SK 40GB123

SEMITOP[®] 2

IGBT Module

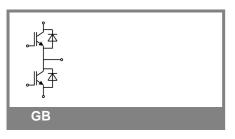
SK 40GB123

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Remarks

V_F = chip level value

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 125 °C	T _s = 25 °C	40	A	
		T _s = 80 °C	27	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse	Diode				
I _F	T _j = 150 °C	T _s = 25 °C	48	А	
		T _s = 80 °C	34	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		60	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 1,2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 30 V, V_{CE} = V_{CES}	T _j = 25 °C			0,2	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			560	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,2		V	
		T _j = 125 °C		1,2		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		43		mΩ	
		T _j = 125°C		63		mΩ	
V _{CE(sat)}	I _{Cnom} = 30 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	3	V	
		T _j = 125°C _{chiplev.}		3,1	3,7	V	
C _{ies}		·		2		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,3		nF	
C _{res}				0,14		nF	
t _{d(on)}				35		ns	
t,	R _{Gon} = 20 Ω	V _{CC} = 600V		45		ns	
É _{on}		I _{Cnom} = 30A		3,2		mJ	
t _{d(off)}	R _{Goff} = 20 Ω	T _j = 125 °C		250		ns	
t _f		V _{GE} =±15V		45		ns	
E _{off}				3,6		mJ	
R _{th(j-s)}	per IGBT				0,85	K/W	

SK 40GB123

SEMITOP[®] 2

IGBT Module

SK 40GB123

Preliminary Data

Features

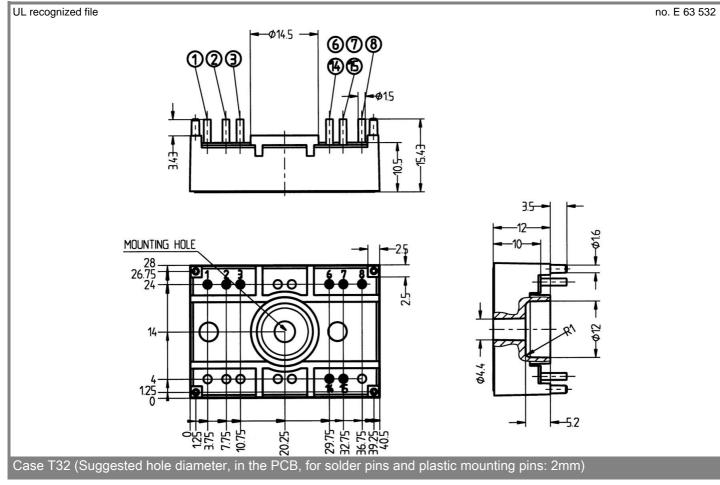
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence

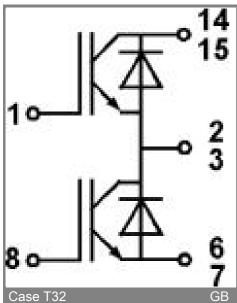
Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Remarks

V_F = chip level value


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse D	Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V			
		T _j = 125 °C _{chiplev.}		1,8		V			
V _{F0}		T _j = 125 °C		1	1,2	V			
r _F		T _j = 125 °C		53	73	mΩ			
I _{RRM}	I _{Fnom} = 30 A	T _j = 125 °C		32		А			
Q _{rr}	di/dt = 400 A/µs			5,4		μC			
E _{rr}	V _{CC} = 600V			1,2		mJ			
R _{th(j-s)D}	per diode				1	K/W			
M _s	to heat sink M1				2	Nm			
w				21		g			


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK 40GB123

