3648×3 pixel CCD Linear Sensor (Color) ### Description The ILX516K is a reduction type CCD linear sensor developed for color image scanner. This sensor reads legal-size documents at a density of 400 DPI. #### **Features** • Number of effective pixels: 10944 pixels (3648 pixels \times 3) • Pixel size: 8µm × 8µm (8µm pitch) • Distance between line: 64µm (8 Lines) - · Single-sided readout - Ultra low lag / High sensitivity - Single 12V power supply Input clock pulse: CMOS 5V drive Number of output 3 (R, G, B) • Package: 22 pin cer-DIP (400 mil) ### **Absolute Maximum Ratings** Supply voltage Operating temperature Storage temperature VDD 15 V -10 to +55 °C Storage temperature -30 to +80 °C # Pin Configuration (Top View) **Block Diagram** Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. # **Pin Description** | Pin No. | Symbol | Description | Pin No. | Symbol | Description | |---------|-----------------|-------------------|---------|-----------------|--------------------| | 1 | Vout-r | Signal out (red) | 12 | φ ROG- G | Clock pulse input | | 2 | GND | GND | 13 | фROG-в | Clock pulse input | | 3 | φRS | Clock pulse input | 14 | NC | NC | | 4 | φLH | Clock pulse input | 15 | φ2 | Clock pulse input | | 5 | GND | GND | 16 | Vdd | 12V power supply | | 6 | NC | NC | 17 | NC | NC | | 7 | NC | NC | 18 | NC | NC | | 8 | φ1 | Clock pulse input | 19 | NC | NC | | 9 | NC | NC | 20 | Vdd | 12V power supply | | 10 | φ ROG- R | Clock pulse input | 21 | Vоит-в | Signal out (blue) | | 11 | GND | GND | 22 | Vout-g | Signal out (green) | # **Recommended Supply Voltage** | Item | Min. | Тур. | Max. | Unit | |------|------|------|------|------| | Vdd | 11.4 | 12.0 | 12.6 | V | #### **Clock Characteristics** | Item | Symbol | Min. | Тур. | Max. | Unit | |--------------------------|----------|------|------|------|------| | Input capacity of φ1, φ2 | Сф1, Сф2 | _ | 600 | _ | pF | | Input capacity of φLH | Сфін | _ | 10 | _ | pF | | Input capacity of φRS | Cors | _ | 10 | _ | pF | | Input capacity of φROG* | Сфкоб | _ | 10 | _ | pF | ^{*} It indicates that ϕ ROG-R, ϕ ROG-G, ϕ ROG-B as ϕ ROG. # **Clock Frequency** | Item | Symbol | Min. | Тур. | Max. | Unit | |------------------|----------------------|------|------|------|------| | φ1, φ2, φLH, φRS | fφ1, fφ2, fφLH, fφRS | _ | 1 | 5 | MHz | # **Input Clock Pulse Voltage Condition** | Item | | Min. | Тур. | Max. | Unit | |------------------------|------------|------|------|------|------| | φ1, φ2, φLH, φRS, φROG | High level | 4.75 | 5.0 | 5.25 | V | | pulse voltage | Low level | _ | 0 | 0.1 | V | #### **Electrooptical Characteristics** (Note 1) Ta = 25°C, VDD = 12V, fors = 1MHz, Input clock = 5Vp-p, Light source = 3200K, IR cut filter CM-500S (t = 1.0mm) | Item | | Symbol | Min. | Тур. | Max. | Unit | Remarks | |---------------------------|-----------|--------|------|-------|------|------------------|---------| | | Red | RR | 1.3 | 2.0 | 2.7 | | | | Sensitivity | Green | Rg | 2.1 | 3.2 | 4.3 | $V/(lx \cdot s)$ | Note 2 | | | Blue | Rв | 1.6 | 2.5 | 3.4 | | | | Sensitivity nonuni | formity | PRNU | _ | 4 | 20 | % | Note 3 | | Saturation output | voltage | VSAT | 2 | 3.2 | _ | V | Note 4 | | | Red | SER | 0.74 | 1.6 | _ | | | | Saturation exposure | Green | SEG | 0.46 | 1 | _ | lx · s | Note 5 | | | Blue | SEB | 0.58 | 1.28 | _ | | | | Dark voltage average | | Vdrk | _ | 0.3 | 2 | mV | Note 6 | | Dark signal nonur | niformity | DSNU | _ | 1.5 | 5 | mV | Note 6 | | Image lag | | IL | _ | 0.02 | _ | % | Note 7 | | Supply current | | Ivdd | _ | 26 | 50 | mA | _ | | Total transfer efficiency | | TTE | 92 | 98 | _ | % | _ | | Output impedance | | Zo | _ | 250 | _ | Ω | _ | | Offset level | | Vos | _ | 6.5 | _ | V | Note 8 | | Dynamic range | | DR | 1000 | 10670 | _ | _ | Note 9 | #### Note - 1) In accordance with the given electrooptical characteristics, the black level is defined as the average value of D2, D3 to D12. - 2) For the sensitivity test light is applied with a uniform intensity of illumination. - 3) PRNU is defined as indicated below. Ray incidence conditions are the same as for Note 2. $$VOUT-G = 500mV (Typ.)$$ $$PRNU = \frac{(V_{MAX} - V_{MIN})/2}{V_{AVE}} \times 100 [\%]$$ Where the 3648 pixels are divided into blocks of 114. The maximum output of each block is set to VMAX, the minimum output to VMIN and the average output to VAVE. - 4) Use below the minimum value of the saturation output voltage. - 5) Saturation exposure is defined as follows. $$SE = \frac{V_{SAT}}{R}$$ Where R indicates RR, Rg, RB, and SE indicates SER, SEG, SEB. - 6) Optical signal accumulated time τint stands at 10ms. - 7) Vout-g = 500mV (Typ.) - Vos is defined as indicated bellow. Vout indicates Vout-R, Vout-G, and Vout-B. - 9) Dynamic range is defined as follows. $$DR = \frac{V_{SAT}}{V_{DRK}}$$ When the optical signal accumulated time is shorter, the dynamic range gets wider because the optical signal accumulated time is in proportion to the dark voltage. Note) The transfer pulses (φ1, φ2, φLH) must have more than 3723 cycles. Voυτ indicates Voυτ-R, Voυτ-G, Voυτ-B. # **Clock Timing Chart 2** # **Clock Timing Chart 3** # **Clock Pulse Recommended Timing** | Item | Symbol | Min. | Тур. | Max. | Unit | |--|--------|------|------|------|------| | φROG, φ1 pulse timing | t1 | 50 | 100 | _ | ns | | φROG pulse high level period | t2 | 800 | 1000 | | ns | | φROG, φ1 pulse timing | t3 | 800 | 1000 | _ | ns | | φROG pulse rise time | t4 | 0 | 5 | 10 | ns | | φROG pulse fall time | t5 | 0 | 5 | 10 | ns | | φ1 pulse rise time /φ2 pulse fall time | t6 | 0 | 20 | 60 | ns | | φ1 pulse fall time /φ2 pulse rise time | t7 | 0 | 20 | 60 | ns | | φRS pulse high level period | t8 | 45 | 250* | | ns | | φRS, φLH pulse timing | t9 | 45 | 250* | _ | ns | | φRS pulse rise time | t10 | 0 | 10 | 30 | ns | | φRS pulse fall time | t11 | 0 | 10 | 30 | ns | | Signal output dolay timo | t12 | _ | 10 | _ | ns | | Signal output delay time | t13 | _ | 10 | _ | ns | ^{*} These timing is the recommended condition under $f\phi$ RS = 1MHz. **Application Circuit*** Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. #### **Example of Representative Characteristics** (VDD = 12V, Ta = 25°C) # Spectral sensitivity characteristics (Standard characteristics) Output voltage rate Dark signal output temperature characteristics (Standard characteristics) 10 5 5 0.1 0 10 20 30 40 50 60 Offset level vs. VDD characteristics (Standard characteristics) Ta – Ambient temperature [°C] Integration time output voltage characteristics (Standard characteristics) Offset level vs. temperature characteristics (Standard characteristics) Vos – Offset level [V] #### **Notes of Handling** 1) Static charge prevention CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures. - a) Either handle bare handed or use non chargeable gloves, clothes or material. Also use conductive shoes. - b) When handling directly use an earth band. - c) Install a conductive mat on the floor or working table to prevent the generation of static electricity. - d) Ionized air is recommended for discharge when handling CCD image sensor. - e) For the shipment of mounted substrates, use boxes treated for prevention of static charges. - 2) Notes on Handling CCD Cer-DIP Packages The following points should be observed when handling and installing cer-DIP packages. - a) Remain within the following limits when applying static load to the ceramic portion of the package: - (1) Compressive strength: 39N/surface (Do not apply load more than 0.7mm inside the outer perimeter of the glass portion.) - (2) Shearing strength: 29N/surface(3) Tensile strength: 29N/surface(4) Torsional strength: 0.9Nm - b) In addition, if a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the ceramic portion. Therefore, for installation, either use an elastic load, such as a spring plate, or an adhesive. - c) Be aware that any of the following can cause the glass to crack: because the upper and lower ceramic layers are shielded by low-melting glass, - (1) Applying repetitive bending stress to the external leads. - (2) Applying heat to the external leads for an extended period of time with soldering iron. - (3) Rapid cooling or heating - (4) Rapid cooling or impact to a limited portion of the low-melting glass with a small-tipped tool such as tweezers. - (5) Prying the upper or lower ceramic layers away at a support point of the low-melting glass. Note that the preceding notes should also be observed when removing a component from a board after it has already been soldered. #### 3) Soldering - a) Make sure the package temperature does not exceed 80°C. - b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a grounded 30W soldering iron and solder each pin in less then 2 seconds. For repairs and remount, cool sufficiently. - c) To dismount an imaging device, do not use a solder suction equipment. When using an electric desoldering tool, ground the controller. For the control system, use a zero cross type. - 4) Dust and dirt protection - a) Operate in clean environments. - b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.) - c) Clean with a cotton bud and ethyl alcohol if the glass surface is grease stained. Be careful not to scratch the glass. - d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences. - 5) Exposure to high temperatures or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions. - 6) CCD image sensors are precise optical equipment that should not be subject to mechanical shocks. Package Outline Unit: mm 22pin DIP (400mil) 3.0 ± 0.01 0.6 12 29.184 (8µm × 3648Pixels) 41.6 ± 0.5 40.2 No.1 Pixel (Green) 22 7.54 ± 0.8 I **6.0 ± 0.5** 1. The height from the bottom to the sensor surface is 2.45 ± 0.3 mm. 0.25 (ATS TA) 0FF) 81.01 °6 ot °0 The thickness of the cover glass is 0.8mm, and the refractive index is 1.5. 2 | JRE | Cer-DIP | TIN PLATING | 42 ALLOY | 5.2g | |-------------------|------------------|----------------|---------------|----------------| | PACKAGE STRUCTURE | PACKAGE MATERIAL | LEAD TREATMENT | LEAD MATERIAL | PACKAGE WEIGHT | | JRE | Cer-DIP | |-------------------|------------------| | PACKAGE STRUCTURE | PACKAGE MATERIAL |