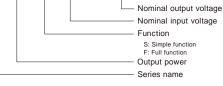
TDK·Lambda


PH SERIES Single Output, DC/DC Converter 50W-600W

Features

Conduction cooling High ef ciency High power density: 61.6W/inch³ (600W type) Full-function model (F type) N+1 parallel redundancy operation Current sharing (load current balance) IOG (inverter operation monitoring signal) AUX (AUX-BIAS power output) Internal capacitor PH50-150/300F: Aluminum electrolytic (output smoothing), ceramic PH300S/PH600S: Ceramic capacitor only (high reliability)

■ Model naming method <u>PH 600 \$ 280</u> - <u>5</u>

PH

Please see the following page.

Conformity to RoHS Directive

This means that, in conformity with EU Directive 2002/95/ EC, lead, cadmium, mercury, hexavalent chromium, and specifc bromine-based fame retardants, PBB and PBDE, have not been used, except for exempted applications.

Produce Line up

24V input

21111						
Output		50W		100W		300W
Output Voltage	Output Current	Model (S)	Output Current	Model (F)	Output Current	Model (F)
2V			20A	PH100F24-2		
3V			20A	PH100F24-3		
3.3V	10A	PH50S24-3.3				
5V	10A	PH50S24-5	20A	PH100F24-5		
12V	4.2A	PH50S24-12	8.4A	PH100F24-12	20A	PH300F24-12
15V	3.4A	PH50S24-15	6.7A	PH100F24-15		
24V	2.1A	PH50S24-24	4.2A	PH100F24-24		
28V	1.8A	PH50S24-28	3.6A	PH100F24-28	10.8A	PH300F24-28

48V in	out (1)			
Output		50W		75W
Output Voltage	Output Current	Model (S)	Output Current	Model (F)
2V			15A	PH75F48-2
3.3V	10A	PH50S48-3.3	15A	PH75F48-3.3
5V	10A	PH50S48-5	15A	PH75F48-5
12V	4.2A	PH50S48-12	6.3A	PH75F48-12
15V	3.4A	PH50S48-15	5A	PH75F48-15
24V	2.1A	PH50S48-24	3.2A	PH75F48-24
28V	1.8A	PH50S48-28	2.7A	PH75F48-28

48V

48\/ input (2)

0		75W		100W		150W	300W				
Output Voltage	Output Current	Model (S)	Output Current		Output Current	Model (F)	Model (S)	Output Current	Model (F)	Output Current	Model (S)
2V	15A				30A	PH150F48-2		60A	PH300F48-2		
3.3V	15A	PH75S48-3.3	20A	PH100S48-3.3	30A	PH150F48-3.3	PH150S48-3.3	60A	PH300F48-3	50A	PH300S48-3.3
5V	15A	PH75S48-5	20A	PH100S48-5	30A	PH150F48-5	PH150S48-5	60A	PH300F48-5	50A	PH300S48-5
12V	6.3A	PH75S48-12	8.4A	PH100S48-12	12.5A	PH150F48-12	PH150S48-12	25A	PH300F48-12	25A	PH300S48-12
15V	5A	PH75S48-15	6.7A	PH100S48-15	10A	PH150F48-15	PH150S48-15	20A	PH300F48-15	20A	PH300S48-15
24V	3.2A	PH75S48-24	4.2A	PH100S48-24	6.3A	PH150F48-24	PH150S48-24	12.6A	PH300F48-24	12.6A	PH300S48-24
28V	2.7A	PH75S48-28	3.6A	PH100S48-28	5.4A	PH150F48-28	PH150S48-28	10.8A	PH300F48-28	10.8A	PH300S48-28
48V										6.3A	PH300S48-48

110V input

PH

110 1	iput										
Output		50W		75W			150W		300W		
Output Voltage	Output Current	Model (F)	Output Current	Model (F)	Model (S)	Output Current	Model (F)	Model (S)	Output Current	Model (F)	
2V			15A	PH75F110-2		30A	PH150F110-2		60A	PH300F110-2	
3V			15A	PH75F110-3		30A	PH150F110-3		60A	PH300F110-3	
3.3V											
5V	10A	PH50S110-5	15A	PH75F110-5	PH75S110-5	30A	PH150F110-5	PH150S110-5	60A	PH300S110-5	
12V	4.2A	PH50S110-12	6.3A	PH75F110-12	PH75S110-12	12.5A	PH150F110-12	PH150S110-12	25A	PH300S110-12	
15V	3.4A	PH50S110-15	5A	PH75F110-15	PH75S110-15	10A	PH150F110-15	PH150S110-15	20A	PH300S110-15	
24V	2.1A	PH50S110-24	3.2A	PH75F110-24	PH75S110-24	6.3A	PH150F110-24	PH150S110-24	12.6A	PH300S110-24	
28V	1.8A	PH50S110-28	2.7A	PH75F110-28	PH75S110-28	5.4A	PH150F110-28	PH150S110-28	10.8A	PH300S110-28	

280V input (1)

	· [- •·· • (·)										
Output		50W		75W			100W	150W			
Output Voltage	Output Current	Model (S)	Output Current	Model (F)	Model (S)	Output Current	Model (S)	Output Current	Model (F)	Model (S)	
2V			15A	PH75F280-2				30A	PH150F280-2		
3V			15A	PH75F280-3				30A	PH150F280-3		
3.3V	10A	PH50S280-3.3	15A		PH75S280-3.3	20A	PH100S280-3.3	30A		PH150S280-3.3	
5V	10A	PH50S280-5	15A	PH75F280-5	PH75S280-5	20A	PH100S280-5	30A	PH150F280-5	PH150S280-5	
12V	4.2A	PH50S280-12	6.3A	PH75F280-12	PH75S280-12	8.4A	PH100S280-12	12.5A	PH150F280-12	PH150S280-12	
15V	3.4A	PH50S280-15	5A	PH75F280-15	PH75S280-15	6.7A	PH100S280-15	10A	PH150F280-15	PH150S280-15	
24V	2.1A	PH50S280-24	3.2A	PH75F280-24	PH75S280-24	4.2A	PH100S280-24	6.3A	PH150F280-24	PH150S280-24	
28V	1.8A	PH50S280-28	2.7A	PH75F280-28	PH75S280-28	3.6A	PH100S280-28	5.4A	PH150F280-28	PH150S280-28	
48V											

280V input (2)

	1 ()					
Output		30	W00			600W
Output Voltage	Output Current	Model (F)	Output Current	Model (S)	Output Current	Model (S)
2V	60A	PH300F280-2				
3V	60A	PH300F280-3				
3.3V			50A	PH300S280-3.3	100A	PH600S280-3.3
5V	60A	PH300F280-5	50A	PH300S280-5	100A	PH600S280-5
12V	25A	PH300F280-12	25A	PH300S280-12	50A	PH600S280-12
15V	20A	PH300F280-15	20A	PH300S280-15	40A	PH600S280-15
24V	12.6A	PH300F280-24	12.5A	PH300S280-24	25A	PH600S280-24
28V	10.8A	PH300F280-28	10.8A	PH300S280-28	21.5A	PH600S280-28
48V			6.3A	PH300S280-280	12.5A	PH600S280-48

Downloaded from Elcodis.com electronic components distributor

PH50S24

TDK·Lambda

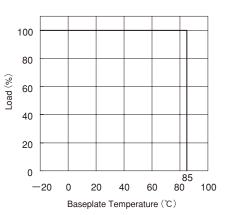
PH50S24 Specifications

ITEMS	S/UNITS M	ODEL	PH50S24-3.3	PH50S24-5	PH50S24-12	PH50S24-15	PH50S24-24	PH50S24-28		
	Voltage Range	V			DC18	3 - 36				
Input	Efficiency (typ) (**) %	72	80	81	82	8	3		
	Current (typ) (**	I) A	1.91	2.6	2.	59	2.	53		
	Nominal Voltage	VDC	3.3	5	12	15	24	28		
	Maximum Current	Α	1	0	4.2	3.4	2.1	1.8		
	Maximum Power	W	33	50	50.4	51	50).4		
	Voltage Setting Accuracy (**	I) %			±	1				
Output	Maximum Line Regulation (*2	2) mV	2	0	48	60	96	112		
	Maximum Load Regulation(*3	3) mV	4	0	96	120	192	224		
	Temperature Coefficient				0.02	%/				
	Maximum Ripple & Noise (*9	9) mVp-p	1(00	15	50	240	280		
	Voltage Adjustable Range(*8	3)			+10%, -10% (A	t 24VDC input)			
	Over Current Protection (*4	4)			105 -	150%				
	Over Voltage Protection (*5	5)	165 - 240%			125 - 145%				
Input E	Remote Sensing									
unction	Remote ON/OFF Control (*8	3)		Pos	sible (SHORT	ON OPEN: C	OFF)			
	Parallel Operation									
	Series Operation (*8	3)			Pos	sible				
	Operating Temperature (*6	5)		-20 to +85 (B	aseplate) Amb	ient temperatu	ire min=-20			
	Storage Temperature				-40 to	o + 85				
	Operating Humidity	%RH			30 - 95 (No	o dewdrop)				
Environmont	Storage Humidity	%RH			10 - 95 (No	o dewdrop)				
	Vibration			At no opera	ting, 10-55Hz a	amplitude (swe	ep for 1min)			
				0.825mm con	stant (maximur	m 49.0m/s²) ⊃	K, Y, Z 1h each			
	Shock				196.1m/s² (In package)				
	Cooling (*7	')			Conductio	on cooled				
	Withstand Voltage		Inpu	t-Baseplate : 2	2.5kVAC, Input	-Output : 3kVA	C (20mA) for 7	1min,		
Isolation	withstand voltage			Out	put-Baseplate	: 500VDC for '	1 min			
	Isolation Resistance		More	than 100M	at 25 and 70	%RH Output-E	Baseplate500	OVDC		
Standards	Safety Standards		Ap	proved by UL	60950-1, CSA	C22.2 No.609	50-1, EN60950	D-1		
Mechanical Weight (typ) g 100										
ncondiliodi	Size (W x H x D)	mm		41 x 1	12.7 x 86 (Refe	r to outline dra	wing)			
(*1) At 2	4VDC and maximum output curren	t.		(*7)	Heatsink has to l	be chosen accord	ding to instruction	manual.		
(+0) 40				(+ -	Defende in de starte					

(*2) 18 - 36 VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.


(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

(*8) Refer to instruction manual. (*9) External components are needed for operation.

(Refer to basic connection and instruction manual.)

Derating Curve

· All specifications are subject to change without notice.

PH100F24

TDK·Lambda

PH100F24 Specifications

TEMS	/UNITS	MO	DEL	PH100F24-2	PH100F24-3	PH100F24-5	PH100F24-12	PH100F24-15	PH100F24-24	PH100F24-3	
	Voltage Range		V		1	1	DC18 - 36	1	1		
Input	Efficiency (typ)	(*1)	%	66	70	80	81	82	8	3	
	Current (typ)	(*1)	Α	2.53	3.57	5.21	5.19	5.11	5.	06	
	Nominal Voltage		VDC	2	3	5	12	15	24	28	
	Maximum Current		Α		20		8.4	6.7	4.2	3.6	
	Maximum Power		W	40	60	100	100.8	100.5	10	0.8	
	Voltage Setting Accuracy	(*1)	%				±1%				
Jutput	Maximum Line Regulatior	n(*2)	mV		20		48	60	96	112	
	Maximum Load Regulation	n(*3)	mV		40		96	120	192	224	
	Temperature Coefficient						0.02% /				
	Maximum Ripple & Noise	e (*9)	mVp-p		100	-	15	50	240	280	
	Voltage Adjustable Range	(*10)		± 2	20%			+20%, -60%	, D		
	Over Current Protection	(*4)					105% - 140%	/ 0			
	Over Voltage Protection	(*5)		165%	- 240%		125% - 145%				
Dutput	Remote Sensing	(*8)					Possible				
unction	Remote ON/OFF Control	(*8)				Possible (S	HORT: ON	OPEN: OFF)			
	Parallel Operation	(*8)					Possible				
	Series Operation	(*8)					Possible				
	I.O.G. Signal	(*8)				Possible (Open collec	tor output)			
	Operating Temperature	(*6)			- 20 to + 8	35 (Baseplat	e) ambient te	emperature N	MIN = - 20		
	Storage Temperature						- 40 to + 85				
	Operating Humidity		%RH			30 -	95 (No dewo	drop)			
nvironmont	Storage Humidity		%RH			10 -	95 (No dewo	drop)			
nvironinion	Vibration			Am	At 1911plitude 0.82	no operating 5mm consta	ı, 10-55Hz (s nt (maximum	sweep for 1m n 49.0m/s²)	nin) X, Y, Z 1h e	ach	
	Shock					196.1	m/s² (In pac	kage)			
	Cooling	(*7)				Со	nduction coc	oled			
solation	Withstand Voltage			h	nput-Basepla Outp	ate : 2kVAC, out-Baseplate	Input-Outpu e : 500VDC	t : 2kVAC (20 (100mA) for	0mA) for 1mi 1min	n	
	Isolation Resistance			Mor	e than 100M	ohm at 25	and 70%RH	l Output-Bas	eplate500	VDC	
tandards	Safety Standards				Approved by	UL60950-1,	CSA C22.2	No.60950-1	, EN60950-	l	
	Weight (typ)		g				180				
Temperature Coefficient 0.02% / Maximum Ripple & Noise (*9) mVpp 100 150 240 Voltage Adjustable Range(*10) ± 20% +20%, -60% 240 Voltage Adjustable Range(*10) ± 20% +20%, -60% 240 Over Current Protection (*4) 105% - 140% 240 Over Voltage Protection (*5) 165% - 240% 125% - 145% Remote Sensing (*8) Possible 25% - 145% Parallel Operation (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible (Open collector output) Operating Temperature (*6) - 20 to + 85 (Baseplate) ambient temperature MIN = - 20 Storage Temperature - 40 to + 85 Operating Humidity %RH Vibration At no operating, 10-55Hz (sweep for 1min) At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Cooling (*7) Conduction cooled Nithstand Voltage Isolation Resistance More than 100Mohm at 25											

(*2) 18 - 36VDC, constant load.

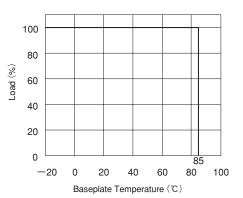
(*3) No load - full load, constant input voltage.

 $(\ensuremath{^{\ast}}4)$ Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.


Derating Curve

(*8) Refer to instruction manual.

(*9) External components are needed for operation.

(*10) At 24VDC input.(Refer to instruction manual.)

(Refer to basical connection and instruction manual.)

PH300F24

TDK·Lambda

PH300F24 Specifications

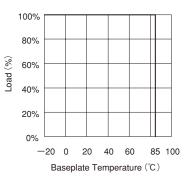
Maximum Load Regulation(*3) mV 96 224 Temperature Coefficient 0.02%/ Maximum Ripple & Noise (*9) 150 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 280 Over Voltage Protection (*5) 125% - 145% 8 Remote Sensing (*8) Possible 8 Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) 9 Parallel Operation (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Tumidity %RH 30 - 95 (No dewdrop) Storage Tumidity %RH Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 1 10ptt-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC </th <th>ITEMS</th> <th>/UNITS MO</th> <th>DEL</th> <th>PH300F24-12</th> <th>PH300F24-28</th>	ITEMS	/UNITS MO	DEL	PH300F24-12	PH300F24-28
Current (typ) (*) A 12 15 Nominal Voltage VDC 12 28 Maximum Current A 20 10.8 Maximum Power W 240 302.4 Voltage Setting Accuracy (*1) *1 302.4 Output Maximum Line Regulation (*2) mV 48 112 Maximum Load Regulation (*2) mV 48 112 Maximum Load Regulation (*3) mV 96 224 Temperature Coefficient 0.02%/ 280 Voltage Adjustable Range(*10) +20%, -60% 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 280 Over Voltage Protection (*5) 125% - 145% Remote Sensing Remote ON/OFF Control (*8) Possible Series Operation *8) Series Operation *8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10m A max. 0 Operating Temperature -40 to +85 0		Voltage Range	V	DC18	- 36
Nominal Voltage VDC 12 28 Maximum Current A 20 10.8 Maximum Power W 240 302.4 Voltage Setting Accuracy (*1) % ±1 Output Maximum Line Regulation (*2) mV 48 112 Maximum Load Regulation (*2) mV 48 112 Maximum Load Regulation (*2) mV 96 224 Temperature Coefficient 0.02%/ 280 Voltage Adjustable Range(*10) +20%, -60% 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 280 Over Voltage Protection (*5) 125% - 145% 8 Remote Sensing (*9) Possible 9 9 Remote ON/OFF Control (*8) Possible 9 9 Series Operation (*8) Possible (Open collector output) 10.4X-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (No dewdrop)	Input	Efficiency (typ) (*1)	%	83	84
Maximum Current A 20 10.8 Maximum Power W 240 302.4 Voltage Setting Accuracy (*1) % ±1 Maximum Line Regulation (*2) mV 48 112 Maximum Line Regulation (*2) mV 48 112 Maximum Load Regulation (*2) mV 48 112 Maximum Load Regulation (*2) mV 48 112 Maximum Load Regulation (*2) mV 48 112 Maximum Ripple & Noise (*9) mV 96 224 Temperature Coefficient 0.02%/ 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 145% 280 Remote ON/OFF Control (*8) Possible 280 Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible Series Operation (*8) Possible Storage Temperature -40 to +85 (Baseplate) Ambient temperat		Current (typ) (*1)	Α	12	15
Maximum Power W 240 302.4 Voltage Setting Accuracy (*1) % ±1 Maximum Line Regulation (*2) mV 48 112 Maximum Line Regulation (*3) mV 96 224 Temperature Coefficient 0.02%/ 280 Maximum Ripple & Noise (*9) mVp 150 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 280 Over Voltage Protection (*5) 125% - 145% 8 Remote Sensing (*8) Possible 8 Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Humidity %RH 30 - 95 (No dewdrop) Vibration Mark no operating, 10-55Hz (sweep		Nominal Voltage	VDC	12	28
Voltage Setting Accuracy (*1) % ± 1 Output Maximum Line Regulation (*2) mV 48 112 Maximum Load Regulation (*3) mV 96 224 Temperature Coefficient 0.02%/ 280 Voltage Adjustable Range(*10) +20%, -60% 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 0ver Voltage Protection (*5) Remote Sensing (*8) Possible Possible Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH 30 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825m constant (maximum 49.0m/s²), X, Y, Z 1h each Shock Solation Resistance Input-Baseplate : 2kVAC, Input-Output :		Maximum Current	А	20	10.8
Maximum Line Regulation (*2) mV 48 112 Maximum Line Regulation (*3) mV 96 224 Temperature Coefficient 0.02%/ 280 Maximum Ripple & Noise (*9) mVpp 150 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 280 Over Voltage Protection (*5) 125% - 145% 280 Remote Sensing (*8) Possible 90 90 Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) 90 Parallel Operation (*8) Possible 90 100 AUX-BIAS Power Supply 7 - 10V, 10mA max. 90 200 Operating Temperature (*6) -200 to +85 (Baseplate) Ambient temperature min=-20 50 50 Storage Temperature -40 to +85 90 90 100 Operating Humidity %RH 10 - 95 (No dewdrop) 50 50 Storage Humidity %RH 10 - 95 (No dewdrop) 50 20 196.1m/s² (In package) Cooling Cooling </td <td></td> <td>Maximum Power</td> <td>W</td> <td>240</td> <td>302.4</td>		Maximum Power	W	240	302.4
Maximum Load Regulation (*3) mV 96 224 Temperature Coefficient 0.02%/ Maximum Ripple & Noise (*9) mVp-p 150 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 280 Over Voltage Protection (*5) 125% - 145% 280 Remote Sensing (*8) Possible Remote ON/OFF Control (*8) Possible Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Bascelate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (Bascelate) Ambient temperature min=-20 Storage Tumidity %RH 10 - 95 (No dewdrop) Storage Tumidity %RH Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Output-Ba		Voltage Setting Accuracy (*1)	%	±	1
Temperature Coefficient 0.02%/ Maximum Ripple & Noise (*9) mVp-p 150 280 Voltage Adjustable Range(*10) +20%, -60% 280 Over Current Protection (*4) 105% - 140% 280 Over Voltage Protection (*5) 125% - 145% 280 Remote Sensing (*8) Possible Possible Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible 200 LO.G. Signal (*8) Possible (Open collector output) 200 AUX-BIAS Power Supply 7 - 10V, 10mA max. 200 Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 200 20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -20 to +85 (Baseplate) Ambient temperature min=-20 20 to +85 (Baseplate) Ambient temperature min=-20 Vibration MRH 30 - 95 (No dewdrop) 30 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) 41 each Shock 196 (Im package) Cooling (*7)	Output	Maximum Line Regulation (*2)	mV	48	112
Maximum Ripple & Noise (*9) mVp-p 150 280 Voltage Adjustable Range(*10) +20%, -60% 420%, -60% 105% - 140% <t< td=""><td></td><td>Maximum Load Regulation(*3)</td><td>mV</td><td>96</td><td>224</td></t<>		Maximum Load Regulation(*3)	mV	96	224
Voltage Adjustable Range(*10) +20%, -60% Over Current Protection (*4) 105% - 140% Over Voltage Protection (*5) 125% - 145% Remote Sensing (*8) Possible Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Humidity %RH 30 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Storage Iumidity %RH 10 - 95 (No dewdrop) Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock Cooling (*7) Conduction cooled Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min O		Temperature Coefficient		0.029	6/
Over Current Protection (*4) 105% - 140% Over Voltage Protection (*5) 125% - 145% Remote Sensing (*8) Possible Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH Vibration Att no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Mithstand Voltage Input-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1		Maximum Ripple & Noise (*9)	mVp-p	150	280
Over Voltage Protection (*5) 125% - 145% Remote Sensing (*8) Possible Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH Vibration Att no operating, 10 - 55 Hz (sweep for 1min) Att no operating, 10 - 55 Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled Subation Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1		Voltage Adjustable Range(*10)		+20%,	-60%
Remote Sensing (*8) Possible Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible I.O.G. Signal (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH Vibration At no operating, 10-55 (No dewdrop) Storage Humidity %RH Vibration Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Solation Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1		Over Current Protection (*4)		105% -	140%
Remote ON/OFF Control (*8) Possible (SHORT: ON OPEN: OFF) Parallel Operation (*8) Possible Series Operation (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH Storage Temperature -40 to +85 Operating Humidity %RH Storage Humidity %RH Vibration At no operating, 10 - 55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Verbraid Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1		Over Voltage Protection (*5)		125% -	145%
Function Parallel Operation (*8) Possible Series Operation (*8) Possible I.O.G. Signal (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH 30 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Meight (typ) g 250		Remote Sensing (*8)		Poss	ible
Parallel Operation (*8) Possible Series Operation (*8) Possible I.O.G. Signal (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH Storage Humidity %RH Vibration MRH Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled Solation Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Output-Baseplate : 500VDC for 1min Solation Solation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1		Remote ON/OFF Control (*8)		Possible (SHORT:	ON OPEN: OFF)
I.O.G. Signal (*8) Possible (Open collector output) AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH Storage Humidity %RH Storage Humidity %RH Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Solation Nithstand Voltage Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1	-unction	Parallel Operation (*8)		Poss	ible
AUX-BIAS Power Supply 7 - 10V, 10mA max. Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH Storage Humidity %RH Storage Humidity %RH Vibration Amplitude 0.825mm constant (maximum 49.0m/s²) Shock 196.1m/s² (In package) Cooling (*7) Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Weight (typ) g 250		Series Operation (*8)		Poss	ible
Operating Temperature (*6) -20 to +85 (Baseplate) Ambient temperature min=-20 Storage Temperature -40 to +85 Operating Humidity %RH 30 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Weight (typ) g 250		I.O.G. Signal (*8)		Possible (Open	collector output)
Storage Temperature -40 to +85 Operating Humidity %RH 30 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Solation Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Weight (typ) g 250		AUX-BIAS Power Supply		7 - 10V, 10	mA max.
Operating Humidity %RH 30 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Storage Humidity %RH 10 - 95 (No dewdrop) Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Solation Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Weight (typ) g 250		Operating Temperature (*6)		-20 to +85 (Baseplate) Amb	pient temperature min=-20
Storage Humidity %RH 10 - 95 (No dewdrop) Invironment Storage Humidity %RH 10 - 95 (No dewdrop) Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Weight (typ) g 250		Storage Temperature		-40 to	+85
Invironment At no operating, 10-55Hz (sweep for 1min) Vibration Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Solation Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Solation Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Veight (typ) g		Operating Humidity	%RH	30 - 95 (No	dewdrop)
Vibration At no operating, 10-55Hz (sweep for 1min) Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock Shock 196.1m/s² (In package) Cooling (*7) Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Weight (typ) g 250	nuironmont	Storage Humidity	%RH	10 - 95 (No	dewdrop)
Amplitude 0.825mm constant (maximum 49.0m/s²) X, Y, Z 1h each Shock 196.1m/s² (In package) Cooling (*7) Conduction cooled solation Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Weight (typ) g 250	INNIONINEN	Vibration		At no operating, 10-5	5Hz (sweep for 1min)
Cooling (*7) Conduction cooled solation Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Veight (typ) g				Amplitude 0.825mm constant (max	ximum 49.0m/s ²) X, Y, Z 1h each
Withstand Voltage Input-Baseplate : 2kVAC, Input-Output : 2kVAC(20mA) for 1min Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Veight (typ) g		Shock		196.1m/s² (I	n package)
Withstand Voltage Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Veight (typ) g		Cooling (*7)		Conductio	n cooled
Isolation Output-Baseplate : 500VDC for 1min Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC Standards Safety Standards Machanical Weight (typ) g 250 250		Withstand Voltago		Input-Baseplate : 2kVAC, Input-	Output : 2kVAC(20mA) for 1min
Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Machanical Weight (typ) g 250	solation			Output-Baseplate :	500VDC for 1min
Weight (typ) g 250		Isolation Resistance		More than 100M at 25 and 709	%RH Output-Baseplate500VDC
	Standards	Safety Standards		Approved by UL60950-1, CSA (22.2 No.60950-1, EN60950-1
Size (W x H x D) mm 146 x 12.7 x 86 (Refer to outline drawing)	Machaniaal	Weight (typ)	g	25	0
· · · · · · · · · · · · · · · · · · ·	viechanical	Size (W x H x D)	mm	146 x 12.7 x 86 (Refe	r to outline drawing)

(*2)18 - 36VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.


(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

Derating Curve

(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*10) At 24VDC Input. (Refer to instruction manual.)

PH50S48

TDK·Lambda

PH50S48 Specifications

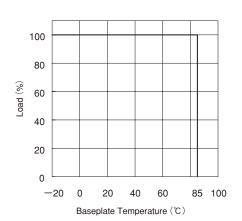
ITEMS	UNITS	MO	DEL	PH50S48-3.3	PH50S48-5	PH50S48-12	PH50S48-15	PH50S48-24	PH50S48-28		
	Voltage Range		V			DC36	6 - 76				
Input	Efficiency (typ)	(*1)	%	72	80	82	83	8	4		
	Current (typ)	(*1)	Α	0.95	1.30	1.:	28	1.	25		
	Nominal Voltage		VDC	3.3	5	12	15	24	28		
	Maximum Current		Α	1	0	4.2	3.4	2.1	1.8		
	Maximum Power		W	33	50	50.4	51	50).4		
	Voltage Setting Accuracy	(*1)	%			±	:1				
Output	Maximum Line Regulation	ı (*2)	mV	2	0	48	60	96	112		
	Maximum Load Regulation	n (*3)	mV	4	0	96	120	192	224		
	Temperature Coefficient					0.02	%/				
	Maximum Ripple & Noise	(*9)	mVp-p	10	00	15	50	240	280		
	Voltage Adjustable Range	e(*8)				+10%, -10% (A	t 48VDC Input)			
	Over Current Protection	(*4)				105 -	150%				
	Over Voltage Protection	(*5)		165 - 240%	165 - 240% 125 - 145%						
Function	Remote Sensing										
1 unction	Remote ON/OFF Control	(*8)			Pos	sible (SHORT	ON OPEN: C	DFF)			
	Parallel Operation										
	Series Operation	(*8)				Pos	sible				
	Operating Temperature	(*6)			-20 to +85 (Baseplate) Am	bient temperat	ure min=-20			
	Storage Temperature					-40 to	o + 85				
	Operating Humidity		%RH			30 - 95 (No	o dewdrop)				
Environment	Storage Humidity		%RH			10 - 95 (No	o dewdrop)				
	Vibration				0.825mm con	stant (maximur	m 49.0m/s²) እ	K, Y, Z 1h each			
	Shock					196.1m/s² (In package)				
	Cooling	(*7)				Conductio	on cooled				
Isolation	Withstand Voltage			Inpu	t-Baseplate : 2 Out	2.5kVAC, Input- put-Baseplate	-Output : 3kVA : 500VDC for 1	C (20mA) for 1 Imin	lmin,		
	Isolation Resistance			More	than 100M	at 25 and 70	%RH Output-E	Baseplate500	DVDC		
Standards	Safety Standards			Ap	proved by UL	60950-1, CSA	C22.2 No.609	50-1, EN60950)-1		
Mechanical Weight (typ) g 100											
Mechanical	Size (W x H x D)		mm		41 x 1	12.7 x 86 (Refe	er to outline dra	wing)			
(*1) At 4	8VDC and maximum output cu	rrent.			(*7)	Heatsink has to	be chosen accord	ding to instruction	manual.		

PH

(*2) 36 - 76 VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.


(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

Derating Curve

(*8) Refer to instruction manual.

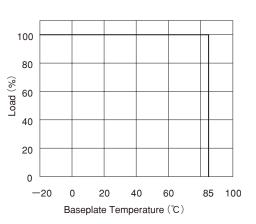
(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

PH75S48

TDK·Lambda

PH75S48 Specifications

ITEMS	/UNITS	MO	DEL	PH75S48-3.3	PH75S48-5	PH75S48-12	PH75S48-15	PH75S48-24	PH75S48-28
Input E C N Output N N V C Unction F F S C C S C S C S C S C S S C S S S S	Voltage Range		V			DC36	6 - 76		
Input	Efficiency (typ)	(*1)	%	72	81	83	84	8	5
	Current (typ)	(*1)	Α	1.43	1.93	1.9	1.86	1.88	1.85
	Nominal Voltage		VDC	3.3	5	12	15	24	28
	Maximum Current	(*1) % 72 81 83 84 (*1) A 1.43 1.93 1.9 1.86 1. (*1) A 1.43 1.93 1.9 1.86 1. (*1) A 1.5 6.3 5 3 W 49.5 75 75.6 75 76 uracy (*1) % ±1 101 101 101 101 ulation (*2) mV 20 48 60 9 9 ulation (*3) mV 40 96 120 19 cient 0.02%/ 0.02%/ 150 24 Noise (*9) mVp-p 100 150 24 Range(*8) +10%, -10% (At 48VDC Input) 105 - 150% 24 cient 105 - 240% 125 - 145% 25 (*8) Possible (SHORT: ON OPEN: OFF) 24 25 - 145% (*8) Possible (SHORT: ON OPEN: OFF) 24 30 - 95 (No dewdrop) (*8) -20 to +85 (Baseplate) Ambient temperature mir -20 to +85 (Baseplate) Ambient temperature	3.2	2.7					
	Maximum Power		W	49.5	75	75.6	75	76.8	75.6
	Voltage Setting Accuracy	(*1)	%		-	±	1		
Output	Maximum Line Regulation	ı (*2)	mV	2	0	48	60	96	112
	Maximum Load Regulatior	n (*3)	mV	4	0	96	120	192	224
	Temperature Coefficient					0.029	%/		
	Maximum Ripple & Noise	(*9)	mVp-p	1(00	15	50	240	280
	Voltage Adjustable Range	e(*8)			-	+10%, -10% (A	t 48VDC Input	:)	
	Over Current Protection	(*4)				105 -	150%		
	Over Voltage Protection	(*5)		165 - 240%			125 - 145%		
	Remote Sensing								
unction	Remote ON/OFF Control	(*8)			Pos	sible (SHORT:	ON OPEN: C	DFF)	
	Parallel Operation								
	Series Operation	(*8)				Poss	sible		
	Operating Temperature	(*6)			-20 to +85 (I	Baseplate) Am	bient temperat	ture min=-20	
	Storage Temperature					-40 tc) + 85		
	Operating Humidity		%RH			30 - 95 (No	o dewdrop)		
-	Storage Humidity		%RH			10 - 95 (No	o dewdrop)		
Invironment	Vibration								
	Shock					196.1m/s² (l	In package)		
	Cooling	(*7)				Conductio	on cooled		
solation	Withstand Voltage			Inpu	t-Baseplate : 2 Out	.5kVAC, Input- put-Baseplate	Output : 3kVA : 500VDC for 2	C (20mA) for 1 1min	lmin,
	Isolation Resistance			More	than 100M	at 25 and 70	%RH Output-E	Baseplate500	OVDC
Standards	Safety Standards			Ap	proved by UL6	60950-1, CSA	C22.2 No.609	50-1, EN60950)-1
Standards Safety Standards Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1 Weight (typ) g 100									
<i>Mechanical</i>	Size (W x H x D)				41 x 1	2.7 x 86 (Refe	r to outline dra	awing)	
(*1) At 4	8VDC and maximum output cu	rrent			(*7)	Heatsink has to b	be chosen accord	dina to instruction	manual.
,					(•)			5	


(*2) 36 - 76 VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

Derating Curve

(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

· All specifications are subject to change without notice.

PH75F48

TDK·Lambda

PH75F48 Specifications

		МО	DEL	PH75F48-2	PH75F48-3	PH75F48-5	PH75F48-12	PH75F48-15	PH75F48-24	PH75E48-2		
TIEMS				111701402	1 117 01 40 0				111701 40 24	1 117 01 40 2		
Increased	Voltage Range	(*4)	V	00	70	04	DC36 - 76	0.4	0	<i>г</i>		
Input	Efficiency (typ)	(*1)	%			-		-	83 1.88 24 3.2 76.8 96 192 240 6 0 6 76.8 96 192 240 6 7 192 240 6 7 192 240 6 7 7 192 240 6 7 6 7 7 192 6 7 7 7 10 20 7 11 12 12 13 14 14 15 16 17 17 17 17 17 17	-		
	Current (typ)	(*1)			-							
	Nominal Voltage		VDC	2	-	5		-	1.88 24 3.2 76.8 96 192 240 % 5% 5% 6 96 192 240 % 5% 5% 5% 6 192 240 % 5% 5% 5% 6 192 240 % 5% 5% 5% 6 6 7 7 9 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 <	-		
	Maximum Current		A		-	75		-				
	Maximum Power	(+4)	W	30	45	/5		75	76.8	75.6		
.	Voltage Setting Accuracy		%							440		
Jutput	Maximum Line Regulation	. ,			-		-					
	Maximum Load Regulation	n(*3)	mV		40			120	192	224		
	Temperature Coefficient											
	Maximum Ripple & Noise	, ,	mVp-p						-	280		
	Voltage Adjustable Range			± 2	.0%							
	Over Current Protection	(*4)			105% - 140%							
	Over Voltage Protection	(*5)		165%	165% - 240% 125% - 145%							
Input Dutput Unction U	Remote Sensing	(*8)										
unction	Remote ON/OFF Control	(*8)				Possible (S	HORT: ON	OPEN: OFF)				
	Parallel Operation	(*8)					Possible					
	Series Operation	(*8)					Possible					
	I.O.G. Signal	(*8)				Possible	(Open collec	tor output)	8 1.88 24 3.2 76.8 96 192 240 240 3 240 3 240 3 240 3 240 3 240 3 240 3 240 3 240 3 240 3 3 240 3 3 240 3 3 3 240 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
	Operating Temperature	(*6)			-20 to +85(Baseplate) Ambient temperature min=-20							
	Storage Temperature						-40 to +100					
	Operating Humidity		%RH			30 -	95 (No dewo	drop)				
	Storage Humidity		%RH			10 -	95 (No dewo	drop)				
INTOTITIETIL	Vibration				At no op	perating, 10-	55Hz amplitu	ude (sweep f	or 1min)			
	Vibration				0.825mm	constant (ma	aximum 49.0	m/s²) X, Y,	Z 1h each			
	Shock					196.1	m/s² (In pac	kage)				
	Cooling	(*7)				Co	nduction coc	led				
	MPd - to - 1 Molton			In	put-Basepla	te : 2.5kVAC	, Input-Outp	ut : 3kVAC(2	0mA) for 1m	in		
solation	Withstand Voltage			Output-Baseplate : 500VDC for 1min								
	Isolation Resistance			Мо	re than 100M	A at 25 a	and 70%RH	Output-Base	plate500V	DC		
tandards	Safety Standards				2 3 5 12 15 24 28 15 6.3 5 3.2 2.7 30 45 75 75.6 75 76.8 75.6 20 48 60 96 112 20 48 60 96 112 40 96 120 192 224							
	Weight (typ)		g			•						
Output	Size (W x H x D)		mm	62 x 12.7 x 86 (Refer to outline drawing)								
*1) At 48	8VDC and maximum output cu	rrent.		1	(*7) H	leatsink has to	be chosen aco	cording to instru	uction manual.			

(*2) 36 - 76VDC, constant load.

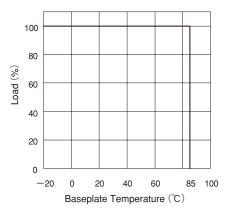
(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.


Derating Curve

(*8) Refer to instruction manual.

(*9) External components are needed for operation.

(*10) At 48VDC Input. (Refer to instruction manual.)

(Refer to basic connection and instruction manual.)

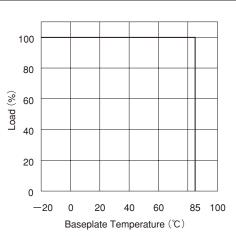
PH100S48

PH100S48 Specifications

TEMS/	UNITS	MO	DEL	PH100S48-3.3	PH100S48-5	PH100S48-12	PH100S48-15	PH100S48-24	PH100S48-2				
	Voltage Range		V			DC36	6 - 76						
Input	Efficiency (typ)	(*1)	%	74	81	83	84	8	5				
-	Current (typ)	(*1)	Α	1.86	2.57	2.53	2.49	2.	47				
	Nominal Voltage		VDC	3.3	5	12	15	24	28				
Ī	Maximum Current		Α	2	0	8.4	6.7	4.2	3.6				
Ī	Maximum Power		W	66	100	100.8	100.5	10	0.8				
1	Voltage Setting Accuracy	(*1)	%			±	1						
Jutput	Maximum Line Regulatior	n (*2)	mV	2	0	48	60	96	112				
1	Maximum Load Regulatior	า(*3)	mV	4	0	96	120	192	224				
•	Temperature Coefficient					0.029	%/						
1	Maximum Ripple & Noise	(*9)	mVp-p	1(00	15	50	240	280				
1	Voltage Adjustable Range(*8) +10%, -10% (At 48VDC Input)												
	Over Current Protection	(*4)				105 - 150%							
	Over Voltage Protection	(*5)		165 - 240%			125 - 145%						
	Remote Sensing					Poss	sible						
unction	Remote ON/OFF Control	(*8)			FF)								
1	Parallel Operation												
:	Series Operation	(*8)				Poss	sible						
	Operating Temperature	(*6)			-20 to +85 (I	Baseplate) Am	bient temperat	ure min=-20					
	Storage Temperature					-40 to	+ 85						
	Operating Humidity		%RH			30 - 95 (No	o dewdrop)						
nvironment	Storage Humidity		%RH			10 - 95 (No	o dewdrop)						
	Vibration				At no opera	ting, 10-55Hz a	amplitude (swe	ep for 1min)					
	VIDIALION				0.825mm con:	stant (maximur	n 49.0m/s²) >	K, Y, Z 1h each					
	Shock					196.1m/s² (l	n package)						
	Cooling	(*7)				Conductio	on cooled						
,	Withstand Valtage			Inpu	it-Baseplate : 2	2.5kVAC, Input	-Output : 3kVA	AC(20mA) for 1	lmin				
solation	Withstand Voltage				Out	put-Baseplate	ut-Baseplate : 500VDC for 1min						
	Isolation Resistance			More	than 100M	at 25 and 70	%RH Output-E	Baseplate500	OVDC				
tandards	Safety Standards			Ap	proved by UL	60950-1, CSA (C22.2 No.609	50-1, EN60950)-1				
lachanical	Weight (typ)		g			15	50						
lechanical	Size (W x H x D)		mm		62 x ²	12.7 x 86 (Refe	r to outline dra	awina)					

(*2) 36 - 76 VDC, constant load.

(*3) No load - full load, constant input voltage.


(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

Derating Curve

· All specifications are subject to change without notice.

Downloaded from Elcodis.com electronic components distributor

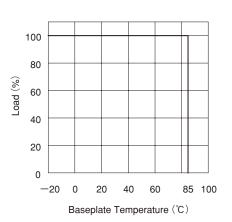
PH150S48

TDK·Lambda

PH150S48 Specifications

UNITS	MO	DEL	PH150S48-3.3	PH150S48-5	PH150S48-12	PH150S48-15	PH150S48-24	PH150S48-2			
Voltage Range		V			D36	- 76					
Efficiency (typ)	(*1)	%	72	82	8	5	8	8			
Current (typ)	(*1)	Α	2.75	3.81	3.0	68	3.	58			
Nominal Voltage		VDC	3.3	5	12	15	24	28			
Maximum Current		Α	3	0	12.5	10	6.3	5.4			
Maximum Power		W	99		150		15	1.2			
Voltage Setting Accuracy	(*1)	%			±	:1					
Maximum Line Regulatior	n(*2)	mV	2	0	48	60	96	112			
Maximum Load Regulation	า(*3)	mV	4	0	96	120	192	224			
Temperature Coefficient					0.02	%/					
Maximum Ripple & Noise	(*9)	mVp-p	1(00	15	50	240	280			
Voltage Adjustable Range(*8) +10%, -10% (At 48VDC Input)											
Over Current Protection	(*4)			105 - 150%							
Over Voltage Protection	(*5)		165 - 240%			125 - 145%					
Remote Sensing					Pos	sible					
Remote ON/OFF Control	(*8)			Pos	sible (SHORT	ON OPEN: C	OFF)				
Parallel Operation											
Series Operation	(*8)				Pos	sible					
Operating Temperature	(*6)			-20 to +85 (Baseplate) Am	bient tempera	ture min=-20				
Storage Temperature					-40 to	o + 85					
Operating Humidity		%RH			30 - 95 (No	o dewdrop)					
Storage Humidity		%RH			10 - 95 (No	o dewdrop)					
Vibration				At no opera	ting, 10-55Hz a	amplitude (swe	ep for 1min)				
VIDIATION				0.825mm con	stant (maximur	m 49.0m/s²) 🛛	K, Y, Z 1h each				
Shock					196.1m/s² (In package)					
Cooling	(*7)				Conductio	on cooled					
Withstand Valtage			Inpu	it-Baseplate : 2	2.5kVAC, Input	-Output : 3kVA	AC (20mA) for	1min			
Withstand Voltage				Out	put-Baseplate	: 500VDC for '	1min				
Isolation Resistance			More	than 100M	at 25 and 70	%RH Output-E	Baseplate500	OVDC			
Safety Standards			Ap	proved by UL	60950-1, CSA	C22.2 No.609	50-1, EN60950)-1			
Weight (typ)		g			15	50					
Size (W x H x D)		mm		72 x 2	12.7 x 86 (Refe	r to outline dra	awina)				
	Voltage Range Efficiency (typ) Current (typ) Nominal Voltage Maximum Current Maximum Power Voltage Setting Accuracy Maximum Line Regulation Maximum Load Regulation Temperature Coefficient Maximum Ripple & Noise Voltage Adjustable Range Over Current Protection Over Voltage Protection Remote Sensing Remote ON/OFF Control Parallel Operation Series Operation Operating Temperature Storage Temperature Operating Humidity Storage Humidity Vibration Shock Cooling Withstand Voltage Isolation Resistance Safety Standards Weight (typ)	UNITS Voltage Range Efficiency (typ) (*1) Current (typ) (*1) Nominal Voltage Maximum Current Maximum Power Voltage Setting Accuracy (*1) Maximum Line Regulation (*2) Maximum Load Regulation (*3) Temperature Coefficient Maximum Ripple & Noise (*9) Voltage Adjustable Range(*8) Over Current Protection (*4) Over Voltage Protection (*5) Remote Sensing Remote ON/OFF Control (*8) Parallel Operation Series Operation (*6) Storage Temperature Operating Humidity Storage Humidity Vibration Shock Cooling (*7) Withstand Voltage Isolation Resistance Safety Standards Weight (typ)	UNITSVoltage RangeVEfficiency (typ)(*1)Qurrent (typ)(*1)ANominal VoltageVDCMaximum CurrentAMaximum PowerWVoltage Setting Accuracy (*1)%Maximum Line Regulation (*2)mVMaximum Load Regulation (*3)mVTemperature Coefficientmaximum Ripple & Noise (*9)Maximum Ripple & Noise (*9)mVp-pVoltage Adjustable Range(*8)Over Current Protection (*4)Over Voltage Protection (*5)Remote ON/OFF Control (*8)Parallel OperationSeries Operation (*8)Operating Temperature (*6)Storage TemperatureOperating Humidity%RHStorage Humidity%RHVibrationShockCooling (*7)Withstand VoltageIsolation ResistanceSafety StandardsWeight (typ)g	UNITSPrint 30348-3.3Voltage RangeVEfficiency (typ)(*1)A2.75Nominal VoltageVDCMaximum CurrentAA3Maximum PowerW99Voltage Setting Accuracy (*1)%Maximum Line Regulation (*2)mVMaximum Load Regulation (*3)mVMaximum Load Regulation (*3)mVMaximum Ripple & Noise (*9)mVp-p10Voltage Adjustable Range(*8)Over Current Protection(*4)Over Voltage Protection(*5)Remote ON/OFF Control(*8)Parallel OperationSeries OperationSeries Operation(*8)Operating TemperatureOperating TemperatureOperating Humidity%RHStorage Humidity%RHVibrationInpuShockInpuIsolation ResistanceMoreSafety StandardsApWeight (typ)g	UNITS Principare Principar Principar <td>UNITS PH100340-3.3 PH100340-3 PH100340-3 PH10040-12 Voltage Range V D36 Efficiency (typ) (*1) A 2.75 3.81 3.0 Nominal Voltage VDC 3.3 5 12 Maximum Current A 30 12.5 Maximum Power W 99 150 Voltage Setting Accuracy (*1) % ± Maximum Load Regulation (*2) mV 20 48 Maximum Load Regulation (*2) mV 20 48 Maximum Ripple & Noise (*9) mVp-p 100 18 Voltage Adjustable Range(*8) +10%, -10% (A 0.02 Vorer Current Protection (*4) 105 - 240% 105 - 002 Remote Sensing Possible (SHORT 105 - 240% 105 - 240% Remote ON/OFF Control (*8) Possible (SHORT 105 - 240 % 105 - 240 % Series Operation (*8) Possible (SHORT 10 - 95 (M Storage Temperature -20 to +85 (Baseplate) Am 50 Ag Storage Temperature -40</td> <td>UNITS Units D36 + 76 Efficiency (typ) (*1) % 72 82 85 Current (typ) (*1) A 2.75 3.81 3.68 Nominal Voltage VDC 3.3 5 12 15 Maximum Current A 30 12.5 10 Maximum Power W 99 150 Voltage Setting Accuracy (*1) % ±1 Maximum Line Regulation (*2) mV 20 48 60 Maximum Line Regulation (*2) mV 20 48 60 Maximum Ripple & Noise (*9) mV 40 96 120 Temperature Coefficient 0.02%/ Maximum Ripple & Noise (*9) +10%, -10% (At 48VDC Input Over Voltage Protection (*4) 105 - 150% 125 - 145% Remote ON/OFF Control (*8) Possible Remote ON/OFF Control (*8) Possible Possible Possible 0 Operating Temperature -20 to +85 (Baseplate) Ambient tempera Storage Temperature -40 to + 85 0</td> <td>UNITS Philosoperation Philosoperation</td>	UNITS PH100340-3.3 PH100340-3 PH100340-3 PH10040-12 Voltage Range V D36 Efficiency (typ) (*1) A 2.75 3.81 3.0 Nominal Voltage VDC 3.3 5 12 Maximum Current A 30 12.5 Maximum Power W 99 150 Voltage Setting Accuracy (*1) % ± Maximum Load Regulation (*2) mV 20 48 Maximum Load Regulation (*2) mV 20 48 Maximum Ripple & Noise (*9) mVp-p 100 18 Voltage Adjustable Range(*8) +10%, -10% (A 0.02 Vorer Current Protection (*4) 105 - 240% 105 - 002 Remote Sensing Possible (SHORT 105 - 240% 105 - 240% Remote ON/OFF Control (*8) Possible (SHORT 105 - 240 % 105 - 240 % Series Operation (*8) Possible (SHORT 10 - 95 (M Storage Temperature -20 to +85 (Baseplate) Am 50 Ag Storage Temperature -40	UNITS Units D36 + 76 Efficiency (typ) (*1) % 72 82 85 Current (typ) (*1) A 2.75 3.81 3.68 Nominal Voltage VDC 3.3 5 12 15 Maximum Current A 30 12.5 10 Maximum Power W 99 150 Voltage Setting Accuracy (*1) % ±1 Maximum Line Regulation (*2) mV 20 48 60 Maximum Line Regulation (*2) mV 20 48 60 Maximum Ripple & Noise (*9) mV 40 96 120 Temperature Coefficient 0.02%/ Maximum Ripple & Noise (*9) +10%, -10% (At 48VDC Input Over Voltage Protection (*4) 105 - 150% 125 - 145% Remote ON/OFF Control (*8) Possible Remote ON/OFF Control (*8) Possible Possible Possible 0 Operating Temperature -20 to +85 (Baseplate) Ambient tempera Storage Temperature -40 to + 85 0	UNITS Philosoperation Philosoperation			

(*2) 36 - 76 VDC, constant Load.


PH

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

Derating Curve

(*8) Refer to instruction manual.

(*9) External components are needed for operation.

(Refer to basic connection and Instruction manual.)

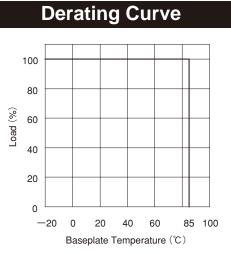
PH150F48

TDK·Lambda

PH150F48 Specifications

ITEMS	/UNITS	MO	DEL	PH150F48-2	PH150F48-3	PH150F48-5	PH150F48-12	PH150F48-15	PH150F48-24	PH150F48-
	Voltage Range		V				DC36 - 76			
Input	Efficiency (typ)	(*1)	%	68	73	82	86	87	89	90
	Current (typ)	(*1)	Α	1.84	2.57	3.81	3.55	3.59	3.54	3.5
	Nominal Voltage		VDC	2	3	5	12	15	24	28
	Maximum Current		А		30		12.5	10	6.3	5.4
	Maximum Power		W	60	90		150		15	1.2
	Voltage Setting Accuracy	(*1)	%				±1			
Dutput	Maximum Line Regulation	n(*2)	mV		20		48	60	96	112
	Maximum Load Regulatior	า(*3)	mV		40		96	120	192	224
	Temperature Coefficient						0.02%/			
	Maximum Power W 60 90 150 151.2 Voltage Setting Accuracy (*1) % ± 1 100 110 <td>280</td>							280		
Voltage Adjustable Range(*10) ± 20% +20%, -60% Over Current Protection (*4) 105% - 140% Over Voltage Protection (*5) 165% - 240% 125% - 145%										
	Over Current Protection	(*4)					105% - 140%	0 0		
	Over Voltage Protection	(*5)		165%	- 240%			125% - 145%	0	
	Remote Sensing	(*8)					Possible		89 9 3.54 3 24 2 6.3 5 151.2 96 1' 192 2: 240 2: 240 2: 5%	
unction	Remote ON/OFF Control	(*8)				Possible (S	HORT: ON	OPEN: OFF)		
	Parallel Operation	(*8)			* * *					
	Series Operation	(*8)					Possible)	
	I.O.G. Signal	(*8)				Possible	(Open collec	tor output)		
	Operating Temperature	(*6)			- 20 to 8	5 (Baseplate) Ambient te	mperature N	1IN = -20	
	Storage Temperature						-40 to + 85			
	Operating Humidity		%RH			30 -	95 (No dewo	drop)		
vironmont	Storage Humidity		%RH			10 -	95 (No dewo	drop)		
nvironment	Vibration				At	no operating	, 10-55Hz (s	sweep for 1m	nin)	
	Vibration			Am	plitude 0.82	5mm consta	nt (maximun	n 49.0m/s²)	X, Y, Z 1h e	ach
	Shock					196.1	m/s² (In pac	kage)		
	Cooling	(*7)				Co	nduction coo	oled		
	Withstand Valtage			In	put-Basepla	te : 2.5kVAC	, Input-Outp	ut : 3kVAC(2	20mA) for 1m	iin
solation	Withstand Voltage					Output-Base	eplate : 500\	/DC for 1min		
	Isolation Resistance			Мо	re than 100M	vl at 25 a	and 70%RH	Output-Base	plate500V	DC
tandards	Safety Standards				Approved by	UL60950-1,	CSA C22.2	No.60950-1	, EN60950-	
ochonia	Weight (typ)		g				180			
echanical	Size (W x H x D)		mm		8	3 x 12.7 x 86	(Refer to ou	utline drawing	g)	
*1) At 4	8VDC and maximum output cu	rrent.				(*7) Heatsink	has to be chos	sen according t	o instruction m	anual.
	•							0		

(*2) 36 - 76 VDC, constant load.


(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

· All specifications are subject to change without notice.

Downloaded from Elcodis.com electronic components distributor

PH300S48

TDK·Lambda

PH300S48 Specifications

TEMS	UNITS	MO	DEL	PH300S48-3.3	PH300S48-5	PH300S48-12	PH300S48-15	PH300S48-24	PH300S48-28	PH300S48-			
	Voltage Range		V				DC36 - 76						
Input	Efficiency (typ)	(*1)	%	80	84			88					
	Current (typ)	(*1)	Α	4.30	6.20		7.10		7.	16			
	Nominal Voltage		V	3.3	5	12	15	24	28	48			
	Maximum Current		Α	5	0	25	20	12.5	10.8	6.3			
	Maximum Power		W	165	250		300		30	2.4			
	Voltage Setting Accuracy	(*1)	%				±1						
	Maximum Line Regulatior	n (*2)	mV	2	0	48	60	96	112	192			
Dutput	Maximum Load Regulatior	า(*3)	mV	4	0	96	120	192	224	384			
	Temperature Coefficient						0.02%/						
	Maximum Ripple & Noise (0~+100)(*9)	mVp-p	1(00	15	50	240	280	480			
	Maximum Ripple & Noise (- 20~0) (*9)	mVp-p	15	50	22	25	360	420	720			
	Voltage Adjustable Range	(*10)	%	+20	,-10		±	10		+20,-10			
	Over Current Protection	(*4)					105 - 150%	450/					
	Over Voltage Protection	(*5)		140 - 170%			125 -	145%					
	Remote Sensing	(*8)					Possible						
unction	Remote ON/OFF Control	(*8)				Possible (S	HORT: ON	OPEN: OFF)					
	Parallel Operation	(*11)				Applica	able with CS	signal					
	Series Operation	(*8)					Possible						
	I.O.G. Signal	(*8)				Built-in (C	Open collect	or output)					
	Operating Temperature	(*6)			-20 to +1	00(Baseplat	e), Ambient	temperature	e min -20				
	Operating remperature	(0)		-20 to +10	00 : 100%		-20 to +9	0:100%,+	100 : 83%				
	Storage Temperature						-40 to + 100						
	Operating Humidity		%RH			30 -	95 (No dewo	drop)					
nvironment	Storage Humidity		%RH			10 -	95 (No dewo	drop)					
	Vibration				At	no operating	, 10-55Hz (s	weep for 1m	nin)				
	VIDIATION			Am	plitude 0.82	5mm constar	nt (maximum	49.0m/s²)	X, Y, Z 1 h e	ach			
	Shock						196.1m/s ²						
	Cooling	(*7)				Со	nduction coc	led					
	Withstand Voltage		Input-Baseplate : 1.5kVAC, Input-Output : 1.5kVAC(20mA) for 1min										
solation	Willisland Vollage				Output-Baseplate : 500VDC for 1min								
	Isolation Resistance			Мо	re than 100	∕l at 25 a	and 70%RH	Output-Base	plate500V	DC			
tandards	Safety Standards				Approved by	UL60950-1,	CSA C22.2	No.60950-1	, EN60950-	1			
lechanical	Weight (typ)		g				200						
Size (W x H x D) mm 83 x 12.7 x 86 (Refer to outline drawing)													

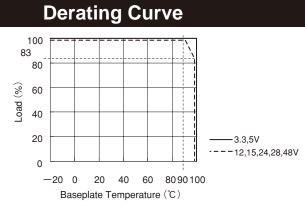
(*1) At 48VDC and maximum output current. (Baseplate temprature = +25)

(*2) 36 - 76VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset with CNT signal.


(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

- (*9) External components are needed for operation. (Refer to basic connection and instruction manual.)
 (*10) At 48VDC Input. (Refer to instruction manual.)
- (*11) External circuit is needed for operation.

(Refer to instruction manual.)

(*8) Refer to instruction manual.

B-310 Downloaded from <u>Elcodis.com</u> electronic components distributor

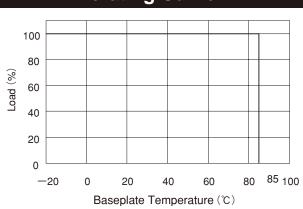
PH300F48

TDK·Lambda

PH300F48 Specifications

ITEMS	/UNITS	MO	DEL	PH300F48-2	PH300F48-3	PH300F48-5	PH300F48-12	PH300F48-15	PH300F48-24	PH300F48-				
	Voltage Range		V				DC36 - 76							
Input	Efficiency (typ)	(*1)	%	68	73	82	85	86	89	90				
	Current (typ)	(*1)	А	3.68	5.14	7.62	7.35	7.26	7.16	7				
	Nominal Voltage		VDC	2	3	5	12	15	24	28				
	Maximum Current		Α		60		25	20	12.6	10.8				
	Maximum Power		W	120	180		300		30	2.4				
	Voltage Setting Accuracy	(*1)	%				±1							
Dutput	Maximum Line Regulation	n (*2)	mV		20		48	60	96	112				
	Maximum Load Regulatior	n(*3)	mV		40		96	120	7.16 24 12.6 30 96 192 240 6 % 7) MIN=20	224				
	Temperature Coefficient						0.02%/							
	Maximum Ripple & Noise	(*9)	mVp-p		100		1	50	302.4 96 112 192 224 240 280 60% 145% DFF)					
	Voltage Adjustable Range	(*10)		± 2	20%	+20%, -60% 105% - 140%								
	Over Current Protection	(*4)					105% - 140%	6						
	Over Voltage Protection	(*5)		165%	- 240%			125% - 145%	, 0					
	Remote Sensing	(*8)					Possible							
unction	Remote ON/OFF Control	(*8)				Possible (S	HORT: ON	OPEN: OFF)	7.16 7 24 2 12.6 10 302.4 302.4 96 11 192 22 240 28 % 6 % 7 MIN=20 7 min) X, Y, Z 1 h each (20mA) for 1min 7 r 1min 5 seplate500VDC -1, EN60950-1 ing) 1					
	Parallel Operation	(*8)					Possible							
	Series Operation	(*8)					Possible							
	I.O.G. Signal	(*8)				Possible	(Open collec	tor output)						
	Operating Temperature	(*6)			-20 to 85	(Baseplate)	Ambient te	mperature M	1IN=20					
	Storage Temperature						-40 to 85							
	Operating Humidity		%RH			30 -	95 (No dewo	drop)						
nvironment	Storage Humidity		%RH			10 -	95 (No dewo	drop)						
wironmeni	Vibration				At	no operating	g, 10-55Hz (s	sweep for 1m	nin)					
	VIDIATION			Am	plitude 0.82	5mm constai	nt (maximum	1 49.0m/s²)	X, Y, Z 1 h e	ach				
	Shock					196.1	m/s² (In pac	kage)						
	Cooling	(*7)				Co	nduction coo	oled						
	Withstand Valtage		Input-Baseplate : 2.5kVAC, Input-Output : 3kVAC(20mA) for 1min											
solation	Withstand Voltage				Out	out-Baseplat	e : 500VDC	(100mA) for	1min					
	Isolation Resistance			Мо	re than 100M	vl at 25 a	and 70%RH	Output-Base	plate500V	DC				
tandards	Safety Standards			Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1										
ochonical	Weight (typ)		g				250							
Mechanical Size (W x H x D) mm 146 x 12.7 x 86 (Refer to outline drawing)														
*1) At 4	8VDC and maximum output cu	rrent.				(*7) Heatsink	has to be chos	sen according t	o instruction m	anual.				
								°						

(*2) 36 - 76VDC, constant load.


(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

Derating Curve

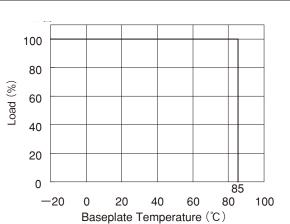
(*8) Refer to instruction manual.

(*9) External capacitor is required. (Refer to instruction manual.)

(*10) At 48VDC input. (Refer to instruction manual.)

PH50S110

PH50S110 Specifications


ITEMS	/UNITS MO	DEL	PH50S110-5	PH50S110-12	PH50S110-15	PH50S110-24	PH50S110-28	
	Voltage Range	V		1	DC82 - 185	L	1	
Input	Efficiency (typ) (*1)	%	80	82	83	8	4	
	Current (typ) (*1)	Α	0.57	0.	56	0.	55	
	Nominal Voltage	VDC	5	12	15	24	28	
	Maximum Current	Α	10	4.2	3.4	2.1	1.8	
	Maximum Power	W	50	50.4	51	50).4	
	Voltage Setting Accuracy (*1)	%			±1%			
Output	Maximum Line Regulation (*2)	mV	20	48	60	96	112	
	Maximum Load Regulation(*3)	mV	40	96	120	192	224	
	Temperature Coefficient				0.02%/			
	Maximum Ripple & Noise (*9)	mVp-p	100	15	50	240	280	
	Voltage Adjustable Range(*8)	-10% (At 110VDC	-10% (At 110VDC Input)					
	Over Current Protection (*4)				105% - 150%			
	Over Voltage Protection (*5)				125% - 145%			
Function	Remote Sensing							
FUNCTION	Remote ON/OFF Control (*8)			Possible	(SHORT: ON OF	PEN: OFF)		
	Parallel Operation							
	Series Operation (*8)				Possible			
	Operating Temperature (*6)		-2	20 to +85 (Basepla	ate) Ambient tem	perature min=-20		
	Storage Temperature				-40 to +85			
	Operating Humidity	%RH		30	0 - 95 (No dewdro	p)		
Environment	Storage Humidity	%RH		1() - 95 (No dewdro	p)		
LINIOIIIICII	Vibration			At no operat	ing, 10-55Hz (swe	eep for 1min)		
			Amplitud	de 0.825mm cons	tant (maximum 4	9.0m/s²) X, Y, Z	1 h each	
	Shock			19	6.1m/s² (In packa	ge)		
	Cooling (*7)			(Conduction coole	d		
	Withstand Voltage		Input-E	Baseplate : 2.5kV	AC, Input-Output	: 3kVAC(20mA) f	or 1min	
Isolation	withstand voltage			Output-Ba	aseplate : 500VD	C for 1min		
Isolation Resistance More than 100M at 25 and 70%RH Output-Baseplate500VDC								
Standards	Safety Standards		Appro	oved by UL60950	-1, CSA C22.2 N	o.60950-1, EN60	950-1	
Mechanical	Weight (typ)	g			100			
WEUNDING	Size (W x H x D)	mm		41 x 12.7 x	86 (Refer to outlin	ne drawing)		
. ,	10VDC and maximum output curren 185VDC, constant load.	t.	(*7) Heatsink has to be chosen according to instruction manual. (*8) Refer to instruction manual.					

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

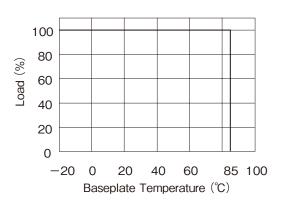
Derating Curve

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

PH75S110

PH75S110 Specifications

/UNITS N	ODEL	PH75S110-5	PH75S110-12	PH75S110-15	PH75S110-24	PH75S110-28			
Voltage Range	V		1	DC82 - 185					
Efficiency (typ) ('	1) %	81	83	84	8	5			
Current (typ) ('	1) A	0.84	0.83	0.81	0.82	0.81			
Nominal Voltage	VDC	5	12	15	24	28			
Maximum Current	A	15	6.3	5	3.2	2.7			
Maximum Power	W	75	75.6	75	76.8	75.6			
Voltage Setting Accuracy (*	1) %			±1					
Maximum Line Regulation (*	2) mV	20	48	60	96	112			
Maximum Load Regulation(*	3) mV	40	96	120	192	224			
Temperature Coefficient				0.02%/					
Maximum Ripple & Noise (*	9) mVp-p	100	15	50	240	280			
Voltage Adjustable Range(*8) +10%, -10% (At 110VDC Input) Over Current Protection (*4) 105% - 150%									
Over Current Protection (*	(4)		105% - 150%						
Over Voltage Protection (*	5)			125% - 145%					
Remote Sensing									
Remote ON/OFF Control (*	8)		Possible	(SHORT: ON OF	PEN: OFF)				
Parallel Operation									
Series Operation (*	8)			Possible					
Operating Temperature (*	6)	-	-20 to +85 (Basep	late) Ambient ten	nperature min=-20	0			
Storage Temperature				-40 to +85					
Operating Humidity	%RF	l	30) - 95 (No dewdro	p)				
Storage Humidity	%RF	l	10) - 95 (No dewdro	p)				
Vibration			At no operat	ing, 10-55Hz (swe	eep for 1min)				
VIDIATION		Amplitu	de 0.825mm cons	tant (maximum 4	9.0m/s²) X, Y, Z	1h each			
Shock			19	6.1m/s² (In packa	ge)				
Cooling (*	7)		(Conduction coole	d				
Withstand Voltage		Input-E	Baseplate : 2.5kV/	AC, Input-Output	: 3kVAC(20mA) fe	or 1min			
Withstand Voltage			Output-Ba	aseplate : 500VD	C for 1min				
Isolation Resistance		More the	an 100M at 25	and 70%RH Ou	tput-Baseplate	500VDC			
Safety Standards		Appro	oved by UL60950	-1, CSA C22.2 N	o.60950-1, EN60	950-1			
Weight (typ)	g			100					
Size (W x H x D)	mm		41 x 12.7 x	86 (Refer to outlin	ne drawing)				
	VUNITS Voltage Range Efficiency (typ) (* Current (typ) (* Nominal Voltage Maximum Current Maximum Power Voltage Setting Accuracy (* Maximum Line Regulation (* Maximum Load Regulation (* Maximum Load Regulation (* Maximum Ripple & Noise (* Voltage Adjustable Range(* Over Current Protection (* Remote Sensing Remote ON/OFF Control (* Parallel Operation Series Operation (* Operating Temperature (* Storage Temperature Operating Humidity Storage Humidity Vibration Shock Cooling (* Withstand Voltage Isolation Resistance Safety Standards Weight (typ)	Voltage RangeVEfficiency (typ)(*1)%Current (typ)(*1)ANominal VoltageVDCMaximum CurrentAMaximum CurrentAMaximum PowerWVoltage Setting Accuracy (*1)%Maximum Line Regulation (*2)mVMaximum Load Regulation (*3)mVTemperature Coefficientmaximum Ripple & Noise (*9)Maximum Ripple & Noise (*9)mVp-pVoltage Adjustable Range(*8)Over Current Protection (*4)Over Voltage Protection (*5)Remote SensingRemote SensingRemote ON/OFF Control (*8)Parallel OperationSeries Operation (*8)Operating Temperature(*6)Storage TemperatureGoperating HumidityVibrationShockCooling (*7)Withstand VoltageWithstand VoltageIsolation ResistanceSafety StandardsWeight (typ)gg	VUNITSPH7/33110-3Voltage RangeVEfficiency (typ)(*1)%Current (typ)(*1)A0.840.84Nominal VoltageVDCMaximum CurrentA15Maximum PowerW75Voltage Setting Accuracy (*1)Voltage Setting Accuracy (*1)%Maximum Line Regulation (*2)mVMaximum Load Regulation (*3)mVMaximum Ripple & Noise (*9)mVp-p100Voltage Adjustable Range(*8)Over Current Protection (*4)Over Voltage Protection (*4)Over Voltage Protection (*5)Remote ON/OFF Control (*8)Parallel OperationSeries Operation (*6)Storage TemperatureOperating TemperatureOperating TemperatureOperating Humidity%RHStorage HumidityVibrationAmplituShockInput-FIsolation ResistanceMore thSafety StandardsApprWeight (typ)g	VUNITS PH733110-3 PH733110-12 Voltage Range V Efficiency (typ) (*1) % 81 83 Current (typ) (*1) A 0.84 0.83 Nominal Voltage VDC 5 12 Maximum Current A 15 6.3 Maximum Power W 75 75.6 Voltage Setting Accuracy (*1) % Maximum Line Regulation (*2) mV 20 48 Maximum Load Regulation (*3) mV 40 96 Temperature Coefficient Maximum Ripple & Noise (*9) mVp-p 100 15 Voltage Adjustable Range(*8) +10%, Over Voltage Protection (*4) Over Voltage Protection (*5) Remote Sensing Remote ON/OFF Control (*8) Possible Parallel Operation -20 to +85 (Basep	VINITS PH73311013 PH73311013 PH73311013 Voltage Range V DC82 - 185 Efficiency (typ) (*1) A 0.81 83 84 Current (typ) (*1) A 0.84 0.83 0.81 Nominal Voltage VDC 5 12 15 Maximum Current A 15 6.3 5 Maximum Power W 75 75.6 75 Voltage Setting Accuracy (*1) % ±1 Maximum Load Regulation(*2) mV 20 48 60 Maximum Load Regulation(*3) mV 40 96 120 100 Temperature Coefficient 0.02%/ Maximum Ripple & Noise (*9) mVp-p 100 150 Voltage Adjustable Range(*8) +10%, -10% (At 110VDC 0ver Curent Protection (*4) 105% - 150% Over Voltage Protection (*5) 125% - 145% 125% - 145% Remote ON/OFF Control (*8) Possible (SHORT: ON OF Parallel Operation - 20 to +85 (Baseplate) Ambient tem	VUNTS PHY3ST10-5 PHY3ST10-5 PHY3ST10-12 PHY3ST10-13 P			


(*2) 88 - 185VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

Derating Curve

(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

· All specifications are subject to change without notice.

PH75F110

TDK·Lambda

PH75F110 Specifications

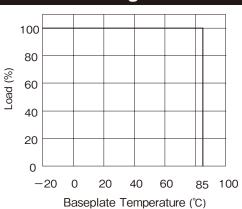
TEMS	/UNITS	МО	DEL	PH75F110-2	PH75F110-3	PH75F110-5	PH75F110-12	PH75F110-15	PH75F110-24	PH75F110-		
	Voltage Range		V				DC82 - 185					
Input	Efficiency (typ)	(*1)	%	66	70	81	83	84	8	5		
	Current (typ)	(*1)	Α	0.41	0.58	0.84	0.83	0.81	0.82	0.81		
	Nominal Voltage		VDC	2	3	5	12	15	24	28		
	Maximum Current		Α		15		6.3	5	3.2	2.7		
	Maximum Power		W	30	45	75	75.6	75	76.8	75.6		
	Voltage Setting Accuracy	(*1)	%				±1					
Dutput	Maximum Line Regulation	(*2)	mV		20		48	60	96	112		
	Maximum Load Regulation	(*3)	mV		40		96	120	192	224		
	Temperature Coefficient						0.02%/		24 3.2 76.8 96 192 240 6 % 			
	Maximum Ripple & Noise	(*9)	mVp-p		100		15	50	240	280		
Voltage Adjustable Range (*10) ± 20% +20%, -60% Over Current Protection (*4) 105% - 140% Over Voltage Protection (*5) 165% - 240% 125% - 145% Remote Sensing (*8) Possible												
	Over Current Protection	(*4)					105% - 140%	, D				
	Over Voltage Protection	(*5)		165% ·	- 240%			125% - 145%)			
	Remote Sensing	(*8)					Possible					
	Remote ON/OFF Control	(*8)				OPEN: OFF)	85 0.82 0.1 24 2 3.2 2. 76.8 75 96 11 192 22 240 26 60% 60% 45% 60% 96 11 192 22 240 28 60% 60% 45% 60% 96 11 92 240 28 60% 60% 445% 60% 97 74.0 74.0 98 74.0 74.0 99 74.0 74.0 99 74.0 74.0 99 74.0 74.0 99 74.0 74.0 99 74.0 74.0 90 74.0 74.0 91 74.0 74.0 92 74.7 74.0 93 74.7 74.0 94.0 74.0 74.0 95.0 7					
unction	Parallel Operation	(*8)					Possible					
	Series Operation	(*8)					Possible					
	I.O.G. Signal	(*8)				Possible ((Open collec	tor output)	24 3.2 76.8 96 192 240 min=-20 in) X, Y, Z 1h ea 0mA) for 1m plate500V			
	AUX-BIAS Power Supply					7-10VDC	Maximum Ic	ad 10mA				
	Operating Temperature	(*6)			-20 to +	85 (Baseplat	e) Ambient t	emperature	min=-20			
	Storage Temperature						-40 to +85					
	Operating Humidity		%RH			30 -	95 (No dewo	drop)				
	Storage Humidity		%RH			10 -	95 (No dewo	drop)				
vironment	Vibration				At	no operating	, 10-55Hz (s	sweep for 1m	iin)			
	Vibration			Am	plitude 0.82	5mm consta	nt (maximum	n 49.0m/s²)	X, Y, Z 1h ea	ach		
	Shock					196.1	m/s² (In pac	kage)				
	Cooling	(*7)				Со	nduction coc	led				
	Withstand Valtage			In	put-Basepla	te : 2.5kVAC	, Input-Outp	ut : 3kVAC(2	0mA) for 1m	in		
solation	Withstand Voltage			Output-Baseplate : 500VDC for 1min								
	Isolation Resistance			Мо	re than 100M	/l at 25 a	and 70%RH	Output-Base	plate500V	DC		
andards	Safety Standards			Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1								
o o ho o i o - l	Weight (typ)		g				150					
Mechanical Size (W x H x D) mm 62 x 12.7 x 86 (Refer to outline drawing)												

PH

(*2) 88 - 185VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.


(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*10) At 110VDC Input. (Refer to instruction manual.)

(*5) Inverter shutdown method, manual reset. (*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

Derating Curve

PH150S110

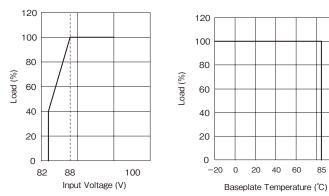
TDK·Lambda

PH150S110 Specifications

ITEMS	/UNITS M	IODE	L PH150S110-5	PH150S110-12	PH150S110-15	PH150S110-24	PH150S110-28			
	Voltage Range (*	6) \	/		DC82 - 185		1			
Input	Efficiency (typ) (*	ʻ1) %	6 82	8	5	8	8			
	Current (typ) (*	'1) A	1.66	1.0	60	000 OPEN: OFF) t temperature min=-20	56			
	Nominal Voltage	VE	DC 5	12	15	24	28			
	Maximum Current	A	30	30 12.5 10 6.3 5.4						
	Maximum Power	V	V	150		15	1.2			
	Voltage Setting Accuracy (*	°1) 9	6		±1					
Output	Maximum Line Regulation (*	'2) m	V 20	48	60	96	112			
	Maximum Load Regulation (*	'3) m	V 40	96	120	192	224			
	Temperature Coefficient			-	0.02%/					
	Maximum Ripple & Noise (*	' 9) mV	p-p 100	150 240 280						
	Voltage Adjustable Range(*	8)		+10%,	-10% (At 110VDC	CInput)				
	Over Current Protection (*	*4)			105% - 150%					
	Over Voltage Protection (*	5)			125% - 145%					
F	Remote Sensing				Possible					
Function	Remote ON/OFF Control (*	8)		Possible	(SHORT: ON OP	'EN: OFF)				
	Parallel Operation									
	Series Operation (*	8)			Possible					
	Operating Temperature (*	6)		20 to +85 (Basep	olate) Ambient terr	perature min=-20	C			
	Storage Temperature				-40 to +85					
	Operating Humidity	%F	RH	30) - 95 (No dewdro	p)				
Environment	Storage Humidity	%F	RH	10) - 95 (No dewdro	p)				
Environment	Vibration			At no operat	ing, 10-55Hz (swe	eep for 1min)				
	Vibration		Amplitud	de 0.825mm cons	tant (maximum 49	9.0m/s²) X, Y, Z	1 h each			
	Shock			19	6.1m/s² (In packa	ge)				
	Cooling (*	7)		(Conduction cooled	b				
	Mither and Malter an		Input-E	Baseplate : 2.5kV/	AC, Input-Output	: 3kVAC(20mA) f	or 1min			
Isolation	Withstand Voltage			Output-Ba	aseplate : 500VD	C for 1min				
	Isolation Resistance		More the	an 100M at 25	and 70%RH Ou	tput-Baseplate	500VDC			
Standards	Safety Standards		Appro	oved by UL60950	-1, CSA C22.2 No	o.60950-1, EN60	950-1			
	Weight (typ)	Q	3		150					
Mechanical	Size (W x H x D)	m	m	72 x 12.7 x	86 (Refer to outlin	ne drawing)				
	10VDC and maximum output curr 185VDC, constant load.	ent.			Refer to derating curv .oad(%) is percent of		rrent.			

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.


(*5) Inverter shutdown method, manual reset.

(*7) Heatsink has to be chosen according to instruction manual.

(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

85 100

Derating Curve

· All specifications are subject to change without notice.

PH150F110

TDK·Lambda

PH150F110 Specifications

ITEMS/	UNITS	MO	DEL	PH150F110-2	PH150F110-3	PH150F110-5	PH150F110-12	PH150F110-15	PH150F110-24	PH150F110
	Voltage Range	(*6)	V				DC82 - 185	I		
Input	Efficiency (typ)	(*1)	%	68	73	83	86	86 87 8 1.59 1.57 1. 12 15 2 12.5 10 6 150 1 ±1 48 60 5 96 120 1 02%/ 1 150 2 +20%, -60% 2 +20%, -60% % - 140% 125% - 145% ossible 0 RT: ON OPEN: OFF) ossible 0 0 ossible 0 0 0 winum load 10mA Ambient temperature min=- 0 0	89	90
	Current (typ)	(*1)	Α	0.80	1.12	1.64	1.59	1.57	1.54	1.53
	Nominal Voltage		VDC	2	3	5	12	15	24	28
	Maximum Current		Α		30		12.5	10	6.3	5.4
	Maximum Power		W	60	90		150		15	1.2
	Voltage Setting Accuracy	· (*1)	%				±1			
Dutput	Maximum Line Regulation	(*2)	mV		20		48	60	96	112
	Maximum Load Regulatior	า (*3)	mV		40		96	120	192	224
	Temperature Coefficient						0.02%/			
	Maximum Ripple & Noise	e (*9)	mVp-p		100		15	50	240	280
Over Current Protection (*4) 105% - 140%										
	Over Voltage Protection	(*5)		165%	- 240%			125% - 145%	/ 0	
	Remote Sensing	(*8)					Possible			
	Remote ON/OFF Control	(*8)				Possible (S	HORT: ON	OPEN: OFF))	
Function Parallel Operation (*8) Possible										
	Series Operation	(*8)					Possible Possible			
	I.O.G. Signal	(*8)				Possible (Open collec	tor output)		
	AUX-BIAS Power Supply	,				7-10VDC	Maximum Ic	ad 10mA		
	Operating Temperature	(*6)			-20 to +	85 (Baseplat	e) Ambient t	emperature	min=-20	
	Storage Temperature						-40 to +85			
	Operating Humidity		%RH			30 -	95 (No dewo	drop)		
	Storage Humidity		%RH			10 -	95 (No dewo	drop)		
vironment					At	no operating	j, 10-55Hz (s	weep for 1m	nin)	
	Vibration			Am	plitude 0.82	5mm consta	nt (maximum	n 49.0m/s²)	X, Y, Z 1h ea	ach
	Shock					196.1	m/s² (In pac	kage)		
	Cooling	(*7)				Со	nduction coc	led		
				In	put-Basepla	te : 2.5kVAC	, Input-Outp	ut : 3kVAC(2	20mA) for 1m	iin
olation	Withstand Voltage					Output-Base	eplate : 500V	/DC for 1min	I	
	Isolation Resistance			Mor	e than 100M	1 at 25 a	and 70%RH	Output-Bas	eplate500\	/DC
andards	Safety Standards				Approved by	UL60950-1,	CSA C22.2	No.60950-1	, EN60950-1	
	Weight (typ)		g				180			
echanical	Size (W x H x D)		mm		8	3 x 12.7 x 86	(Refer to ou	utline drawin	g)	
*1) At 1	10VDC and maximum output c	urrent	t.		(*6)	Ratings - Refe	r to derating cu	irve below.		
,	185VDC, constant load.				(-)		(%) is percent		utput current.	

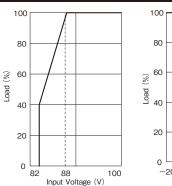
PH

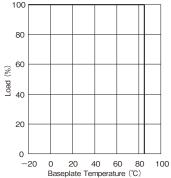
(*2) 88 - 185VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.


(*7) Heatsink has to be chosen according to instruction manual.


(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*10) At 110VDC Input.(Refer to instruction manual.)

Derating Curve

PH300F110

TDK·Lambda

PH300F110 Specifications

TEMS/	UNITS	MO	DEL	PH300F110-2	PH300F110-3	PH300F110-5	PH300F110-12	PH300F110-15	PH300F110-24	PH300F110-2	
	Voltage Range	(*6)	V				DC82 - 185	1	I		
Input	Efficiency (typ)	(*1)	%	68	73	83	86	87	89	90	
	Current (typ)	(*1)	Α	1.60	2.24	3.29	3.17	3.13	3.09	3.05	
	Nominal Voltage		VDC	2	3	5	12	15	24	28	
	Maximum Current		Α		60		25	20	12.6	10.8	
	Maximum Power		W	120	180		300		30	2.4	
	Voltage Setting Accuracy	(*1)	%				±1				
Dutput	Maximum Line Regulation	(*2)	mV		20		48	60	96	112	
	Maximum Load Regulation	(*3)	mV		40		96	120	192	224	
	Temperature Coefficient ((%)					0.02%/				
	Maximum Ripple & Noise	(*9)	mVp-p		100		1:	50	240	280	
Temperature Coefficient (%) 0.02%/ Maximum Ripple & Noise (*9) mVp-p 100 150 240 280 Voltage Adjustable Range (*10) ± 20% +20%, -60% 240 280 Over Current Protection (*4) 105% - 140% 200											
	Over Current Protection	(*4)					105% - 140%	/ 0			
	Over Voltage Protection	(*5)		165% ·	- 240%			125% - 145%	, D		
	Remote Sensing	(*8)					Possible				
unation	Remote ON/OFF Control	(*8)				Possible (S	HORT: ON	OPEN: OFF)			
unction	Parallel Operation	(*8)					Possible				
	Series Operation	(*8)									
	I.O.G. Signal	(*8)				Possible	Open collec	tor output)			
	AUX-BIAS Power Supply					7-10VDC	Maximum Io	ad 10mA			
	Operating Temperature	(*6)			-20 to +	85 (Baseplat	e) Ambient t	emperature	min=-20		
	Storage Temperature						-40 to +100				
	Operating Humidity		%RH			30 -	95 (No dewo	drop)			
nvironment	Storage Humidity		%RH			10 -	95 (No dewo	drop)			
INIONIEN	Vibration				At	no operating	j, 10-55Hz (s	sweep for 1m	nin)		
	VIDIATION			Am	plitude 0.82	5mm consta	nt (maximun	n 49.0m/s²)	X, Y, Z 1h ea	ach	
	Shock					196.1	m/s² (In pac	kage)			
	Cooling	(*7)				Co	nduction coo	oled			
Input-Baseplate : 2.5kVAC, Input-Output : 3kVAC(20mA) for 1r								0mA) for 1m	in		
solation	Withstand Voltage					Output-Base	eplate : 500\	/DC for 1min			
	Isolation Resistance			Mor	e than 100N	l at 25 a	and 70%RH	Output-Base	eplate500\	/DC	
tandards	Safety Standards			Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1							
loobanical	Weight (typ)		g				250				
Mechanical Size (W x H x D) mm 146 x 12.7 x 86 (Refer to outline drawing)											

(*2) 82 - 185VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

(*8) Refer to instruction manual.

- (*9) External components are needed for operation.
- (Refer to basic connection and instruction manual.)
- (*10) At 110VDC input.(Refer to instruction manual.)

100 100 80 80 (%) peor 40 8 60 реој 40 40 20 20 0 82 85 88 100 Input Voltage (V) 0 -20 0 20 40 60 80 100 Baseplate Temperature (°C)

Derating Curve

PH50S280

TDK·Lambda

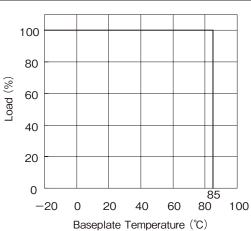
PH50S280 Specifications

ITEMS	S/UNITS M	ODEL	PH50S280-3.3	PH50S280-5	PH50S280-12	PH50S280-15	PH50S280-24	PH50S280-28			
	Voltage Range	V		1	DC200) - 400					
Input	Efficiency (typ) (*	1) %	72	80	82	83	8	4			
	Current (typ) (*	1) A	0.16		0.22		0.	21			
	Nominal Voltage	VDC	3.3	5	12	15	24	28			
	Maximum Current	A	1	0	4.2	3.4	2.1	1.8			
	Maximum Power	W	33	50	50.4	51	50).4			
	Voltage Setting Accuracy (*	1) %			±	:1					
Output	Maximum Line Regulation (*	2) mV	2	20	48	60	96	112			
	Maximum Load Regulation (*	3) mV	4	0	96	120	192	224			
	Temperature Coefficient				0.02	%/					
	Maximum Ripple & Noise (*	9) mVp-p	10	00	15	50	240	280			
	Voltage Adjustable Range(*	8)		+10%, -10% (At 280VDC Input)							
	Over Current Protection (*	4)			105 -	150%					
	Over Voltage Protection (*	5)	165 - 240%			125 - 145%					
Function	Remote Sensing (*	8)									
T UNCLION	Remote ON/OFF Control (*	8)		Pos	sible (SHORT	ON OPEN: C	OFF)				
	Parallel Operation (*	8)									
	Series Operation (*	8)			Pos	sible					
	Operating Temperature (*	6)		-20 to +85 (Baseplate) Am	bient temperat	ture min=-20				
	Storage Temperature				-40 to	o + 85					
	Operating Humidity	%RH			30 ~ 95 (N	o dewdrop)					
Environment	Storage Humidity	%RH			10 ~ 95 (N	o dewdrop)					
LINIOIIIICII	Vibration			At no opera	ting, 10-55Hz a	amplitude (swe	eep for 1min)				
				0.825mm con	stant (maximur	m 49.0m/s²) ⊃	K, Y, Z 1h each				
	Shock				196.1m/s² (In package)					
	Cooling (*	7)			Conduction	on cooled					
	Withstand Voltage		Input-Baseplate : 2.5kVAC. Input-Output : 3kVAC(20mA) for 1min								
Isolation				Out	put-Baseplate	: 500VDC for	1min				
	Isolation Resistance		More	than 100M	at 25 and 70	%RH Output-E	Baseplate500	OVDC			
Standards	Safety Standards		Ap	proved by UL	60950-1, CSA	C22.2 No.609	50-1, EN60950)-1			
Mechanical	Weight (typ)	g			10	00					
moundinudi	Size (W x H x D)	mm		41 x 1	12.7 x 86 (Refe	r to outline dra	awing)				

PH

(*1) At 280VDC and maximum output current.

(*2) 200 - 400VDC, constant load.


(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

Derating Curve

(*7) Heatsink has to be chosen according to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*8) Refer to instruction manual.

PH75S280

TDK·Lambda

PH75S280 Specifications

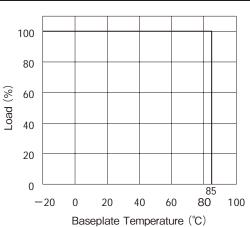
ITEMS	S/UNITS MO	DEL	PH75S280-3.3	PH75S280-5	PH75S280-12	PH75S280-15	PH75S280-24	PH75S280-28			
	Voltage Range	V			DC200) - 400					
Input	Efficiency (typ) (*1)	%	72	81	83	84	8	5			
	Current (typ) (*1)	Α	0.25	0.	33		0.32				
	Nominal Voltage	VDC	3.3	5	12	15	24	28			
	Maximum Current	Α	1	5	6.3	5	3.2	2.7			
	Maximum Power	W	49.5	75	75.6	75	76.8	75.6			
	Voltage Setting Accuracy (*1)	%			±	1					
Output	Maximum Line Regulation (*2)	mV	2	0	48	60	96	112			
	Maximum Load Regulation(*3)	mV	4	0	96	120	192	224			
	Temperature Coefficient				0.02	%/					
	Maximum Ripple & Noise (*9)	mVp-p	10	00	15	50	240	280			
	Voltage Adjustable Range(*8)			+10%, -10% (At 280VDC Input)							
	Over Current Protection (*4)				105 -	150%					
	Over Voltage Protection (*5)		165 - 240%			125 - 145%					
Function	Remote Sensing										
Function	Remote ON/OFF Control (*8)			Possible (SHORT: ON OPEN: OFF)							
	Parallel Operation										
	Series Operation (*8)			Possible							
	Operating Temperature (*6)		-20 to +85 (Baseplate) Ambient temperature min = -20								
	Storage Temperature		-40 to + 85								
	Operating Humidity	%RH			30 ~ 95 (N	o dewdrop)					
Environment	Storage Humidity	%RH			10 ~ 95 (N	o dewdrop)					
Environment	Vibration			At no opera	ting, 10-55Hz a	amplitude (swe	ep for 1min)				
	VIDIATION			0.825mm con:	stant (maximur	n 49.0m/s²) እ	K, Y, Z 1h each				
	Shock				196.1m/s² (In package)					
	Cooling (*7)				Conductio	on cooled					
	Withstand Voltage		Inpu	t-Baseplate : 2	.5kVAC, Input-	-Output : 3kVA	C (20mA) for 7	lmin,			
Isolation	Withstand Voltage			Out	put-Baseplate	: 500VDC for 7	1min				
	Isolation Resistance		More	More than 100M at 25 and 70%RH Output-Baseplate500VDC							
Standards	Safety Standards		Ap	Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1							
Mechanical	Weight (typ)	g	g 100								
mechanical	Size (W x H x D)	mm		41 x 1	2.7 x 86 (Refe	r to outline dra	awing)				

(*1) At 280VDC and maximum output current.

(*2) 200 - 400 VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.


(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

(*7) Heatsink has to be chosen according to instruction manual.

- (*8) Refer to instruction manual.
- (*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

Derating Curve

PH75F280

TDK·Lambda

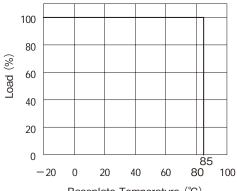
PH75F280 Specifications

ITEMS	S/UNITS N	IOD	EL	PH75F280-2	PH75F280-3	PH75F280-5	PH75F280-12	PH75F280-15	PH75F280-24	PH75F280-2	
	Voltage Range		V				DC200 - 400)			
Input	Efficiency (typ) (*1)	%	66	70	81	83	84	8	5	
	Current (typ) (*1)	А	0.16	0.23	0.3	33		0.32		
	Nominal Voltage	V	/DC	2	3	5	12	15	24	28	
	Maximum Current		А		15		6.3	5	3.2	2.7	
	Maximum Power		W	30	45	75	75.6	75	76.8	75.6	
	Voltage Setting Accuracy (*1)	%				±1				
Dutput	Maximum Line Regulation (*2) I	mν		20		48	60	96	112	
	Maximum Load Regulation (*3) เ	mν		40		96	120	192	224	
	Temperature Coefficient						0.02%/				
	Maximum Ripple & Noise (*9) m	nVp-p		100		15	50	240	280	
	Voltage Adjustable Range (*	10)		±2	0%			+20%, -60%			
	Over Current Protection (*4)				,	105% - 140%	, D			
	Over Voltage Protection (*5)		165% - 240% 125% - 145%							
	Remote Sensing (*8)					Possible				
F	Remote ON/OFF Control (*8)				Possible (S	HORT: ON	OPEN: OFF)			
	Parallel Operation (*8)									
	Series Operation (*8)		Possible							
	I.O.G. Signal (*8)		Possible (Open collector output)							
	Operating Temperature (*6)		-20 to +85 (Baseplate) Ambient temperature min = -20 .							
	Storage Temperature						-40 to + 85				
	Operating Humidity	9	%RH			30 -	95 (No dewo	drop)			
	Storage Humidity	9	%RH			10 -	95 (No dewo	drop)			
nvironment	Vibration				At no o	perating, 10-	55Hz amplit	ude(sweep fo	or 1min)		
	VIDIATION				0.825mm	constant (ma	aximum 49.0	m/s²) X, Y,	Z 1h each		
	Shock					196.1	m/s² (In pac	kage)			
	Cooling (*7)				Со	nduction coc	led			
solation	Withstand Voltage			In				ut : 3kVAC(2 (100mA) for <i>1</i>		in	
Solation	Isolation Resistance			Mor	e than 100N			Output-Base		/DC	
tandards	Safety Standards			/	Approved by	UL60950-1,	CSA C22.2	No.60950-1	, EN60950-1		
	Weight (typ)		g				150				
lechanical	Size (W x H x D)	mm									
*1) At 2	80VDC and maximum output cur	rent.				(*7) Heatsink	has to be chos	en according t	o instruction m	anual.	
*2) 200	- 400VDC, constant load.					(*8) Refer to i	nstruction man	ual.			

PH

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.


(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve on the right. - Load(%) is percent of maximum output current

Derating Curve

(*9) External capacitor is repuired. (Refer to instruction manual.)

(*10) At 280VDC input.(Refer to instruction manual.)

Baseplate Temperature (°C)

PH100S280

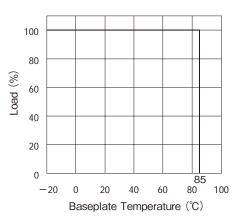
TDK·Lambda

PH100S280 Specifications

ITEMS/	/UNITS M	ODEL	PH100S280-3.3	PH100S280-5	PH100S280-12	PH100S280-15	PH100S280-24	PH100S280-28			
	Voltage Range	V		1	DC200) - 400					
Input	Efficiency (typ) (*	1) %	74	81	83	84	8	5			
	Current (typ) (*	1) A	0.32	0.44	0.4	43	0.42				
	Nominal Voltage	VDC	3.3	5	12	15	24	28			
	Maximum Current	Α	2	0	8.4	6.7	4.2	3.6			
	Maximum Power	W	66	100	100.8	100.5	100	0.8			
	Voltage Setting Accuracy (*	1) %			±	1					
Output	Maximum Line Regulation (*	2) mV	2	0	48	60	96	112			
	Maximum Load Regulation (*	3) mV	4	0	96	120	192	224			
	Temperature Coefficient		0.02%/								
	Maximum Ripple & Noise (*	9) mVp-p	1(00	15	50	240	280			
	Voltage Adjustable Range(*	8)		+	-10%, -10% (At	280VDC Inpu	t)				
	Over Current Protection (*	4)			105 -	150%					
	Over Voltage Protection (*	5)	165 - 240%			125 - 145%					
Function –	Remote Sensing			Possible							
	Remote ON/OFF Control (*	8)		Possible (SHORT: ON OPEN: OFF)							
	Parallel Operation										
	Series Operation (*	8)			Pos	sible					
	Operating Temperature (*	6)		-20 to +85 (Baseplate) Am	bient temperat	ture min=-20				
	Storage Temperature				-40 to	o + 85					
	Operating Humidity	%RH			30 ~ 95 (N	lo dewdrop)					
Fauireament	Storage Humidity	%RH			10 ~ 95 (N	o dewdrop)					
Environment	Vibration			At no operat	ing, 10-55Hz	amplitude (swe	eep for 1min)				
	Vibration			0.825mm con	stant (maximur	n 49.0m/s²) እ	K, Y, Z 1h each				
	Shock				196.1m/s² (In package)					
	Cooling (*	7)			Conductio	on cooled					
	Withstand Valtage		Inpu	t-Baseplate : 2	.5kVAC, Input-	-Output : 3kVA	C (20mA) for 1	lmin,			
Isolation	Withstand Voltage			Out	put-Baseplate	: 500VDC for '	1min				
	Isolation Resistance		More than 100M at 25 and 70%RH Output-Baseplate500VDC								
Standards	Safety Standards		Ap	proved by UL	60950-1, CSA	C22.2 No.609	50-1, EN60950)-1			
Maahanical	Weight (typ)	g		150							
Mechanical	Size (W x H x D)	mm		62 x 1	12.7 x 86 (Refe	er to outline dra	awing)				
	80VDC and maximum output curre - 400VDC, constant load.	ent.	(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.					t.			

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.


(*5) Inverter shutdown method, manual reset.

(*7) Heatsink has to be chosen according to instruction manual.

(*8) Refer to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

Derating Curve

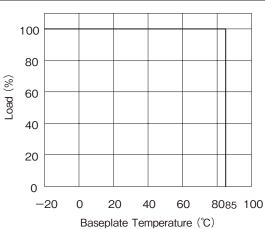
PH150S280

TDK·Lambda

PH150S280 Specifications

ITEMS	/UNITS	NOI	DEL	PH150S280-3.3	PH150S280-5	PH150S280-12	PH150S280-15	PH150S280-24	PH150S280-28			
	Voltage Range		V		1	DC200) - 400					
Input	Efficiency (typ) ((*1)	%	75	82	8	5	8	8			
	Current (typ) ((*1)	А	0.47	0.65	0.6	63	0.61				
	Nominal Voltage		VDC	3.3	5	12	15	24	28			
	Maximum Current		А	3	0	12.5	10	6.3	5.4			
	Maximum Power		W	99								
	Voltage Setting Accuracy ((*1)	%			±	1					
Output	Maximum Line Regulation ((*2)	mV	2	0	48	60	96	112			
	Maximum Load Regulation ((*3)	mV	4	0	96	120	192	224			
	Temperature Coefficient			0.02%/								
	Maximum Ripple & Noise ((*9)	mVp-p	100 150 240								
	Voltage Adjustable Range((*8)			+	-10%, -10% (At	280VDC Inpu	t)				
	Over Current Protection ((*4)			105 - 150%							
	Over Voltage Protection ((*5)		165 - 240%			125 - 145%					
F	Remote Sensing				Possible							
Function	Remote ON/OFF Control ((*8)			Possible (SHORT: ON OPEN: OFF)							
	Parallel Operation											
	Series Operation ((*8)				Poss	sible					
	Operating Temperature ((*6)			-20 to +85(I	Baseplate) Amb	pient temperat	ure min=-20				
	Storage Temperature					-40 to) + 85					
	Operating Humidity		%RH			30 - 95 (No	o dewdrop)					
En incoment	Storage Humidity		%RH			10 - 95 (No	o dewdrop)					
Environment) (ih nation				At no operat	ing, 10 - 55Hz	amplitude (sw	eep for 1min)				
	Vibration				0.825mm con	stant (maximur	n 49.0m/s²) እ	K, Y, Z 1h each				
	Shock					196.1m/s² (l	In package)					
	Cooling ((*7)				Conductio	on cooled					
	With stored Vielte as			Inpu	t-Baseplate : 2	.5kVAC, Input-	Output : 3kVA	C (20mA) for 1	min,			
Isolation	Withstand Voltage				Out	put-Baseplate	: 500VDC for '	1min				
	Isolation Resistance			More than 100M at 25 and 70%RH Output-Baseplate500VDC								
Standards	Safety Standards			Ap	proved by UL	60950-1, CSA	C22.2 No.609	50-1, EN60950)-1			
Machanical	Weight (typ)		g			15	50					
Mechanical	Size (W x H x D)		mm		72 x 1	12.7 x 86 (Refe	r to outline dra	awing)				
. ,	80VDC and maximum output cur - 400VDC, constant load.	rrent		(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.								

(*3) No load - full load, constant input voltage.


(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*7) Heatsink has to be chosen according to instruction manual. (*8) Refer to instruction manual.

(*9) External components are needed for operation.

(Refer to basic connection and instruction manual.)

Derating Curve

PH150F280

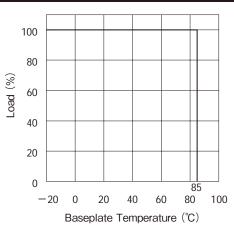
TDK·Lambda

PH150F280 Specifications

ITEMS	UNITS	MO	DEL	PH150F280-2	PH150F280-3	PH150F280-5	PH150F280-12	PH150F280-15	PH150F280-24	PH150F280-28		
	Voltage Range		V				DC200 - 400)				
Input	Efficiency (typ)	(*1)	%	68	73	83	86	87	9	0		
	Current (typ)	(*1)	Α	0.31	0.44	0.65	0.	62	0.	60		
	Nominal Voltage		VDC	2	3	5	12	15	24	28		
	Maximum Current		А		30		12.5	10	6.3	5.4		
	Maximum Power		W	60	60 90 150 151.2							
	Voltage Setting Accuracy	(*1)	%		±1							
Output	Maximum Line Regulation	n (*2)	mV		20		48	60	96	112		
	Maximum Load Regulatior	n(*3)	mV		40		96	120	192	224		
	Temperature Coefficient						0.02%/					
	Maximum Ripple & Noise	(*9)	mVp-p		100		1:	50	240	280		
	Voltage Adjustable Range	(*10)		± 2	20%			+20%, -60%)			
	Over Current Protection	(*4)			105% - 140%							
	Over Voltage Protection	(*5)		165%	165% - 240% 125% - 145%							
	Remote Sensing	(*8)					Possible					
Function	Remote ON/OFF Control	(*8)			Possible (SHORT: ON OPEN: OFF)							
	Parallel Operation	(*8)		Possible								
	Series Operation	(*8)		Possible								
	I.O.G. Signal	(*8)		Possible (Open collector output)								
	Operating Temperature	(*6)			-20 to 85	(Baseplate)	Ambient ten	nperature MI	N =-20			
	Storage Temperature						-40 to + 85					
	Operating Humidity		%RH			30 -	95 (No dewo	drop)				
Environment	Storage Humidity		%RH			10 -	95 (No dewo	drop)				
Environment	Vibration				At	no operating	j, 10-55Hz (s	sweep for 1m	nin)			
				Am	plitude 0.82	5mm consta	nt (maximun	n 49.0m/s²)	X, Y, Z 1h e	ach		
	Shock					196.1	m/s² (In pac	kage)				
	Cooling	(*7)				Co	nduction coo	oled				
	Withstand Valtage			In	put-Basepla	te : 2.5kVAC	, Input-Outp	ut:3kVAC(2	20mA) for 1m	nin		
Isolation	Withstand Voltage					Output-Base	eplate : 500\	/DC for 1min	l			
	Isolation Resistance			More than 100M at 25 and 70%RH Output-Baseplate500VDC								
Standards	Safety Standards			Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1								
Machanical	Weight (typ) g 180											
Mechanical	Size (W x H x D)		mm		8	3 x 12.7 x 86	(Refer to ou	utline drawing	g)			

(*1) At 280VDC and maximum output current.

(*2) 200 - 400VDC, constant load.


(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

Derating Curve

(*7) Heatsink has to be chosen according to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*10) At 280VDC Input. (Refer to instruction manual.)

(*8) Refer to instruction manual.

All specifications are subject to change without notice.

PH300S280

TDK·Lambda

PH300S280 Specifications

TEMS	/UNITS	MO	DEL	PH300S280-3.3	PH300S280-5	PH300S280-12	PH300S280-15	PH300S280-24	PH300S280-28	PH300S280-48			
	Voltage Range		V				DC200 - 400)					
Input	Efficiency (typ)	(*1)	%	80	85			88					
	Current (typ)	(*1)	Α	0.74	1.05		1.22		1.	23			
	Nominal Voltage		VDC	3.3	5	12	15	24	28	48			
	Maximum Current		Α	5	0	25	20	12.5	10.8	6.3			
	Maximum Power		W	165	250		300		30	2.4			
	Voltage Setting Accuracy	(*1)	%		±1%								
.	Maximum Line Regulatior	า(*2)	mV	2	20	48	60	96	112	192			
Output	Maximum Load Regulation	n(*3)	mV	4	0	96	120	192	224	384			
	Temperature Coefficient				0.02%/								
	Maximum Ripple & Noise (0~ + 100)(*9)	mVp-p	1(00	15	50	240	280	480			
	Maximum Ripple & Noise (- 20~0)(*9)	mVp-p	15	150 225 360 420								
	Voltage Adjustable Range	(*10)		+20%	+20%, -10% ±10% +2								
	Over Current Protection	(*4)			105 - 150%								
	Over Voltage Protection	(*5)		140-170%	140-170% 125 - 145%								
	Remote Sensing	(*8)			Possible								
	Remote ON/OFF Control	(*8)		Possible (SHORT: ON OPEN: OFF)									
	Parallel Operation				Applicable with CS signal								
	Series Operation	(*8)		Possible									
	I.O.G. Signal	(*8)		Built-in (Open collector output)									
	Operating Temperature	(*6)		-20 to +100 (Baseplate) Ambient temperature min=-20									
	Operating Temperature	(*6)				-20	to +100 : 10	0%					
	Storage Temperature						-40 - + 100						
	Operating Humidity		%RH			30 -	95 (No dewo	drop)					
nvironment	Storage Humidity		%RH			10 -	95 (No dewo	drop)					
) (ih noti o n				At	no operating	, 10-55Hz (s	weep for 1m	nin)				
	Vibration			Am	plitude 0.82	5mm consta	nt (maximum	n 49.0m/s²)	X, Y, Z 1h e	ach			
	Shock						196.1m/s ²						
	Cooling	(*7)				Cor	nduction coo	led					
	Mither and Malter an			In	put-Basepla	te : 2.5kVAC	, Input-Outp	ut:3kVAC(2	20mA) for 1m	nin			
solation	Withstand Voltage			Output-Baseplate : 500VDC for 1min									
	Isolation Resistance			More than 100M at 25 and 70%RH Output-Baseplate500VDC									
Standards	Safety Standards			Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950									
An also start	Weight (typ)		g	200									
Nechanical	Size (W x H x D) mm 83 x 12.7 x 86 (Refer to outline drawing)												

(*1) At 280VDC and maximum output current. (Baseplate temperature = +25)

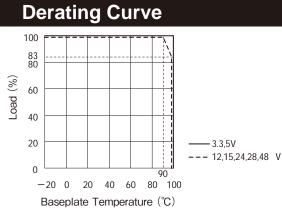
(*2) 200 - 400VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset with CNT signal.

(*6) Ratings - refer to derating curve below.


- Load(%) is percent of maximum output current.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*10) At 280VDC Input. (Refer to instruction manual.)

(*11) External circuit is needed for operation . (Refer to instruction manual.)

(*8) Refer to instruction manual.

B-324

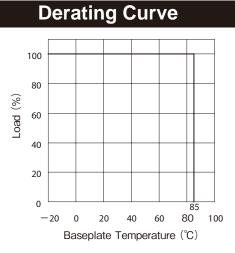
PH300F280

TDK·Lambda

PH300F280 Specifications

TEMS	/UNITS	MO	DEL	PH300F280-2	PH300F280-3	PH300F280-5	PH300F280-12	PH300F280-15	PH300F280-24	PH300F280-2	
	Voltage Range		V				DC200 - 400)			
Input	Efficiency (typ)	(*1)	%	68	73	83	86	87	89	90	
	Current (typ)	(*1)	Α	0.63	0.88	1.30	1.25	1.23	1.21	1.20	
	Nominal Voltage		VDC	2	3	5	12	15	24	28	
	Maximum Current		Α		60		25	20	12.6	10.8	
	Maximum Power		W	120	180		300		30	2.4	
	Voltage Setting Accuracy	(*1)	%				±1				
Jutput	Maximum Line Regulation	n (*2)	mV		20		48	60	96	112	
	Maximum Load Regulatior	n(*3)	mV		40		96	120	192	224	
	Temperature Coefficient						0.02%/° C				
	Maximum Ripple & Noise	(*9)	mVp-p		100		1:	50	240	280	
	Voltage Adjustable Range	(*10)		±2	20%			+20%, -60%)		
Over Current Protection (*4) 105% - 140%							6				
	Over Voltage Protection	(*5)		165%	165% - 240% 125% - 145%						
unction F	Remote Sensing	(*8)			Possible						
	Remote ON/OFF Control	(*8)			Possible (SHORT: ON OPEN: OFF)						
	Parallel Operation	(*8)		Possible							
	Series Operation	(*8)		Possible							
	I.O.G. Signal	(*8)				Possible (Open collec	tor output)			
	Operating Temperature	(*6)	°C		-20 to +8	5 (Baseplate) Ambient te	emperature n	nin=-20°C		
	Storage Temperature		°C				-40 to + 85				
	Operating Humidity		%RH			30 -	95 (No dewo	drop)			
nvironment	Storage Humidity		%RH			10 -	95 (No dewo	drop)			
WIUIIIIEII	Vibration				At	no operating	j, 10-55Hz (s	sweep for 1m	nin)		
				Am	nplitude 0.82	5mm consta	nt (maximun	n 49.0m/s²)	X, Y, Z 1h e	ach	
	Shock					196.1	m/s² (In pac	kage)			
	Cooling	(*7)				Co	nduction coo	bled			
	Withstand Voltage			In	put-Basepla	te : 2.5kVAC	, Input-Outp	ut:3kVAC(2	20mA) for 1m	nin	
solation					Outp	out-Baseplate	e : 500VDC(100mA) for	1min		
	Isolation Resistance			More than 100M α at 25 $^\circ C$ and 70%RH Output-Baseplate500VDC							
tandards	Safety Standards			Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950-1							
lechanical	Weight (typ)		g 250								
cullalliudi	Size (W x H x D)		mm		14	l6 x 12.7 x 8	6 (Refer to o	utline drawir	ng)		

(*1) At 280VDC and maximum output current.


(*2) 200 - 400VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset.

(*6) Ratings - Refer to derating curve below. - Load(%) is percent of maximum output current.

(*8) Refer to instruction manual.

(*7) Heatsink has to be chosen according to instruction manual.

(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*10) At 280VDC Input. (Refer to instruction manual.)

· All specifications are subject to change without notice.

PH600S280

TDK·Lambda

PH600S280 Specifications

ITEMS/	UNITS	DEL	PH600S280-3.3	PH600S280-5	PH600S280-12	PH600S280-15	PH600S280-24	PH600S280-28	PH600S280-48		
	Voltage Range	V				DC200 - 400)				
Input	Efficiency (typ) (*1) %	80	84			88				
	Current (typ) (*1) A	1.47	2.13			2.44				
	Nominal Voltage	VDC	3.3	5	12	15	24	28	48		
	Maximum Current	Α	1	00	50	40	25	21.5	12.5		
	Maximum Power	W	330	500		600		602	600		
	Voltage Setting Accuracy (*1) %		±1							
Output	Maximum Line Regulation (*2) mV	2	20	48	60	96	112	192		
Output	Maximum Load Regulation (*3) mV	4	0	96	120	192	224	384		
	Temperature Coefficient					0.02%/°C					
	Maximum Ripple & Noise (0~+100°C)(*) mVp-p	1	00	15	50	240	280	480		
	Maximum Ripple & Noise (-20~0°C) (*S) mVp-p	1	50	22	25	360	420	720		
	Voltage Adjustable Range(*10)	+20%	+20%, -10% ±10% +							
	Over Current Protection (*4	·)		105 - 150%							
	Over Voltage Protection (*5)	140-170%	140-170% 125 - 145%							
	Remote Sensing (*8)		Possible							
Function	Remote ON/OFF Control (*8)			Possible (S	HORT: ON	OPEN: OFF)				
	Parallel Operation (*11)	Applicable with CS signal								
	Series Operation (*8)	Possible								
	I.O.G. Signal (*8)	Built-in (Open collector output)								
	Operating Temperature (*6)°C		-20 to +10	00 (Baseplate) -20 to +8	e) Ambient te 35: 100%, +1		min=-20°C			
	Storage Temperature	°C				-40 to + 100)				
	Operating Humidity	%RH			30 -	95 (No dewo	drop)				
Environment	Storage Humidity	%RH			10 -	95 (No dewo	drop)				
	Vibration			At	no operating	g, 10-55Hz (s	sweep for 1m	nin)			
	VIDIATION		Am	nplitude 0.82	5mm consta	nt (maximun	n 49.0m/s²)	X, Y, Z 1h e	ach		
	Shock					196.1m/s ²					
	Cooling (*7)			Со	nduction coo	oled				
Isolation	Withstand Voltage		Input-Baseplate : 2.5kVAC, Input-Output : 3kVAC(20mA) for 1min Output-Baseplate : 500VDC for 1min								
	Isolation Resistance	_	Mo			•			DC		
Standards	Safety Standards			More than 100MΩ at 25°C and 70%RH Output-Baseplate500VDC Approved by UL60950-1, CSA C22.2 No.60950-1, EN60950							
	Weight (typ)	g		1.1.1.1.0.0	,	400		,			
Mechanical	Size (W x H x D)	mm		14	16 x 12.7 x 80		utline drawir	na)			

PH

(*1) At 280VDC and maximum output current. (Baseplate temperature = +25°C)

(*2) 200 - 400VDC, constant load.

(*3) No load - full load, constant input voltage.

(*4) Constant current limiting with automatic recovery.

(*5) Inverter shutdown method, manual reset with CNT signal.

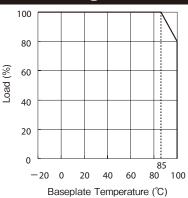
(*6) Ratings - Refer to derating curve below.

- Load(%) is percent of maximum output current.

Baseplate : Refer to instruction manual.

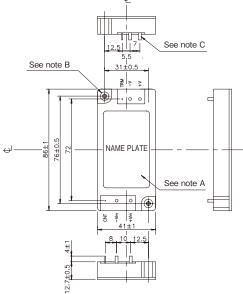
(*7) Heatsink has to be chosen according to instruction

(*8) Refer to instruction manual.


(*9) External components are needed for operation. (Refer to basic connection and instruction manual.)

(*10) At 280VDC input.(Refer to instruction manual.)

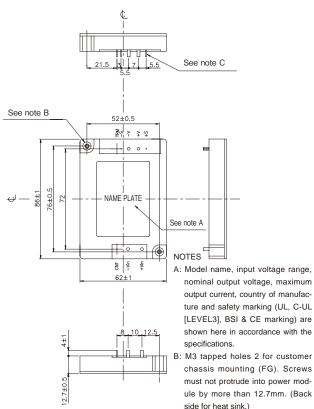
(*11) External circuit is needed for operation .


(Refer to instruction manual.)

Derating Curve

Outline Drawing

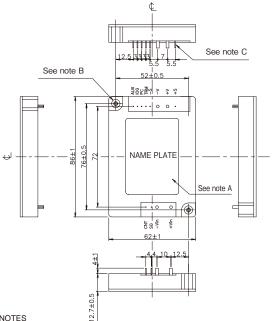
(PH50S) (Package Type: T41) [PH75S] (Package Type: T41)


NOTES

- A: Model name, input voltage range, nominal output voltage, maximum output current, country of manufacture and safety marking (UL, C-UL [LEVEL3], BSI & CE marking, except 3.3V model) are shown here in accordance with the specifications.
- B: M3 tapped holes 2 for customer chassis mounting (FG). Screws must not protrude into power module by more than 12.7mm. (Back side for heat sink.)

C: Input and output terminal ··· 4-Φ2

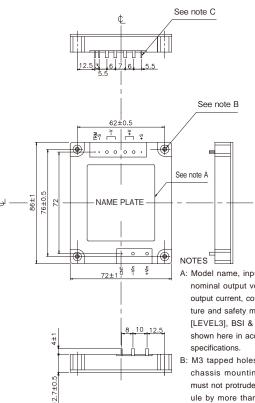
2-Φ0.6


(PH100S) (Packege Type: T62)

C: Input and output terminal \cdots 4- Φ 2

4-Φ06

[PH75F] (Packege Type: T62)



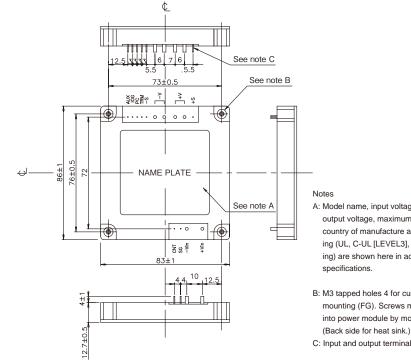
NOTES

- A: Model name, input voltage range, nominal output voltage, maximum output current, country of manufacture and safety marking (UL, C-UL [LEVEL3], BSI & CE marking) are shown here in accordance with the specifications.
- B: M3 tapped holes 2 for customer chassis mounting (FG). Screws must not protrude into power module by more than 12.7mm. (Back side for heat sink.)

C: Input and output terminal \cdots 4- Φ 2 8-Φ0.6

[PH150S] (Packege Type: T72)

PH

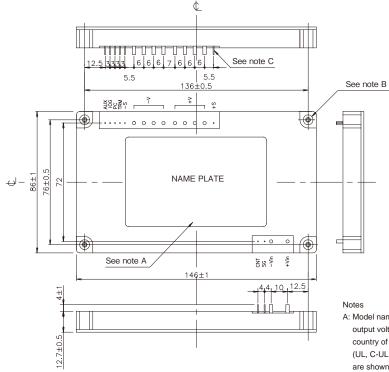

A: Model name, input voltage range, nominal output voltage, maximum output current, country of manufacture and safety marking (UL, C-UL [LEVEL3], BSI & CE marking) are shown here in accordance with the

- B: M3 tapped holes 4 for customer chassis mounting (FG). Screws must not protrude into power module by more than 12.7mm. (Back side for heat sink)
- C: Input and output terminal \cdots 6- Φ 2 4-Φ0.6

Outline Drawing

(PH100F) (Package Type: T83)

[PH150F] (Package Type: T83)

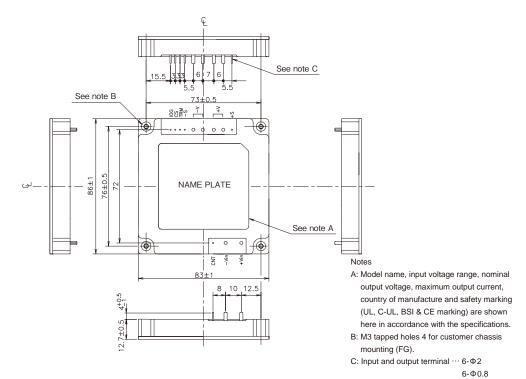


A: Model name, input voltage range, nominal output voltage, maximum output current, country of manufacture and safety marking (UL, C-UL [LEVEL3], BSI & CE marking) are shown here in accordance with the

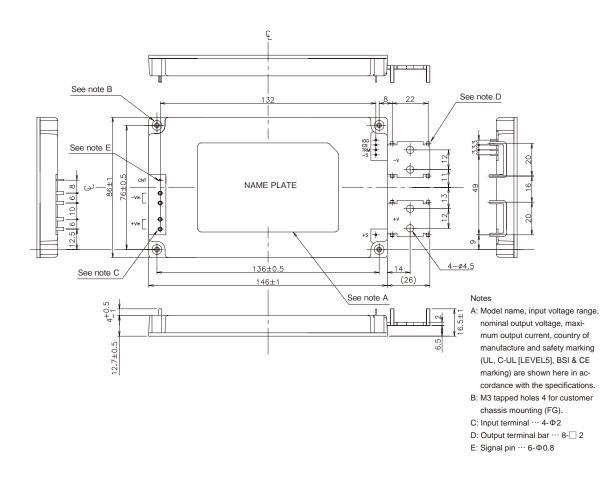
B: M3 tapped holes 4 for customer chassis mounting (FG). Screws must not protrude into power module by more than 12.7mm. (Back side for heat sink.)

[PH300F] (Package Type: T146)

PH

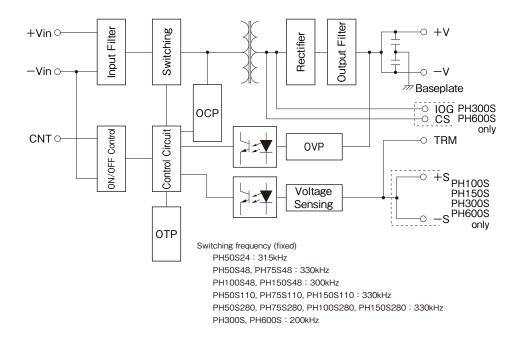

- A: Model name, input voltage range, nominal output voltage, maximum output current, country of manufacture and safety marking (UL, C-UL [LEVEL5], BSI & CE marking) are shown here in accordance with the specifications.
- B: M3 tapped holes 4 for customer chassis mounting (FG). Screws must not protrude into power module by more than 12.7mm. (Back side for heat sink.)

C: Input and output terminal \cdots 10- Φ 2 8-Φ0.6


C: Input and output terminal \cdots 6- $\Phi 2$ 8-Φ0.6

Outline Drawing

[PH300S] (Package Type: T83)



[PH600S] (Package Type: T146)

Block Diagram

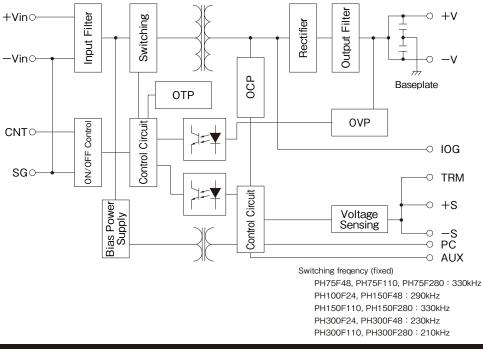
[PH50S, PH75S, PH100S, PH150S, PH300S, PH600S]

Sequence Time Chart

*3 Input Voltage **OVP Set Point OCP Set Point** Н Output Voltage I Н *1 ON/OFF Control Н -22--//-*2 IOG *1Level 4≦H≦35(V) or Open OCP ON OTP ON REMOTE OFF REMOTE ON OVP Trip NPUT OFF INPUT ON NPUT OFF INPUT ON NPUT OFF INPUT ON **DCP RESET** 0≦L≦0.8(V) O INPUT or Short

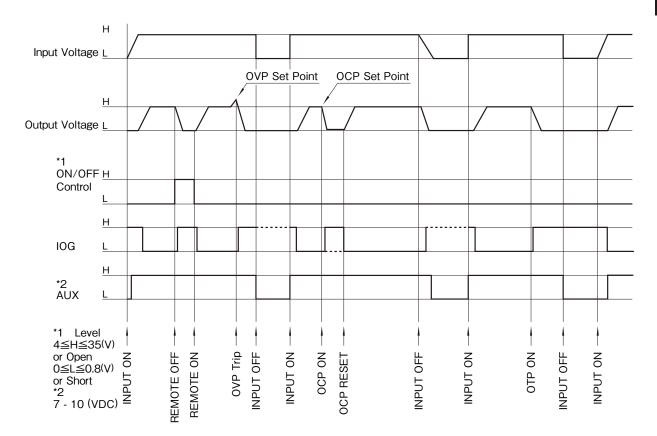
[PH50S, PH75S, PH100S, PH150S, PH300S, PH600S]

*2 Applicable to PH300S, PH600S only


PH

*3 Please note that the output shuts down when input interruption is less than 1s for PH50S, 75S, 100S, and 150S series.

In case of input interruption, please use F-type PHs.


Block Diagram

[PH75F, PH100F, PH150F, PH300F]

Sequence Time Chart

PH50 - 150, 75 - 300F Instruction Manual

Before Using The Power Supply

Pay attention to all warnings and cautions before using the unit. Incorrect usage could lead to an electric shock, damage to unit, or a fire hazard. Be sure read below warnings and cautions bef ore using the power module.

▲ Warning

- Do not touch heatsink and case which may be hot.
- Do not open the case and touch the internal components. They
 may have high temperature or high voltage which may get you in
 electric shock or burned.
- When the unit is operating, keep your hands and face away from the unit. You may get injured by an accident.

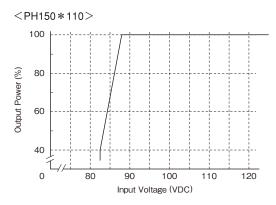
▲ Caution

- Confirm that connections to input/output terminals and signal terminals are correct as indicated in the instruction manual.
- Attach a fast blow type external fuse to each module to ensure safety operation and to acquire each safety approval.
- This power supply is designed for professional installation within an end user equipment.
- For 48V input voltage, use isolated voltage by reinforced insulation at primary power supply or double insulation as input power

source.

- The output from this power module must be considered as an energy hazard (>240VA power and 2V voltage) and must not be accesible to an end user. End equipment manufacturers must provide protection against inadvertent contact with the output terminals on this product by a service engineer or by service engineer dropping a tool into them.
- The application circuits and their parameters are for reference only. Be sure to verify effectiveness of application circuits and their parameters before finalizing circuit design.
- The information on this document is subject to change without notice. For actual design-in, please refer to the latest publications of data sheet, etc., for the most up-to-date specifications of this unit.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of Densei-Lambda.

CE Marking, when applied to a product covered by this instruction manual, indicates compliance with the low voltage directive (73/23/ EEC) as modified by the CE Marking Directive (93/68/EEC) which complies with EN60950.


1. Explanations on Specifications

1 INPUT VOLTAGE RANGE

Input voltage ranges of PH series are as follows.

24VDC Input: 18 - 36VDC 48VDC Input: 36 - 76VDC 110VDC Input: 82 - 185VDC 280VDC Input: 200 - 400VDC

For 110VDC input model, it is necessary to derate the output power when the input voltage range is in the range of 82 - 88V.

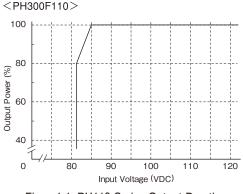


Figure1-1: PH110 Series Output Derating

Input voltage normally includes the ripple voltage (Vr_{Pl}) as shown in Figure1-2. The ripple voltage shall be less than the following values.

24VDC Input:	2V
48VDC Input:	4V
110VDC Input:	10V
280VDC Input:	20V

When ripple voltage exceeds the above value, the output ripple voltage may become larger. Also, the output voltage may rise as the input voltage is fluctuated in dynamic line. The peak of input voltage wave shall be within the input voltage range.

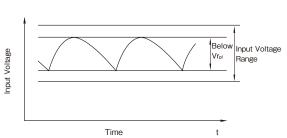


Figure1-2: Input Ripple Voltage

Basic Connection

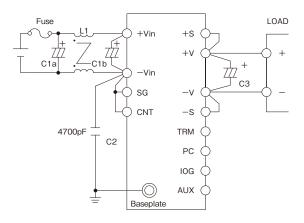


Figure 1-3 : Basic Connection Circuit

Input Fuse

No internal fuse is provided in power module. To ensure safety operation and to acquire safety standard approvals, attach an external fuse. The external fuse must be fast blow type and shall be attached to each power module individually.

Furthermore, attach the fuse at $+V_{in}$ side if the ground terminal is at $-V_{in}$ side and at $-V_{in}$ side if the ground terminal is at $+V_{in}$ side.

When the in-rush current causes some trouble at low impedance, use in-rush limiting circuit if necessary.

	50/75W	100W	150W	300W
24V	7A	15A	—	30A
48V	5A	7A	10A	20A
110V	2A	-	5A	10A
280V	1A	1.5A	2A	5A

Table1-2 : Recommend Rating Current of Input Fuse

C1: C1a/C1b

Attach capacitor(s) either between $+V_{in}$ terminal and $-V_{in}$ terminal or before L1.

As shown in Table1-3, location of the capacitor will be either C1a or C1b depending on each input voltage.

	50/75W	100W	150W	300W
24V C1a	-	-	-	1000 μ F
24V C1b	470μF	470μF	-	—
48V C1b	100 μ F	220 µ F	220 µ F	470 μ F
110V C1a	220 µ F	-	220 µ F	470μF
280V C1a	10 <i>µ</i> F	22 µ F	22 µ F	47 μ F

Table1-3: Recommended Values of Input filter Capacitor

Because the ripple current flows in the capacitor, confirm the allowance of the ripple current prior to selection of the component.

In addition, attaching a film capacitor C1b (several $\mu\,\text{F})$ which can withstand large ripple currents is very effective in reducing the ripple current for 110V and 280V input models.

The following low ESR type Nippon Chemi-con capacitors, or equivalent are recommended: For 24V input, use LXY Series

For 48V input, use LXV Series

For 110V and 280V input, use KMG Series

L1:

To reduce ripple current at C1 and output spike noise, attach common mode choke coil(s) in each power module individually.

Recommended Impedance Values: 24, 48, 110VDC Input: 1mH 280VDC Input: 2mH

Note: Depending on input filter construction, noise level might exceed noise specification and mis-operation might occur due to resonance of the filter.

To avoid mis-operation and spike noise problem, use an inductance which has a few tens μ H of normal component.

C2: 4700pF

To improve the noise characteristics, use a ceramic capacitor which has high withstand voltage when safety standard is necessary to acquire.

24VDC Input: more than 2kVAC 48VDC Input: more than 3kVAC 110VDC Input: more than 3kVAC 280VDC Input: more than 3kVAC

During withstand voltage test, test voltage is applied across this capacitor. Therefore, select components with above recommended withstand voltage.

C2 shall be connected in between -Vin and baseplate as short as possible.

C3:

To avoid the effects of the output line impedance to the power module, attach a capacitor between +V terminal and -V terminal. Equivalent series resistance and equivalent series impedance of the electrolytic capacitor wiring may have some influence at the output during shutdown, or at the output ripple. The output ripple voltage may vary depending on the wiring method of printed circuit board. See the table shown at the end of this section. (Reference table for C3 Value.)

C4:

In case switch and connectors are used between the input power source and input terminals of the PH series, transient surge voltage may occur when switch is turned on/off, or during hot swap at active input line. Therefore, attach a capacitor C4 as shown in Figure1-4.

 Recommended Capacitor Values:

 24VDC Input:
 470μF

 48VDC Input:
 100 - 470μF

 110VDC Input:
 220 - 470μF

 280VDC Input:
 10 - 47μF

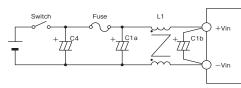


Figure1-4: Input Filter with Input Switch

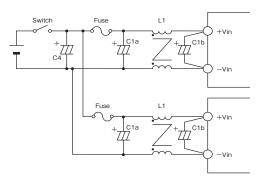


Figure1-5 : Input Filter when several power modules are connected

Reversed Connection of Input

Reverse (-, + electrodes) connection of the input may cause damage to the power module. Whenever there is a possibility for a reverse input connection, attach a protective diode and an input fuse. The rated voltage of the protective diode shall be higher than input voltage, and the maximum in-rush current shall be higher than external fuse rating.

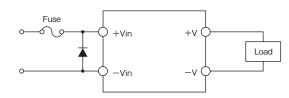


Figure1-5: Protection for Reversed Connection of Input

2 - 1 OUTPUT VOLTAGE RANGE (S type)

Output voltage can be adjusted within $\pm 10\%$ of the nominal voltage by adjusting the external trimmer (variable resistor). However, note that OVP (Over Voltage Protection) will be activated when the output voltage is raised over specification range.

Furthermore, when the output voltage is adjusted to high, the output current shall be derated to a value that is prescribed by the maximum output power. Also, when output voltage is adjusted to high, there is a limitation on the input voltage range for each model as shown in Figure2-1.

Values and connection methods of external resistors and variable resistor (VR) are shown as follows.

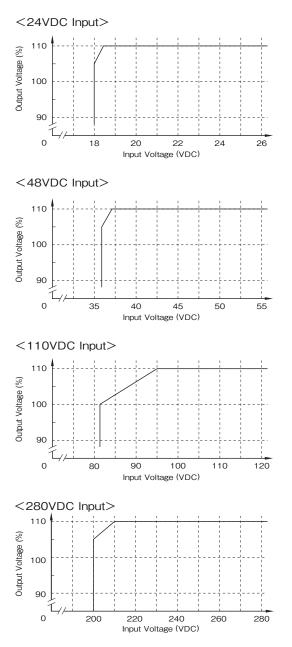
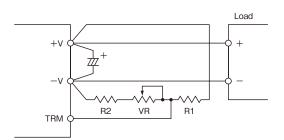
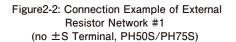


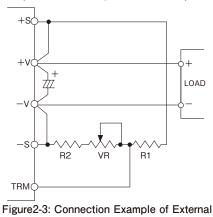
Figure2-1 : Limitation of Input Voltage Range

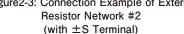
(Example1, 2: Values and Methods of Resistor and variable Resistor Networks)

	ЗV	5V	12V	15V	24V	28V
R1	4.7k	3.9k	3.9k	5.6k	10k	12k
R2	1.3k	1.8k	680	750	820	820
VR	10k	10k	1k	1k	1k	1k


R1, R2: ±5% Tolerance


VR: ±20% Total Tolerance below 1% End Resistanced Table2-1: Values for External Resistor and Variable


Resistor of connection


example 1 and 2

(Vo (typ)±10% adjastable)

In the same way, remote sensing wires can be connected to load.

(Example 3: Values and Method of Resistor and variable Resistor Networks>

For S type model with remote sensing terminal, the following method can be used.

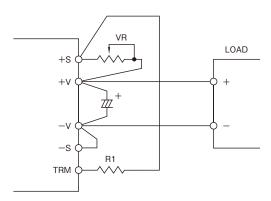
Variable resistor is attached as remote programming resistor, and the output can be remotely programmed. Ratio of remote programming resistor is basically $1V/k\Omega$.

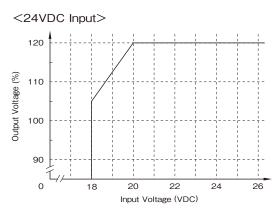
	ЗV	5V	12V	15V	24V	28V
R1	1.5k	3.9k	30k	33k	68k	68k
VR	1k	2k	5k	10k	10k	20k

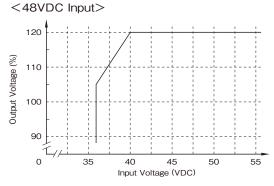
R1: ±5% Tolerance

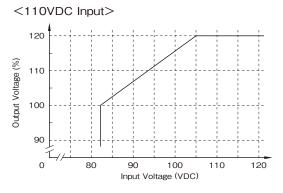
VR: ±20% Total Tolerance below 1% End Resistance Table2-1: Values for External Resistor and Variable **Resistor Networks**

(±10% Output Voltage Change)

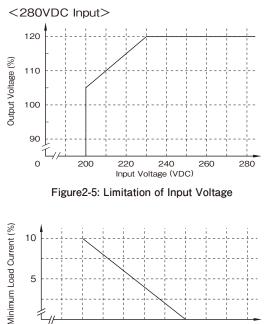


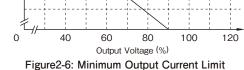

Figure2-4: Connection Example of External Resistor Network #3 PH100S/PH150S


In the same way, remote sensing wire can be connected to load terminal input.


2 - 2 OUTPUT VOLTAGE RANGE (F type)

The output voltage can be adjusted within -60% - +20% (2V, 3V: $\pm 20\%$) of nominal voltage range. However, note that OVP will be activated when output voltage is raised over specification range.


Furthermore, when the output voltage is adjusted to high, the output current shall be derated to a value that is prescribed by the maximum output power. Also, when output voltage is adjusted to high, there is a limitation on the input voltage range for each model as shown in Figure2-5, as well as limitation on the minimum output current as shown in Figure 2-6 for each model.



PH

Resistance values and connection method of external resistor and variable resistor are shown as follows.

In this case, variable resistor is attached as remote programming resistor, and the output can be remotely programmed. Also, aside from remote programming resistor, remote programming can be done externally by voltage source.

	2V	3V	5V	12V	15V	24V	28V
R1	20k	20k	3.3k	3.3k	3.3k	3.3k	3.3k
VR	2k	2k	20k	50k	50k	100k	100k

R1: ±5% Tolerance

PH

VR: $\pm 20\%$ Total Tolerance below 1% End Resistance Table2-3: Values of External Resistor and Variable Resistor (-60 to +20% Output Voltage Change ; $\pm 20\%$ for 2V 3V)

	2V	ЗV	5V	12V	15V	24V	28V
R1	43k						
VR	1k	1k	2k	5k	5k	10k	10k

R1: ±5% Tolerance

VR: ±20% Total Tolerance End Resistance below 1% Table2-4 : Values of External Resistor and Variable Resistor (±10% Output Voltage Change)

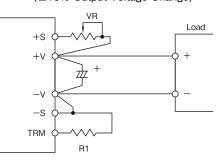


Figure2-7: Connection Example of External Resistor

In the same way, remote sensing wires can be connected to load terminal input. Changing Output Voltage by Applying External Reference Voltage; F type only>

On F type power module, the output voltage can be adjusted within the same range as remote programming with variable resistor by applying external voltage to TRM terminal. The output voltage for this case can be calculated by the following equation.

Output Voltage=TRM Voltage × Nominal Output Voltage

(Reference) Trim Circuit

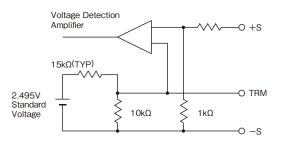


Figure 2-8: Network of Trim Circuit

Reference voltage for Voltage Detection Amplifier is the TRM terminal voltage. When TRM terminal is 1.0V (TYP), output is nominal voltage.

For other applications not described here, use this value as a reference when selecting external component values.

(Application Example of External Voltage)

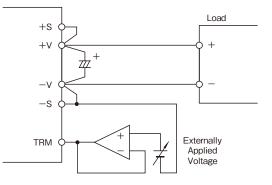


Figure2-9: Example of Applied Voltage

MAXIMUM OUTPUT RIPPLE & NOISE

The maximum output ripple and noise are measured by the following prescribed method based on JEITA RC-9141. The connection is shown in Figure3-1. Attach a film capacitor (1 μ F) to a point 50mm from the output terminal. Then attach a coaxial cable with JEITA attachment to both sides of the film capacitor as shown in Figure3-1. Oscilloscope shall be set at 100MHz band width.

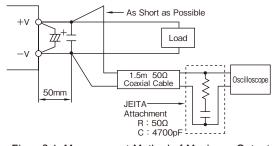


Figure3-1: Measurement Method of Maximum Output Ripple Voltage (including Noise)

4 MAXIMUM LINE REGULATION

Maximum line regulation is defined as the output voltage deviation when the input voltage is slowly varied (steadystate) within the input voltage range.

5 MAXIMUM LOAD REGULATION

Maximum load regulation is defined as the output voltage deviation when the output current is slowly varied (steady-state) within the output current range.

$\langle \mathsf{S} \mathsf{ type} \rangle$

A minimum load current of more than 3% (4% for PH50S) of the nominal output current shall be taken when the load current is dynamically changed. In case the load current is changed from less than the above minimum load current value, the output voltage may dynamically fluctuate.

When using module in dynamic load mode, audible noise could be heard and output voltage fluctuation will increase. Therefore, please evaluate thoroughly when using this module.

6 OVER CURRENT PROTECTION (OCP)

OCP function is provided.

Output will automatically recover when short or overload condition is released. This setting value is fixed and cannot be change externally.

Note that the module may be damaged depending on thermal conditions when operating continuously under short or overload condition for a long period.

1 OVER VOLTAGE PROTECTION (OVP)

OVP function is provided.

The setting value is relative to the nominal output voltage and is fixed. Therefore, it cannot be changed externally.

To recover the output voltage after OVP function activates, wait until input voltage becomes less than the following voltage values and then reapply input voltage.

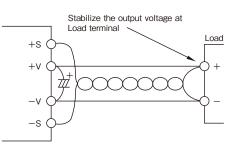
	S type	F type
24VDC Input	10VDC	10VDC
48VDC Input	13.5VDC	4.5VDC
110VDC Input	25VDC	10VDC
280VDC Input	90VDC	25VDC

Table7-1: Input Voltage to Release OVP

8 THERMAL PROTECTION

Thermal protection is provided.

This function activates for abnormal ambient temperature rise and abnormal internal temperature rise of power supply and shuts the output off. Thermal protection will activate at $100\pm15^\circ$ C baseplate temperature.


To recover the output, shut off the input once, and then reapply input after the baseplate temperature has been cooled down sufficiently.

9 REMOTE SENSING (+S, -S TERMINALS)

In the power modules except S type of 50W and 75W, there are remote sensing terminals to compensate the voltage drop caused by wiring to load terminal from output terminal of the power supply. If the remote sensing function is unnecessary (i.e. local sensing is used), shorten with wires +S terminal to +V terminal, and -S terminal to -V terminal. Compensated voltage range of line drop (voltage drop by wiring) shall be set such that output voltage between +V and -V does not exceed specified output voltage range and output must be within the maximum output power value. Also, line drop voltage between -V and -S (-V and negative side of the load) shall be less than 2V. To avoid and to decrease the noise affects, shielded wire, twisted wire, and

parallel pattern wire etc. shall be used as remote sensing

wire.

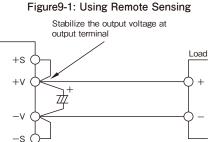


Figure9-2: Without Remote Sensing

ON/OFF CONTROL (CNT TERMINAL)

The output can be turned on or off without shutting down the input.

The control circuit is in the input side (primary side), and CNT terminal is used. The ground of CNT terminal is SG terminal for a module with SG terminal, and -V_{in} terminal for a module without SG terminal. -V terminal and SG terminal is connected inside of the module. If this function is unnecessary, short CNT and SG terminals.

PH50 - 150, 75 - 300F

- The maximum applied voltage to CNT terminal is 35V, and the reversed voltage is -0.7V maximum. Source current of CNT terminal is approximately 0.5mA. If the wire would be long, attach 0.1µF capacitor between CNT terminal and SG terminal.
- ON/OFF control can be controlled by the device switching on/off of the contact point (switch or relay) or photocoupler. The ON/OFF control circuit shall be insulated by relay or photocoupler.

* When using photocoupler, connect CNT and SG terminals as short as possible at transistor side.

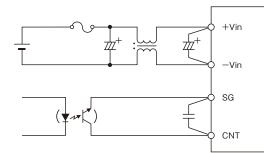


Figure10-1: Connection of CNT Terminal

CNT Level for Input-Vin (SG)	Output Status				
4V≦H≦35V or Open	OFF				
0≦L≦0.8V or Short	ON				

Table10-1: ON/OFF Control Mode

— Caution —

PH

If -Vin is not connected, or improperly connected, internal circuit of power module could be damaged when input is applied. For example, CNT terminal could blow out when current flows through an abnormal path such as $+V_{in}$ to CNT created by improper connection.

To avoid such a damage, ensure all the terminals are connected before input is applied.

II PARALLEL OPERATION (PC TERMINAL)

Only F type power modules provide PC terminal. By connecting PC terminal of each module, up to 11 units of same model (same output voltage and current) can be connected in parallel, and the output current is equally shared among each power module.

Note that maximum output power of each module should not exceed specifications.

By setting accuracy of output voltage of each power module in parallel operation within $\pm 1\%$, the maximum load current can be used up to 95% of nominal output current value.

(Example)

2 units of PH300F48-5 are to be used in parallel operation. The total nominal output current is 120A, then

120×0.95=114(A)

will be calculated as the maximum load current. For details of parallel connection and redundant operation, refer to Application Note "Parallel Operation." Series operation is available for all PH series models. Contact us for maximum allowable units that can be used in series operation.

(A) Series Operation for High Output Voltage

In series operation for high output voltage configurations, attach a by-pass diode to avoid to applying reverse voltage.

Rating of by-pass Diode, D1 and D2

- Repetitive Reversed Voltage
 VRRM≥2 times as rated output voltage
- Average of Output Current
 l₀≥2 times as rated output current
- Forward Voltage Drop V⊧≧minimum (Schottky barrier type)

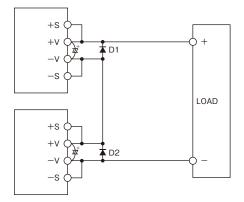


Figure 12-1: Series Operation for High Output Voltage Configurations

(B) Series Operation using ±Output

No diode is necessary if + side load and - side load are completely separated.

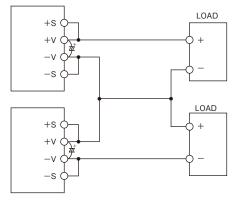


Figure 12-2: Series Operation using ± Output

1I.O.G. SIGNAL (IOG TERMINAL)

I.O.G. signal is provided in the F type power module. By using IOG terminal, good/no good operation can be monitored.

This monitoring signal output is in the secondary (output) side and is an open collector output.

At good inverter operation, IOG monitors LOW (maximum sink current = 5mA; maximum applied voltage = 35V).

PH50 - 150, 75 - 300F

When OCP is operating, IOG signal becomes unstable. Ground of IOG terminal is -S terminal.

In parallel operation as shown as Figure13-1, the minimum load current shall be more than 10% of the total nominal output current. Note that If load is less than 10%, IOG signal may be unstable.

In a parallel application where diode is used at the output of the power module, required minimum load current is not specified.

(Sensing point is at anode side of the diode.)

Figure13-1: Example of IOG Terminal Connection

(Example)

2 units of PH300F48-5 are to be used in parallel operation. The total nominal output current is 120A, then

$$120 \times 0.1 = 12$$
 (A)

will be calculated as the minimum load current.

AUXILIARY POWER SUPPLY FOR EXTERNAL SIGNAL (AUX TERMINAL)

AUX terminal is provided inside the F type power module. The output voltage of AUX terminal is in the range of 7 - 10 VDC, and the maximum output current is 10mA.

When using this terminal in parallel connection with other AUX terminal in DC/DC power modules, a diode must be attached. See Fig13-1 for connection example. Even for this case, maximum output current should be 10mA.

Avoid connecting AUX terminal directly with other terminals of the module because this may damage the power module.

Ground of AUX terminal is -S terminal.

OPERATING TEMPERATURE

By maintaining baseplate temperature below 85°C at actual operating conditions, operation is possible. For details of thermal design, refer to Application Note "Thermal Design."

OPERATING HUMIDITY

Note that dew condensations may cause abnormal opera-

tion and damage to power module.

I STORAGE TEMPERATURE

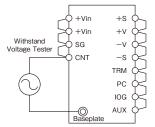
Note that abrupt temperature changes may cause condensation and bad effects on soldering.

STORAGE HUMIDITY

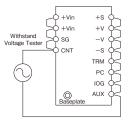
Storing power modules in high temperature and high humidity creates oxidation on each terminals and causes soldering problems.

COOLING METHOD

Because the operating temperature range is prescribed by baseplate temperature, several cooling methods are possible.


For details of thermal design, refer to Application Note "Thermal Design."

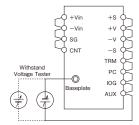
BASEPLATE TEMPERATURE VS. OUTPUT REGULATION


Baseplate temperature vs. output regulation is defined as the output voltage deviation ratio when operating baseplate temperature is changed.

21 WITHSTAND VOLTAGE

This PH series is designed to withstand 2.5kVAC between input and baspelate, and 3kVAC between input and output for 1 minute each. (For 24VDC input model, it is designed to withstand 2kVAC between input and baseplate, and 2kVAC between input and output for 1 minute). When withstand voltage test would be carried out at incoming inspection etc., the limit value of the tester shall be set at 20mA.

2.5kVAC for 1 minute (20mA) (24VDC Input model: 2kVAC) Figure21-1: Withstand Voltage Test between Input and Baseplate



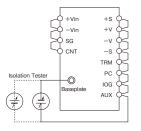
3kVAC for 1 minute (20mA) (24VDC Input model: 2kVAC) Figure21-2: Withstand Voltage Test between Input and output

PH50 - 150, 75 - 300F

TDK·Lambda

This series is designed to withstand 500VDC between output and baseplate for 1 minute. When the test would be carried out at incoming inspection etc., be sure not to apply AC voltage; apply DC voltage. In case AC voltage is applied, the power module might be damaged.

500VDC between output and baseplate for 1 minute Figure21-3: Withstand Voltage Test between output and baseplate


Do not apply the test voltage by throw-in. Gradually raise the voltage from zero, and also gradually drop down the tester for shut off. Especially take care when using withstand voltage tester with timer because impulse is generated which is several times high as the applied voltage when the switch is turned off by the timer which might cause damage to the module.

Short the output side as shown in Fig.21-1 to Fig.21-3.

22 INSULATED RESISTANCE

DC insulated tester (max. 500V) shall be set between output and baseplate. The insulated resistance is more than 100M Ω at 500VDC. Depending on insulation testers, high pulse may occur when the voltage is changed.

Be sure that the tester is fully discharged by a resistor etc. after every test.

(more than 500M Ω between the output and baseplate at 500VDC) Figure22-1: Insulation Test

23 VIBRATION

Refer to Application Note "Installation."

Power Module Vibration specification value is the value when Power Module alone is mounted on Printed Wiring Board.

Therefore, when using large-sized heatsink, be sure to fix not only on Power Module but also on Equipment Chassis in order to avoid excessive stress on Power Module and Printed Wiring Board.

2 SHOCK

Values are measured at our packing and shipping conditions.

囚 OTHERS

The performance of a system with Power Module is influenced according to various conditions -- PCBs, chassis, mechanics, heat dissipation.

Please evaluate actual products, and confirm its performance.

(For details, please refer Power Module Application Note.)

Model Vout	PH50S PH75S	PH75F	PH100S PH150S	PH100F PH150F	PH300F48 PH300F110 PH300F280	PH300F24			
2V		6.3V 1000μF		6.3V 2200μF	6.3V 4700μF				
3V	6.3V 470µF	6.3V 1000μF	6.3V 1000μF	6.3V 2200μF	6.3V 4700μF				
5V	10V 470μF	10V 1000μF	10V 1000μF	10V 1000μF	10V 2200μF				
12V	25V 220μF	25V 220μF	25V 470μF	25V 470μF	25V 1000μF	25V 1000μF			
15V	25V 220μF	25V 220μF	25V 470μF	25V 470μF	25V 1000μF				
24V	35V 120µF	35V 120μF	35V 220µF	35V 220μF	35V 560µF				
28V	50V 100μF	50V 100μF	50V 220μF	50V 220μF	50V 470μF	50V 1000μF			

Reference table for C3 Value

- Note) 1. Use the capacitor of good temperature characteristics and with low impedance.
 - 2. Connect the capacitor to module output terminal with as short leads as possible.
 - 3. Be aware of the ripple current tolerance of the capacitor.
 - 4. Using LXY series of Nippon Chemi-con or equivalent will meet design requirement in above 1 and 3.

PH

3. PH-SERIES Parallel Operation

1 INTRODUCTION

PH series (F type only) equally shares current by connecting each PC terminal of power module in parallel. There are 2 different parallel operations as follows.

(1) Parallel Operation

When load current can not be supplied by only a unit of power module, the output can be enhanced. Also, the reliability of the system can be improved to derate the output power.

(2) N+1 Parallel Redundant Operation

For power supply system required high reliability, it is possible to improve the reliability of the system by using N+1 units for load of N units.

In parallel operation with N+1 units, even though one of the power modules is failed, performance of the system can be maintained for the other units cover for the failure power module and share the load current.

2 PRECAUTION IN PARALLEL OPERATION

Basic cautions and warnings in parallel operation are as follows.

- Only F type power modules are applicable.
 Inhibit parallel operation on S type power modules.
- Available to use 11 units maximum in identical model (same output power and voltage.)
- Attach a common mode choke coil at input of each power module.
- Accuracy of output voltage adjustment shall be within $\pm 1\%$.
- The maximum load current shall be less than 95% of nominal output current.
- Ground of PC terminal (signal ground) is -S terminal. Inhibit to use as power line.
- Use same length and size of output load wire between power modules in parallel operation and loads.
- If IOG and AUX terminals are used, read its explanation in the manual.
- When the distance between power modules is too long, current balance might get worse due to switching noise.
 As countermeasure, please connect a ceramic capacitor (0.01 to 0.1 uF) between PC and -S terminal of each power module.

B PARALLEL OPERATION

 (a) Parallel connection to enhance the output and to improve the reliability

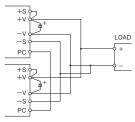


Figure 3-1: Parallel Operation

(b) Parallel Operation programmed output voltage

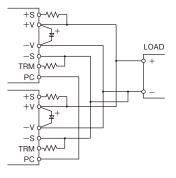


Figure 3-2: Programmed Output Voltage

(c) Parallel Operation with adjustable output voltage

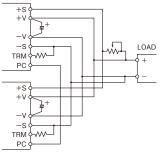


Figure 3-3: Parallel Operation with adjustable voltage

(d) Parallel operation when the output voltage is adjusted by applying voltage externally

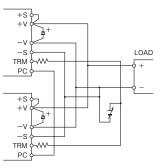


Figure 3-4: Parallel Operation which is possible to adjust output voltage by external applied voltage

TDK·Lambda

A N+1 REDUNDANT OPERATION

(a) N+1 Redundant connection

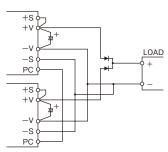


Figure 4-1: N+1 Redundant Operation

(b) Redundant Operation with programmed output voltage



Figure4-2: N+1 Redundant Operation with programmed output voltage

(c) Redundant operation with adjustable output voltage

PH

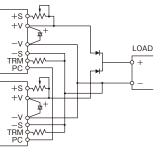


Figure4-3 : N+1 Redundant Operation with adjustable output voltage

 (d) Redundant operation when the output voltage is adjusted by applying voltage externally

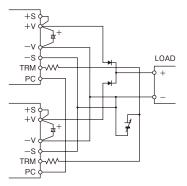


Figure4-4 : N+1 Redundant Operation which is possible to adjust the output voltage by external applied voltage

Note) Please do sufficient evaluation on actual products when applying N+1 redundant or parallel operation.

4. Before You Think The Module is damaged

Confirm the following items before you think the module is damaged or failed.

- 1) No Output
 - Is the rated input voltage supplied?
 - Are the ON/OFF control terminal, remote sensing terminal, and output volatage trimming terminal connected correctly?
 - For adjusted output, is the variable resistor network set up and connected correctly?
 - Is there any troubles with the connected load?

2) High Output Voltage

- Is the remote sensing connected correctly?
- For adjusted output, is the variable resistor network set up and connected correctly?

- 3) Low Output Voltage
 - Is the rated input voltage supplied?
 - Is the remote sensing connected correctly?
 - Is it measured at sensing point?
 - For adjusted output, is the variable resistor network set up and connected correctly?
 - Is there any troubles with the connected load?
- 4) Over Load Regulation or Over Input Regulation
 - Is the rated input voltage supplied?
 - Are the input and output terminals connected correctly?
 - Is it measured at sensing point?
 - Are input and output wires too thin?
- 5) High Output Ripple
 - Is it same measuring meathod as the instruction manual?
 - Is the input ripple voltage within the specification?

TDK·Lambda

PH300S, 600S Series Instruction Manual

● PH50 ~ 150, 75 ~ 300F Instruction Manual (B-322Page

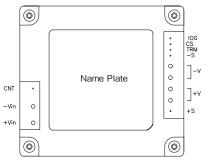
Before Using The Power Supply

Pay attention to all warnings and cautions before using the unit. Incorrect usage could lead to an electrical shock, damage to unit, or fire hazard.

▲ Warning

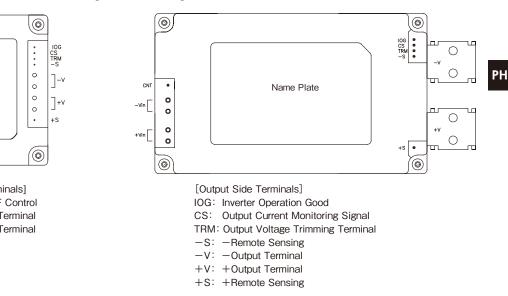
- Do not touch heatsinks and case which may be hot.
- Confirm connections to input/output terminals and signal terminals are correct as indicated in instruction manual.
- Attach a fast blow type external fuse to each module to ensure safety operation and to acquire each safety standard approval.
- This power supply is designed for professional installation within an end user equipment.
- For PH300S48, use insulated voltage by reinforced insula-

tion at primary power supply or double insulation as input power source.


The output from this power supply must be considered as an energy hazard (>240VA power and 2V voltage) and must not be accessible to a user. End equipment manufacturers must provide protection against inadvertent contact with the output terminal on this product by a service engineer or by the service engineer dropping a tool into them.

Note : CE Marking

CE Marking, when applied to a product covered by this instruction manual, indicates compliance with the low voltage directive (73/23/EEC) as modified by the CE Marking Directive (93/68/ EEC) which complies with EN60950.


1. Terminal Explanation

[Model PH300S]

[Input Side Terminals] CNT: ON/OFF Control -Vin: -input Terminal +Vin: +input Terminal

[Model PH600S]

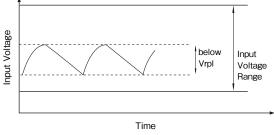
Baseplate can be connected to FG through M3 mounting tapped holes. Connect +Vin, -Vin, +V, -V with consideration of contacting resistance.

2. Explanations on Specifications

Input Voltage Range

Input voltage ranges for PH300S, 600S series are as follow.

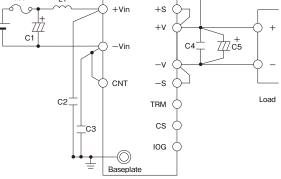
48VDC Input: 36 - 76VDC 280VDC Input: 200 - 400VDC


Input voltage normally includes ripple voltage (Vrpl) as shown as Figure1-1. The ripple voltage shall be less than following values.

> 48VDC Input: 4Vp-p 280VDC Input: 20Vp-p

Peak of input voltage wave shall not be exceed above input voltage range.

Output voltage would be fluctuated as dynamic line changes.


The output ripple voltage may become bigger if the bottom of input ripple voltage is below 220V for 280VDC input model and below 40VDC for 48VDC input model.

Basic Connection

50mm

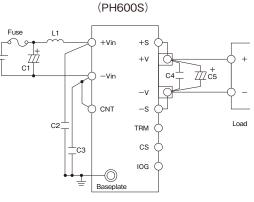


Figure1-2 Basic Connection

Input Fuse

No internal fuse is provided in the power module. To ensure the safety operation and to acquire safety standard approvals, attach an external fuse. The external fuse must be fast blow type and be attached to each module individually.

Furthermore, attach the fuse at +Vin side if the ground is -Vin side and at -Vin side if the ground is at +Vin side.

Use in-rush current limit circuit when the in-rush current may make troubles.

	300W	600W
48VDC Input	20A	—
280VDC Input	5A	10A

Table1-1 Recommended Rating Current of Input Fuse

C1:

Attach electrolytic capacitor(s) between +Vin and -Vin terminals.

The capacitor shall be lower equivalence series resistance (ESR). Especially under low ambient temperature, the voltage of C1 becomes unstable due to ESR at line off. Hence, be aware the output might be not normal line off. Confirm the allowance of ripple current because ripple current flows in the capacitor, and then choose the capacitor.

Recommended Capacitor Values 48VDC Input: 470 µ F 280VDC Input: 22 µ F

L1:

To reduce C1 ripple current and output spike noise voltage, attach a normal choke coil to each module.

Recommended Inductance Values 48VDC Input: 3 µ H 280VDC Input: 15 µ H

Recommended Current Ratings

PH300S48-*: 11A PH300S280-*: 2A PH600S280-*: 4A

TDK·Lambda

C2, C3: 4700pF

Use a ceramic capacitor that has high withstand voltage to reduce the output spike voltage.

48VDC Input: 1.5kVAC or above

280VDC Input: 3kVAC or above

Select the capacitor from the above recommended components with high withstand voltage because the test voltage is applied to the capacitor during the withstand voltage test in some application contents.

Connect C2 between +Vin and baseplate and C3 between -Vin and baseplate as short as possible.

C4: 2.2 µ F

Also, use a ceramic capacitor to reduce the output noise voltage.

Attach the ceramic capacitor between +V and -V where less than 50mm from output terminal for PH300S.

For PH600S, attach the ceramic capacitor between +V and -V terminal as short as possible.

The output spike noise voltage could be changed for design of printed circuit board.

C5:

Use electrolytic capacitor(s) for stable operation.

Attach the electrolytic capacitor between +V and -V where less than 50mm from output terminal for PH300S.

For PH600S, attach the electrolytic capacitor between +V and -V terminals as short as possible. Recommend tighten the screws of load wire and C5 together.

Oscillation waveform could be shown at dropping down the output for characteristics of equivalent series resistance (ESR) of electrolytic capacitor and equivalent series inductance (ESL).

Moreover, note the output ripple voltage could be changed for design of printed circuit board.

In case input/output dynamically changes, it helps the fluctuation of output voltage by increasing the external capacitor value.

Vo Wo	300S	600S
3.3V	6.3V	6.3V
3.3V	4700 <i>µ</i> F	10000 <i>µ</i> F
5V	10V	10V
57	3900 <i>µ</i> F	4700 <i>µ</i> F
12V	25V	25V
12V	1000µF	2200µF
15V	25V	25V
150	1000µF	2200µF
24V	35V	35V
24∨	560µF	1000µF
28V	50V	50V
287	470µF	820µF
48V	50V	50V
46V	*1 470µF×2	*1 680µF×2

*1 For 48V output model, use two 50V capacitors in series that have low impedance.

Table1-2 C5: Recommended Values of External Output Capacitor

Remarks:

- Use an electrolytic capacitor that has excellent low impedance for temperature characteristic.
 - (Equivalent electrolytic capacitor in LXY series manufactured by Nippon Chemicon)
- Be aware of ripple current allowance of the electrolytic capacitor. Especially be aware it when the load current is in dynamics.

The output voltage may be greatly varied in 300Hz - 2kHz frequency range at $0\% \rightarrow 100\%$ of dynamic load condition. For less dynamic of the voltage, use a electrolytic capacitor which has better capacity than recommended electrolytic capacitor or keep the minimum load current more than 10% of nominal current.

Contact us for the details.

C6:

In between input source and input line of PH300S, 600S series there are a switch and connectors etc. In case that the switch is on/off or plug in/off when the input is applying, attach an electrolytic capacitor, C6 as shown as Figure1-3.

Because in-rush current flows when the input is applied, confirm ${\rm I}^2 t$ for the switch and fuse.

Recommended Values 48VDC Input : 100 - 470 µ F

280VDC Input :10 - 47 μ F

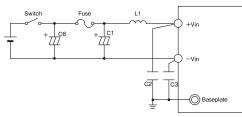


Figure 1-3 Input Filter with Input Switch

If plural numbers of module will be connected in PH300S, PH600S series, attach an electrolytic capacitor, C6 as shown as Figure1-4.

Recommended Values 48VDC Input : 100 - 470 μ F 280VDC Input :10 - 47 μ F

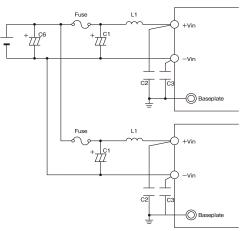


Figure 1-4 Input Filter when Plural Power Modules are connected.

PH

TDK·Lambda

Reversed Connection of Input

An error of reverse (+,-electrodes) input may cause of damage of the power module. If there is possibility to connect the module conversely by accident, it is necessary to attach a protective diode and an input fuse.

The rating voltage of the diode shall be higher than input voltage, and the maximum in-rush current shall be higher than fuse.

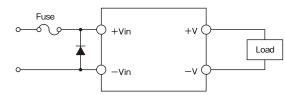
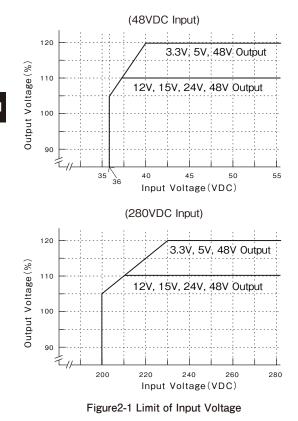



Figure1-5 Protection for Reversed Connection of Input

2 Output Voltage Range

Output voltage can be adjusted within $\pm 10\%$ (3.3V, 5V, 48V : -10% to +20%) of the nominal voltage by adjusting the external trimmer (variable resistor). However, if the output voltage become over the above range, OVP activates. There is a limit of input voltage shown in Figure2-1 when the output voltage trims high.

Connection method of external resistor (R1) and variable resistor (VR) is shown as follow.

	3.3V	5V	12V	15V	24V	28V	48V
Variable	- 10%				- 10%		
Range	+ 20%				+ 20%		
R1	4.7k	4.7k	30k	33k	68k	68k	220k
VR	2k	5k	5k	10k	10k	20k	30k

External Resistor: below±5% Tolerance Variable Resistor: below±20% Tolerance

below 1% of Remain

Table2-1 External Resistor and Variable Resistor Output -10% \sim +20% Variable (3.3V, 5V, 48V)

±10% Variable(12V, 15V, 24V, 28V)

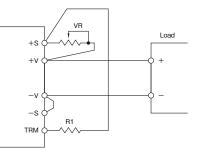


Figure2-2 Example Connection of External Resistance

For 48V output model, avoid to reduce the output voltage below -10% cause damage of the module

3 Maximum Output Ripple and Noise

Maximum output ripple and noise is measured by a method based on JEITA-9141.

The connection is shown as Figure3-1. Attach capacitors (C4: Ceramic Capacitor: $2.2 \,\mu$ F, C5: Electrolytic Capacitor: Refer to Table1-2) 50mm from the output for PH300S and as short as possible to the output terminal for PH600. Also, attach a coaxial cable with JEITA attachment at the both side of C4 capacitor shown as Figure3-1. Oscilloscope shall be used at a range of 100MHz bandwidth.

The output ripple voltage and the output spike noise voltage may be changed for the design of printed circuit board.

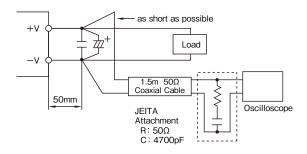


Figure 3-1 Measurement of Maximum Output Ripple & Noise (Example: PH300S)

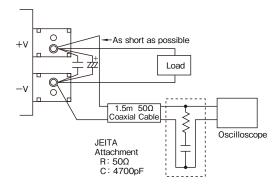


Figure 3-2 Measurement of Maximum Output Ripple & Noise (Example : PH600S)

4 Maximum Line Regulation

The maximum output voltage changes when the input voltage is slowly varied within the range. (Steady state)

5 Maximum Load Regulation

The maximum output voltage changed when the output current is slowly varied within the range. (Steady state)

6 Over Current Protection (OCP)

OCP function is provided in the power module. When short or overload condition is released, the output will be automatically recovered. This setting value is fixed and impossible to change externally.

Be aware that the power module could be damaged in some thermal conditions when short or overloaded condition is continuously carried on.

1 Over Voltage Protection (OVP)

OVP function is provided in the power module. This setting value is a value for the nominal output voltage.

It is fixed and impossible to change externally.

When OVP function activates, the output will shut down. The output can be recovered by reset of ON/OFF Control terminal to low at once or reapplying input after input voltage bring down to less than the following values. Time reset of ON/OFF control terminal is more than 100ms. To check OVP function, apply an external voltage that is limited to upper limit of maximum OVP range. Refer to specification for OVP range. Avoid to apply over voltage not to damage the unit.

Input Voltage to release OVP 48V Input: less than 25VDC 280V Input: less than 150VDC

8 Thermal Protection

Thermal protection is provided in the power module. It prohibits abnormal rise of ambient temperature and internal temperature of power supply, and the output will shut down. Trip point of thermal protection is 105° C - 130° C of baseplate temperature.

The output is recovered by reapplying the input voltage after the input shut down (same as OVP) when the temperature is cooled down enough or resetting ON/OFF control terminal.

Remote Sensing (+S,-S Terminal)

Remote sensing which compensates voltage drop by wiring from output terminal to load terminal in power supply is equipped.

If remote sensing is unnecessary to use (using local sensing), directly connect +S and +V terminals and -S and -V terminals as short as possible.

Use within the maximum output power range with either compensated voltage range of line drop (voltage drop by wiring) is in output range or voltage between -V and -S is 2V. Also, reduce noise affects by using shielded wire, twisted wire, or parallel pattern as remote sensing wire.

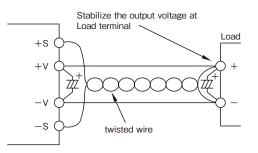


Figure9-1 Remote Sensing at Use

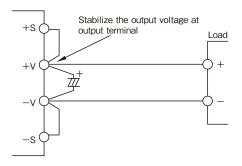
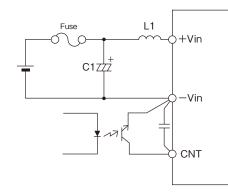


Figure9-2 Remote Sensing Not in Use

ON/OFF Control (CNT Terminal)


Without turning the input on and off, the output can be enabled and disabled by CNT function. The control circuit is at input (primary) side, and CNT terminal pin is used. Use -Vin terminal as ground of CNT terminal.

If this function is unnecessary, shorten between CNT terminal and -Vin terminal.

- 1) Maximum applied voltage to CNT terminal is 35V, and the maximum reversed voltage is -0.7V. Also, the current source of CNT terminal is approximately 0.5mA. Contact 0.1μ F capacitor in between CNT and -Vin terminals as short as possible if lead wires are much longer.
- CNT terminal can be managed by opening and closing the contact of a switch or relay and ON/OFF control of photo coupler.

Insulate the ON/OFF control circuit by relay or photo coupler.

*In use of photo coupler, connect the transistor side between CNT and -Vin as short as possible.

Figure10-1 C	Connection	of CNT	Terminal
--------------	------------	--------	----------

CNT Level	Output Status		
H (over 4V) or Open	OFF		
L (below 0.8V) or Short	ON		

Table10-1 ON/OFF Control Mode

- Caution -

PH

Inside of power module could be damaged at applying input without or improper contact of -V connection. For an example, the current flows in abnormal path such as +Vin to CNT terminal leads CNT terminal blow out

To avoid such a damage, ensure all the terminals are connected before input is applied.

CS Signal (CS)

Negative voltage based on -Vo is generated for CS terminal. Using this signal, it is possible to operate in parallel by attaching parallel operating control circuit externally. Refer to "Parallel Operation" Application Note in the instruction manual for details.

Series Operation

Series operation is available for all models of PH300S, 600S series.

Contact us for details of the maximum unit number of possible connections.

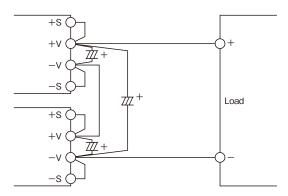


Figure12-1 Series Operation in High Output Voltage

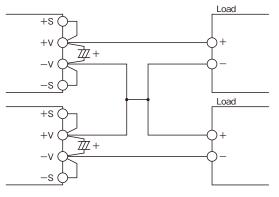


Figure12-2 ±Output Series Operation

I.O.G. Signal (IOG Terminal)

Using IOG (Inverter Output Good Signal) terminal, it is possible to monitoring good/not good operation in the power module. This monitoring signal is located at secondary (output) side and is the open collector output.

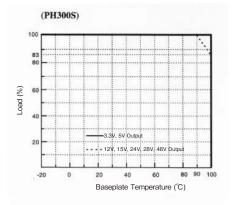
At normal inverter operation, the IOG shows LOW (maximum sink current 5mA and maximum applied voltage 35V).

Ground of IOG terminal is -S terminal.

Be aware IOG signal could be unstable in the following cases.

- Active OCP
- Low load in parallel operation
- Sudden change of load

Contact us for the details.


Operating Temperature

Installation direction is freely chosen, but consider air convection not to shut heat up in power module. Decide installation direction of printed circuit board and dispositions of components for better air convection in both forced air or convection cooling.

To keep the baselate temperature below 100 °C in actual

operation, it is possible to operate. Note the output derating is necessary in case that the baseplate temperature is over 90°C for PH300S and over 85°C for PH600S.

Refer to "Thermal Design" in Application Notes in the instruction manual for details.

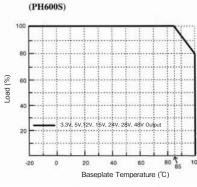
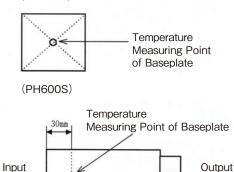
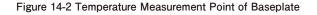




Figure14-1Output Derating Curve

- 1) Load rate (%) is expressed as higher rate for maximum output power or maximum output current.
- Maximum baseplate temperature is 100°C. Confirm it at the measuring point shown as Figure14-2 in the worst operating condition.

(PH300S)

Side

Recommend to use the baseplate temperature to derate for better improvement of converter reliability.

Operating Humidity

Note built-up condensation may cause of abnormal operation or damage of the power module.

1 Storage Temperature

Note that radical temperature changes can be a cause of condensation and affect other harmful problems to each terminal soldering.

17 Storage Humidity

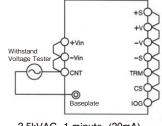
To storage under high temperature and humidity conditions, it makes each terminal oxidize. Hence, the quality of the soldering would be worse.

Cooling Method

Various cooling method can be used since the operating temperature is specified by baseplate temperature. Refer to "Thermal Design" in Application Notes in the instruction manual for details in of thermal design.

Baseplate Temperature vs. Output Regulation

Output voltage ratio is the ratio when only operating baseplate temperature changes.


Withstand Voltage

The power module is designed to withstand 2.5kVAC for input - baseplate and 3kVAC for input - output (1.5kVAC for input - baseplate and 1.5kVAC for input - output for 48VDC input model) for 1 minute. Set up the limit value of withstand voltage tester as 20mA in case of incoming goods test and so on.

Also, it is designed to withstand 500VDC for output baseplate for 1 minute. The applied voltage must be direct voltage. In a test with alternating voltage, the power module will be damaged, therefore, do not test with alternating voltage.

Do not apply the test voltage from the beginning. It shall be gradually increased from zero and also be gradually decreased for shut down. Especially using withstand voltage with timer, impulse several times as the applied voltage occurs when the switch is off by the timer, and the power module would be damaged.

Shorten at the output side as shown in the following drawing.

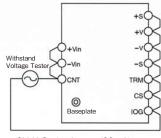

2.5kVAC 1 minute (20mA) (48VDC Input Model: 1.5kVAC)

Figure20-1 Withstand Voltage Test for Input - Baseplate

All specifications are subject to change without notice

Side

TDK·Lambda

3kVAC 1 minute (20mA) (48VDC Input Model: 1.5kVAC)

Figure20-2 Withstand Voltage Test for Input - Baseplate

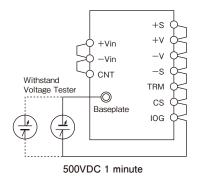
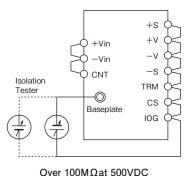



Figure20-3 Withstand Voltage Test for Output - Baseplate

Test must be curried out with direct current.

21 Isolation Resistance

Use DC isolation tester (MAX. 500V) to measure the isolation resistance between output and baseplate. The isolation resistance is more than 100M Ω at 500VDC. Note that some isolation testers would make high voltage pulse occur when the applied voltage is varied. Ensure the tester fully discharge after the test.

Over 10010132at 500 V DC

Figure21-1 Isolation Test

22 Vibration

Refer to "Installation Application Notes" in the instruction manual.

28 Shock

Value is for conditions of our shipping.

24 Others

The performance of a system with Power Module is influenced according to various conditions -- PCBs, chassis, mechanics, heat dissipation. Please evaluate actual products, and confirm its performance. (For details, please refer Power Module Application Note.)

 Please refer to "Power Module Application Note" for thermal design and mounting direction.

4. Before You Think The Module is damaged

Confirm the following items before you think the module is damaged or failed.

1) No Output

PH

- Is the rated input voltage supplied?
- Is the remote sensing terminal connected correctly?
- Is the ON/OFF control terminal connected correctly?
- For adjusted output, is the variable resistance network set up and connected correctly?
- Is there any trouble with the connected load?
- 2) High Output Voltage
 - Is the remote sensing connected correctly?
 - For adjusted output, is the variable resistance network set up and connected correctly?

3) Low Output Voltage

- Is the rated input voltage supplied?
- Is the remote sensing terminal connected correctly?
- Is it measured at sensing point?
- For adjusted output, is the variable resistance network set up and connected correctly?
- Is there any trouble with the connected load?
- 4) Over Load Regulation or Over Input Regulation
 - Is the rated input voltage supplied?
 - Are the input and output terminals connected correctly?
 - Is it measured at sensing point?
 - Are input and output wires too thin?

5) High Output Ripple

- Is it same measuring method as the instruction manual?
- Is the input ripple voltage within the specification?

B-350

3. PH300S, 600S Parallel Operation

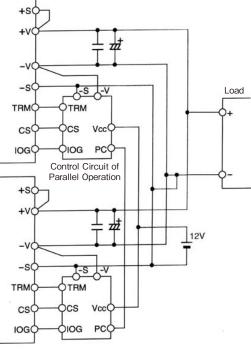
1 INTORDUCTION

PH300S, 600S series are applicable to operate in parallel with an external circuit using CS signal terminal. There are 2 different kinds of parallel operation.

(1) Parallel Operation

It is possible to enhance the output when load current can not be supplied by only one power module or to improve the reliability by derating the output power of each module.

(2) N+1 Parallel Redundant Operation


For power supply that is required high reliability, it is possible to achieve the requirement by using N+1 units of power modules for the load of N units.

In N+1 units of parallel operation, even through one of the power modules is failed the performance of the system shall be maintained because the other units cover the failure module and share the load currents.

2 PRECUATIONS

There are several basic cautions and warnings in parallel operation of PH300S, 600S series.

- Externally attach a control circuit of parallel operation in each power module.
- Available to use 11 units maximum of power modules in identical model (same output power and voltage.)
- Use specified components followed by explanations of basic connection in Instruction Manual at input and output side.
- Set the accuracy of the output voltage within ±1% to adjust the output voltage.
- Set the maximum load current below 95% of sum of the nominal output current values.
- Use same length and size of output load lines between power module and load in parallel connection.

CONNECTION CIRCUIT OF PARALLEL OPEARTION

(a) Basic Connection Circuit of Parallel Operation

Control Circuit of Parallel Operation

Figure3-1 Basic Connection Circuit of Parallel Operation Basic circuit connection is shown in Figure3-1. For control circuit of parallel operation, individually connect a circuit shown in Figure3-2 to each PH300S, 600S series of power module of parallel operation.

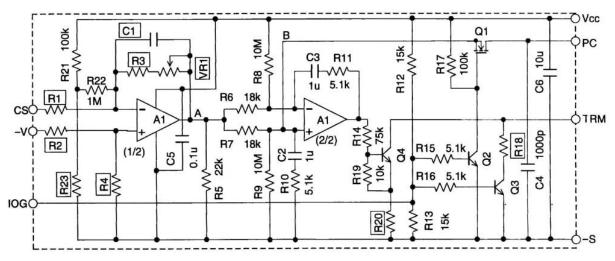


Figure 3-2 Control Circuit fo Parallel Operation

(1) Parallel Operation

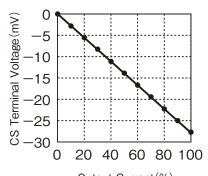
In case that the output of PH modules are connected in parallel without control circuit of parallel operation, current starts to flow from a power module with higher output voltage as increasing the load current. This state may be continued until the output voltage drops to be equal to the other modules by dynamic load or descending voltage in load wire or high output module becomes over current protection condition and output voltage decreases. Do not operate in such conditions because the load may be unbalanced and charges to only one power module.

To attach control circuits of parallel operation, the load current in each power module can be monitored, and the output voltage of modules with less load current may be increased. Then the load current may be balanced.

(2) Terminal Explanation of Figure 3-2

CS

CS terminal of each module shall be connected. Shorten a wire length from CS terminal to A1 input terminal as much as possible to avoid noise affects. Unavoidably the wire is long, then attach a capacitor (approx. 1mF) between CS terminal and -V terminal.


Negative voltage is generated at CS terminal in proportion to the output current. Figure3-3 shows an example of characteristics of CS terminal voltage (when CS terminal is opened). Under full load condition CS terminal voltage may be approximately -20mV to -60mV based on -V terminal (-100mV to -300mV for 28V, 48V output model).

CS terminal voltage can be expressed as Vcs = $-R_i \times I_o$ by descend of internal voltage of power module.

- R_i : Components of Resistor at internal output side of PH module
- Io: Output Current of PH module

Temperature coefficient of $R_{\rm i}$ is almost same resistance rate of copper and approximately 4000 ppm/°C .

For CS terminal voltage is a small voltage in negative polarity, Op-Amp A1 (1/2) is amplifier inverting shown as Figure 3-2. For all of PH modules to be in parallel operation, VR1 shall be adjusted to equalize with the voltage at A point at full load. Setting voltage of A point is 3V to 5V, and the setting accuracy is within $\pm 2\%$. Voltage adjustment of A point can be adjusted with PC terminal of open circuit.

Output Current(%) Figure3-3 Characteristics of Output Current vs. CS Terminal Voltage (Example: PH300S48-5)

-v

It is signal ground of CS terminal voltage. Apart from the wire to the load, it shall be connected near output terminal. Equalize connection method and disposition to -V terminal in each module.

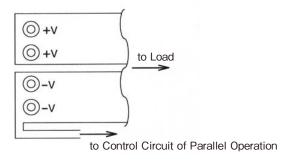


Figure3-4 -V Wiring Example

IOG

IOG terminal in each module shall be connected. IOG terminal in PH module generates LOW output with open collector output at normal operation. In control circuit of parallel operation, connection of PC terminal would be cut off by turning off MOSFET Q1 to use redundant operation when IOG terminal of PH module abnormally generates HIGH output.

Vcc

It is power supplement terminal to control circuit of parallel operation. Connect $12\pm1V$ of stable DC power supply between -S terminal and Vcc terminal. Control circuit of parallel operation in out of the above Vcc voltage range may cause mis-operation such as unstable load balance.

For models more than 12V output voltage, Vcc can be supplied by +V shown in Figure3-5. Current consumption per module in control circuit of parallel operation is approximately 10mA. Attach a capacitor (C6: 10mF) for bypass noise of power supply between Vcc terminal and -S terminal in each control circuit of parallel operation.

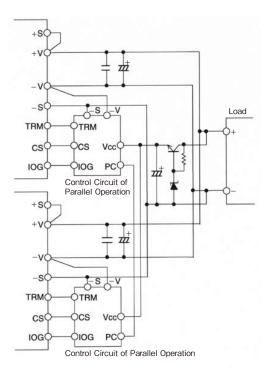


Figure3-5 Example: Vcc is supplied by +V

РС

It is control terminal for parallel operation. It is connected in all of PH modules in parallel operation. Shorten a wire between PC terminals as much as possible. Unavoidably the wire is long, then use twisted pair wire or shielded wire to avoid noise affects.

When PC terminals in parallel operation are mutually connected, voltage of all PC terminal is the average of PC terminals at open circuit. +Input side of internal Op-Amp A1(2/2) of parallel operation in proportion to the output current in the module is supplied. At -input, voltage in proportion to average of total output currents of all the module is supplied. This Op-Amp makes output voltage of PH modeles with less output current risen by TRM terminal and activates output current in PH module balance.

TRM

TRM terminal in each PH module is connected. Connecting TRM terminal, control circuit of parallel operation adjusts the output voltage of the module and balance the output current.

-S

It is GND level of control circuit of parallel operation. Internal circuit activates based on -S. It shall be connected to -S terminal of PH module. -S connection between modules is to be connected one point of earth to avoid electrical potential difference of each -S terminal of PH module by voltage drop due to output current.

(3) Component Selection

Refer to following items to select components in control circuit of parallel operation

Op-Amp (A1)

Use an Op-Amp which has singular power operation and its input common mode voltage range from OV. Moreover, it shall be low input off set voltage. For an example, uPC842C(NEC) is one of available Op-Amp.

Transistor • FET (Q1-Q3)

FET (Q1) uses as analog switch. Use N channel small signal MOS-FET for general purpose (rated more than 25V, 50mA.)

Use NPN small signal type for transistor (Q2-Q4) (rated more than 25V, 50mA.)

Capacitor (C1-C6)

For choosing capacitor(s), refer to values expressed in Figure3-2 and values for each component shown in Table3-2. Use film capacitor or ceramic capacitor which has good temperature characteristics.

The tolerance shall be less than $\pm 5\%$.

Resistor (R1-R23, VR1)

For choosing capacitor(s), refer to values expressed in Figure3-2 and values for each component shown in Table3-2. The tolerance shall be less than $\pm 5\%$.

Values for each Component

Values of Capacitor C1, Resistor R1-R4, R18, R20, R23, and Variable Resistor VR1 depend on model. Refer to Table3-1 for components in PH300S280-*and Table3-2 for components in PH600S280-*.

PH300S280, PH30048

10000200,11100040								
	3.3V	5V	12V	15V	24V	28V	48V	
C1	1000p	1000p	1000p	330p	330p	1000p	330p	
R1	1.2k	1.2k	1.2k	2.7k	5.1k	7.5k	10k	
R2	1.2k	1.2k	1.2k	2.7k	5.1k	7.5k	10k	
R3	150k	150k	300k	430k	750k	470k	750k	
R4	180k	180k	360k	470k	820k	510k	820k	
R18	9.1k	30k	30k	30k	30k	30k	30k	
R20	5.6k	12k	15k	15k	15k	15k	15k	
R23	18k	18k	11k	4.7k	2.4k	1.8k	360k	
VR1	50k	50k	100k	100k	200k	100k	200k	

Table3-1 PH300S280, PH300S48 Values for components in Control Circuit of Parallel Operation

PH600S280

	3.3V	5V	12V	15V	24V	28V	48V
C1	1000p	1000p	1000p	330p	330p	1000p	1000p
R1	1.2k	1.2k	1.2k	2.7k	5.1k	7.5k	10k
R2	1.2k	1.2k	1.2k	2.7k	5.1k	7.5k	10k
R3	180k	180k	220k	360k	510k	200k	390k
R4	200k	200k	270k	390k	560k	240k	430k
R18	9.1k	30k	30k	30k	30k	30k	30k
R20	5.6k	12k	15k	15k	15k	15k	15k
R23	18k	18k	11k	4.7k	2.4k	1.8k	360k
VR1	50k	50k	100k	100k	200k	100k	100k

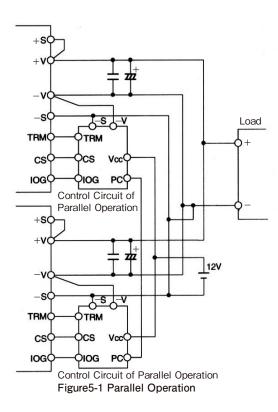
Table 3-2 PH600S280

Values for components in Control Circuit of Parallel Operation

unit : C[F], R[Ω]

Others

Values of capacitors and resistors are recommended values to operate power modules which have components used in basic connection shown in Application Note. These values may sometimes differ from the optimum values because of components at input and output side and wiring environment. Confirm the performance of the circuit using actual module when each value is determined.


4 Cautions for Wiring

Wiring from Input of A1 (1/2) to CS and -V terminals shall be minimum length. Be aware of noise affects for A1 (1/2) which makes small voltage amplify tens to hundreds times. Also, load wire to united point of each load wire from output of the power supply shall be minimum length too. Long wiring can cause mis-operation of control circuit of parallel operation. Unavoidably the wire is long, then attach an approx. 1mF capacitor between -V terminal and -S terminal.

If -S wiring is close by and parallel to load wire, use shielded wire or twisted pair wire to connect -S to -V and also -S itself. Without any measure, electrode of -S may be unstable by influences of load wire and mis-operation may be occurred.

5 Parallel Operation

(a) Parallel operation to enhance the output and to improve the reliability

(b) Parallel Operation programmed output voltage

PH

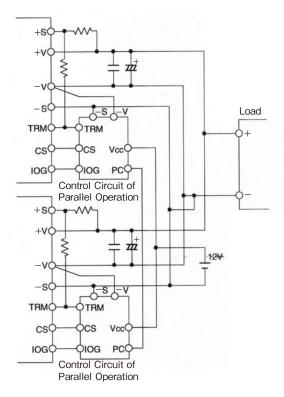
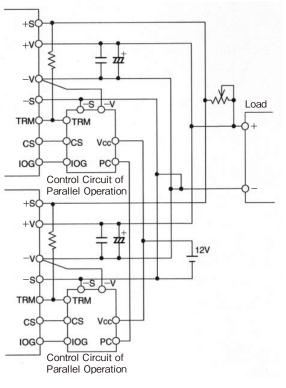
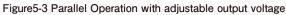




Figure 5-2 Parallel Operation at programmed ouput voltage

(c) Parallel Operation with adjustable output voltage

6 N+1 Redundant Operation

(a) N+1 Redundant Operation

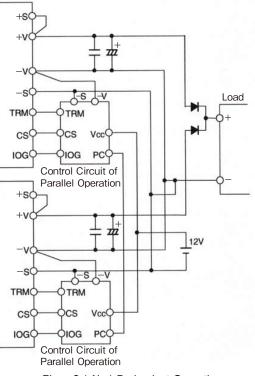
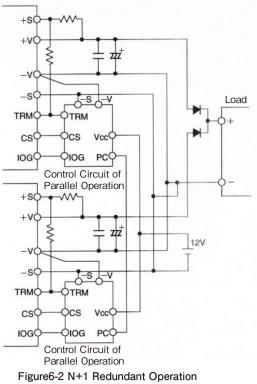
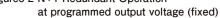
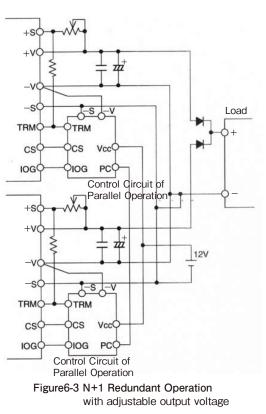




Figure6-1 N+1 Redundant Operation


TDK·Lambda

(b) Connection of N+1 Redundant Operation at programmed output voltage within the range

(c) N+1 Redundant Operation with adjustable output voltage

PH

TDK·Lambda