
TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device)

TCD1501D

The TCD1501D which includes sample-and-hold circuit is a high sensitive and low dark current 5000 elements CCD image sensor.

The sensor is designed for facsimile, imagescanner and OCR.

The device contains a row of 5000 elements photodiodes which provide a 16 lines/mm (400DPI) across a A3 size paper. The device is operated by 5 V (pulse), and 12 V power supply.

Weight: 5.2 g (Typ.)

FEATURES

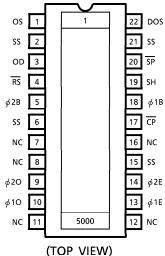
• Number of Image Sensing Elements: 5000 elements

Image Sensing Element Size : $7 \mu m$ by $7 \mu m$ on $7 \mu m$ centers

Photo Sensing Region : High sensitive and low voltage dark signal pn photodiode

Clock : 2 Phase (5 V)

Internal Circuit : S/H circuit

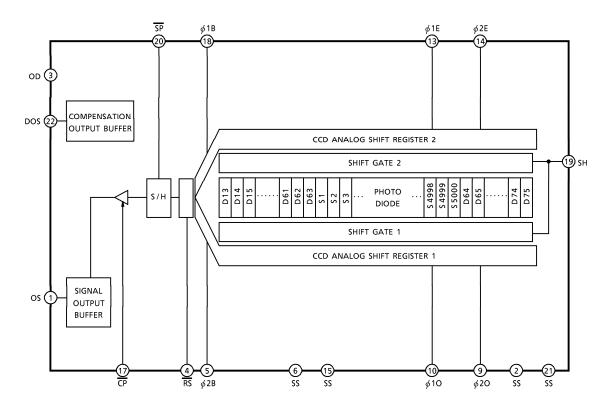

Package : 22 pin Cerdip

MAXIMUM RATINGS (Note 1)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Clock Pulse Voltage	Vφ		
Shift Pulse Voltage	VsH		v
Reset Pulse Voltage	VRS	-0.3~8	
Clamp Pulse Voltage	VCP		
Sample and Hold Pulse Voltage	V SP		
Power Supply Voltage	V _{OD}	-0.3~15	
Operating Temperature	T _{opr}	- 25~60	°C
Storage Temperature	T _{stg}	− 40~ 100	°C

: All voltage are with respect to SS terminals (Ground).

PIN CONNECTIONS


- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

1999-06-30 1/12

CIRCUIT DIAGRAM

PIN NAME

φ1E, Ο	Clock (Phase 1)
φ2E, Ο	Clock (Phase 2)
φIB	Final Stage Clock (Phase 1)
φ2B	Final Stage Clock (Phase 2)
SH	Shift Gate
RS	Reset Gate
SP	Sample and Hold Gate
CP	Clamp Gate
OS	Signal Output
DOS	Compensation Output
OD	Power
SS	Ground
NC	Non Connection

OPTICAL / ELECTRICAL CHARACTERISTICS

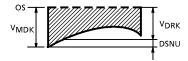
(Ta = 25°C, V_{OD} = 12 V, V_{ϕ} = $V_{\overline{RS}}$ = V_{SH} = $V_{\overline{SP}}$ = $V_{\overline{CP}}$ = 5 V, f_{ϕ} = 0.5 MHz, f_{RS} = 1 MHz, t_{INT} (INTEGRATION TIME) = 10 ms, LIGHT SOURCE = DAYLIGHT FLUORESCENT LAMP, LOAD RESISTANCE = 100 k Ω)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Sensitivity	R	10.4	13	15.6	V / lx∙s	
Distance No. 11-16-11	PRNU	_	_	10	%	(Note 2)
Photo Response Non Uniformity	PRNU (3)	_	6	10	mV	(Note 9)
Register Imbalance	RI	_	_	3	%	(Note 3)
Saturation Output Voltage	V _{SAT}	2	3	_	V	(Note 4)
Saturation Exposure	SE	0.13	0.23	_	lx∙s	(Note 5)
Dark Signal Voltage	VDRK	_	1	2	mV	(Note 6)
Dark Signal Non Uniformity	DSNU	_	2	3	mV	(Note 6)
DC Power Dissipation	PD	_	240	325	mW	
Total Transfer Efficiency	TTE	92	_	_	%	
Output Impedance	Zo	_	0.5	1	kΩ	
Dynamic Range	DR	_	3000	_	_	(Note 7)
DC Signal Output Voltage	Vos	4	5	6.5	V	(Note 8)
DC Compensation Output Voltage	V _{DOS}	4	5	6.5	V	(Note 8)
DC Differential Error Voltage	Vos-V _{DOS}	_	_	400	mV	

(Note 2) : Measured at 50% of SE (Typ.)

Definition of PRNU : PRNU = $\frac{\Delta x}{\overline{x}}$ × 100 (%)

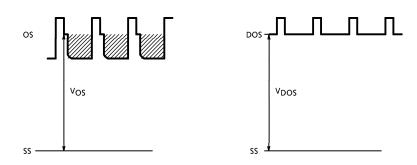
Where $\overline{\chi}$ is average of total signal output and $\Delta \chi$ is the maximum deviation from $\overline{\chi}$ under uniform illumination.


(Note 3) : Measured at 50% of SE (Typ.) RI is defined as follows:

RI =
$$\frac{\frac{4999}{\sum_{n=1}^{\infty} |x_n - x_n + 1|}}{4999 \times \overline{x}} \times 100 (\%)$$

Where χn and χn + 1 are signal output of each pixel. $\overline{\chi}$ is average of total signal output.

(Note 4) : V_{SAT} is defined as minimum saturation output voltage of all effective pixels.

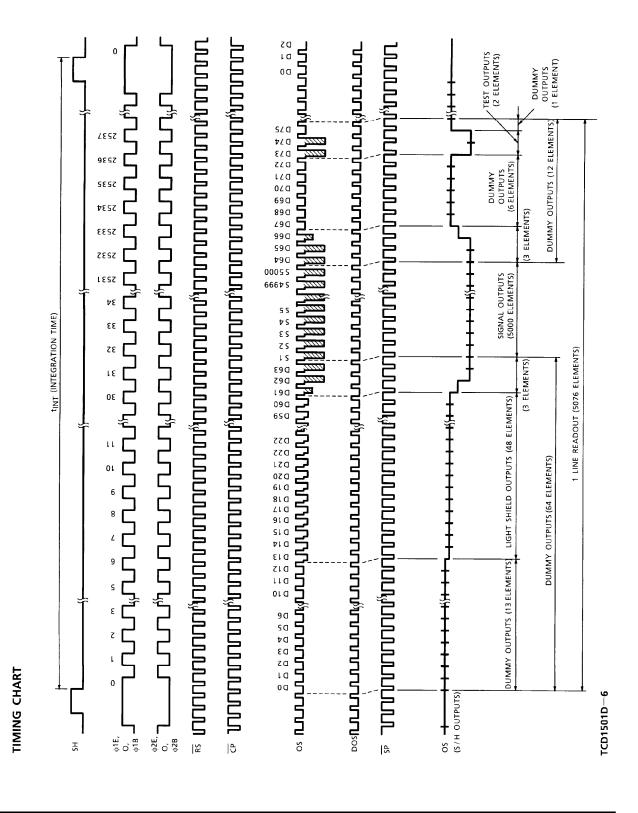

- (Note 5) : Definition of SE : SE = $\frac{V_{SAT}}{R}$ (I x·s)
- (Note 6) : V_{DRK} is defined as average dark signal voltage of all effective pixels. DSNU is defined as different voltage between V_{DRK} and V_{MDK} when V_{MDK} is maximum dark signal voltage.

(Note 7) : Definition of DR : DR = $\frac{V_{SAT}}{V_{DRK}}$

 $V_{\mbox{\footnotesize{DRK}}}$ is proportional to $t_{\mbox{\footnotesize{INT}}}$ (Integration Time). So the shorter $t_{\mbox{\footnotesize{INT}}}$ condition makes wider DR values.

(Note 8) : DC signal output voltage and DC compensation output voltage are defined as follows:

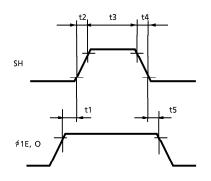
(Note 9) : PRUN (3) is defined as maximum voltage with next pixel, where measured 5% of SE (Typ.).

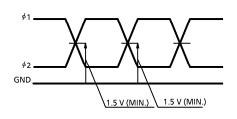

OPERATING CONDITION

CHARACTERISTIC		SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Pulse Voltage	"H" Level	Vφ1Ε, Ο	4.5	5	5.5	V
	"L" Level	V	0	_	0.5	V
Final Stage Clock Voltage	"H" Level	V	4.5	5	5.5	V
	"L" Level	V	0	_	0.5	\ \
Shift Pulse Voltage	"H" Level	V _{SH}	4.5	5	5.5	V
	"L" Level		0	_	0.5	
D (D) V()	"H" Level	V _{RS}	4.5	5	5.5	٧
Reset Pulse Voltage	"L" Level		vRS	0	_	0.5
Claren Bules Valtage	"H" Level	V _{CP}	4.5	5	5.5	V
Clamp Pulse Voltage	"L" Level		0	_	0.5	
Sample and Hold Pulse Voltage *	"H" Level	V _{SP}	4.5	5	5.5	V
	"L" Level		0	_	0.5	
Power Supply Voltage	•	V _{OD}	11.4	12.0	13.0	٧

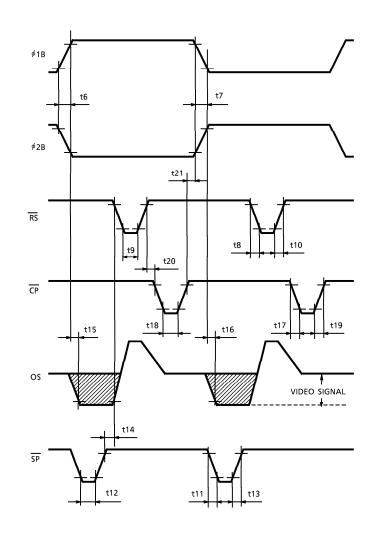
 $[\]star$: Supply "L" level to $\overline{\text{SP}}$ terminal when sample-and-hold circuitry is not used.

CLOCK CHARACTERISTICS (Ta = 25°C)

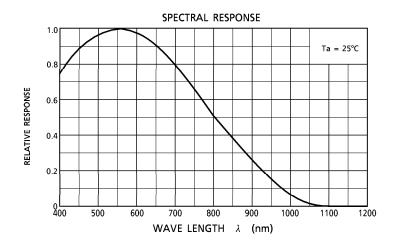

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Pulse Frequency	fφ	_	0.5	6.0	MHz
Reset Pulse Frequency	fRS	_	1.0	12.0	MHz
Sample and Hold Pulse Frequency	f <u>⊽</u> P	_	1.0	2.0	MHz
Clark Compaitons	C∳E	_	350	450	pF
Clock Capacitance	CφO	_	350	450	
Final Stage Clock Capacitance	CøB	_	10	20	pF
Shift Gate Capacitance	C _{SH}	_	10	20	pF
Reset Gate Capacitance	CRS	_	10	20	pF
Clamp Gate Capacitance	CCP	_	10	20	pF
Sample and Hold Gate Capacitance	CSP	_	10	20	pF

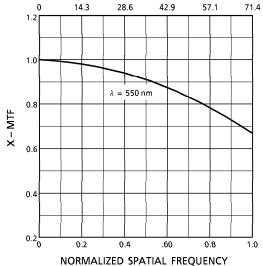


1999-06-30 6/12

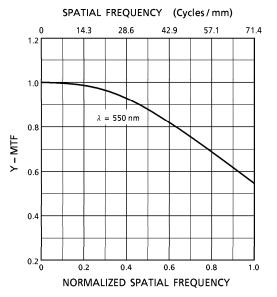

TIMING REQUIREMENTS

SH, *ϕ*1 TIMING


 ϕ 1, ϕ 2, \overline{RS} , \overline{CP} , OS, \overline{SP} TIMING

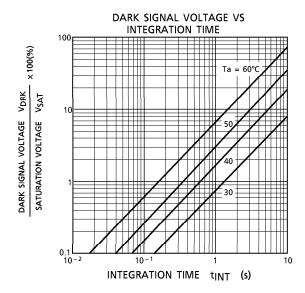

CHARACTERISTIC	SYMBOL	MIN.	TYP. (Note 10)	MAX.	UNIT
Pulse Timing of SH and	t1, t5	100	300	_	ns
SH Pulse Rise Time, Fall Time	t2, t4	0	50	_	ns
SH Pulse Width	t3	500	1000	_	ns
ϕ 1, ϕ 2 Pulse Rise Time, Fall Time	t6, t7	0	100	_	ns
RS Pulse Rise Time, Fall Time	t8, t10	0	20	_	ns
RS Pulse Width	t9	20	250	_	ns
SP Pulse Rise Time, Fall Time	t11, t13	0	20	_	ns
SP Pulse Width	t12	20	_	_	ns
Pulse Timing of SP and RS	t14	0	50	_	ns
Video Data Delay Time (Note 11)	t15, t16	_	30	_	ns
CP Pulse Rise Time, Fall Time	t17, t19	0	20	_	ns
CP Pulse Width	t18	20	_	_	ns
Pulse Timing of \overline{RS} and \overline{CP}	t20	0	_	_	ns
Pulse Timing of ϕ 1B, ϕ 2B and \overline{CP}	t21	0	_	_	ns

(Note 10) : TYP. is the case of fRS = 1.0 MHz (Note 11) : Load Resistance is 100 $k\Omega$


TYPICAL PERFORMANCE CURVES


MODULATION TRANSFER FUNCTION OF X-DIRECTION SPATIAL FREQUENCY (Cycles/mm) 14.3 28.6 42.9 57.1




MODULATION TRANSFER FUNCTION OF Y-DIRECTION

TYPICAL PERFORMANCE CURVES (Cont'd)

PRECAUTIONS FOR USE OF CCD IMAGE SENSOR

1. Static Electricity

This device has some weakly terminals for static electricity. Therefor, please pay attention to treat this device.

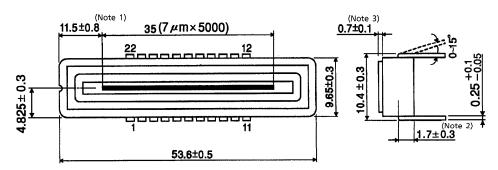
CCD Image Sensor is protected against static electricity, but inferior puncture mode device due to static electricity is sometimes detected. In handling the device, it is necessary to execute the following static electricity preventive measures, in order to prevent the trouble rate increase of the manufacturing system due to static electricity.

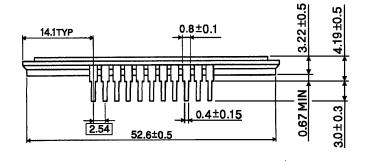
- a. Prevent the generation of static electricity due to friction by making the work with bare hands or by putting on cotton gloves and non-charging working clothes.
- b. Discharge the static electricity by providing earth plate or earth wire on the floor, door or stand of the work room.
- c. Ground the tools such as soldering iron, radio cutting plier or pincette.
 It is not necessarily required to execute all precaution items for static electricity.
 It is all right to mitigate the precautions by confirming that the trouble rate within the prescribed range.

2 Window Glass

As the dust and station on the glass window of the package will cause black flow on the picture, never fail to clean the glass surface before using. (Blow compressed vapor, and wipe off the dust, and dirt with soft cloth or paper slightly moistened with alcohol).

Fully take care for the handling of the device as the window glass will break or a strong friction is given to the window glass surface.


3. Incident Light


CCD image sensor has sensitivity in a wide range zone of light wave length, but its characteristics will sometimes widely change when used with long wave length input light outside the visual light zone.

PACKAGE OUTLINE

WDIP22-G-400-2.54D (B)

Unit in mm

(Note 1) : No. 1 SENSOR ELEMENT (S1) TO EDGE OF PACKAGE.

(Note 2): TOP OF CHIP TO BOTTOM OF PACKAGE.

(Note 3) : GLASS THICKNES (n = 1.5)

Weight: 5.2 g (Typ.)