rdering Information	C
	ordering Information	S S
0 Part Number CS3750ENF16	Ordering Information Description 16L PDIP (internally fused leads)	S

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.