Product specification

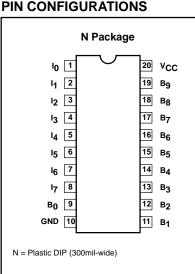
PLS153/A

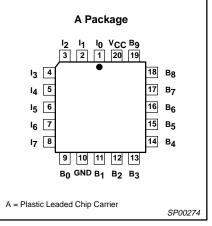
DESCRIPTION

The PLS153 and PLS153A are two-level logic elements, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.

On-chip T/C buffers couple either True (I, B) or Complement (I, \overline{B}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.

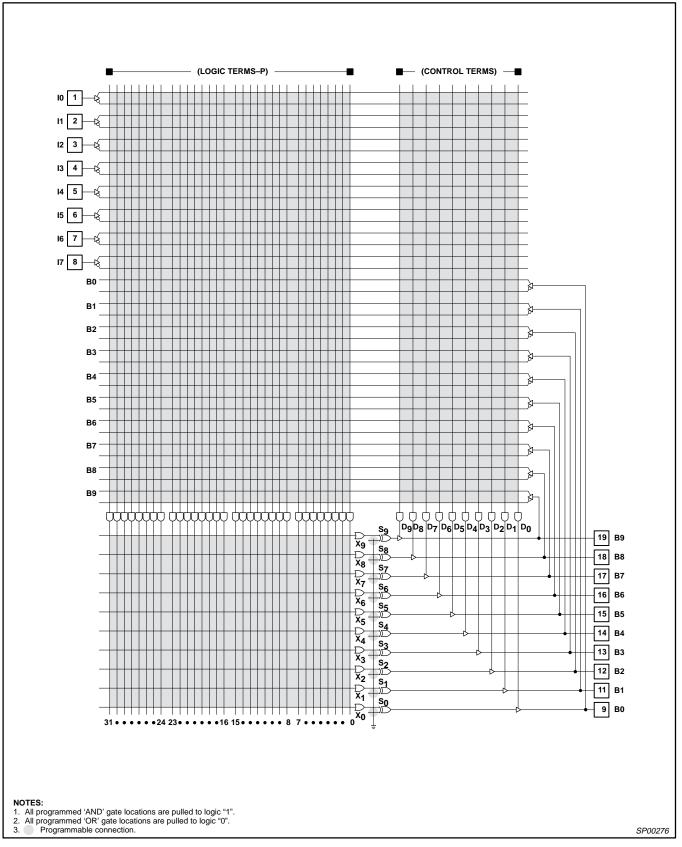

The PLS153 and PLS153A are field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment.


FEATURES

- Field-Programmable (Ni-Cr links)
- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 product terms:
 - 32 logic terms
 - 10 control terms
- I/O propagation delay:
- PLS153: 40ns (max)
- PLS153A: 30ns (max)
- Input loading: -100µA (max)
- Power dissipation: 650mW (typ)
- 3-State outputs
- TTL compatible

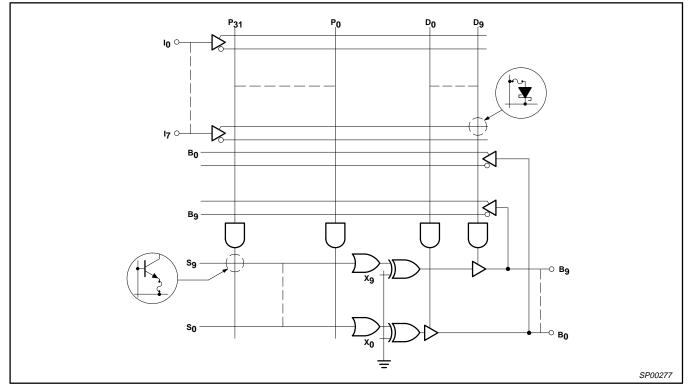
APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing



ORDERING INFORMATION

DESCRIPTION	ORDER CODE	DRAWING NUMBER		
20-Pin Plastic Dual In-Line, 300mil-wide	PLS153N, PLS153AN	0408B		
20-Pin Plastic Leaded Chip Carrier	PLS153A, PLS153AA	0400E		


PLS153/A

LOGIC DIAGRAM

PLS153/A

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS¹

		RATI		
SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{CC}	Supply voltage		+7	V _{DC}
V _{IN}	Input voltage		+5.5	V _{DC}
V _{OUT}	Output voltage		+5.5	V _{DC}
I _{IN}	Input currents	-30	+30	mA
I _{OUT}	Output currents		+100	mA
T _{amb}	Operating temperature range	0	+75	°C
T _{stg}	Storage temperature range	-65	+150	°C

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

Product specification

LOGIC FUNCTION

TYPICAL PRODUCT TERM: $Pn = A \cdot B \cdot C \cdot D \cdot \ldots$ TYPICAL LOGIC FUNCTION: AT OUTPUT POLARITY = H Z = P0 + P1 + P2 . . . AT OUTPUT POLARITY = L Z = P0 + P1 + P2 + . . . $\mathsf{Z} = \overline{\mathsf{P0}} \cdot \overline{\mathsf{P1}} \cdot \overline{\mathsf{P2}} \cdot \ldots$ NOTES: For each of the 10 outputs, either function Z (Active-High) or Z (Active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates. 2. Z. A. B. C. etc. are user defined connections to fixed

inputs (I) and bidirectional pins (B).

SP00275

THERMAL RATINGS

TEMPERATURE				
Maximum junction	150°C			
Maximum ambient	75°C			
Allowable thermal rise ambient to junction	75°C			

The PLS153/A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Philips Semiconductors Military Data Handbook.

DC ELECTRICAL CHARACTERISTICS

 $0^{\circ}C \le T_{amb} \le +75^{\circ}C, 4.75V \le V_{CC} \le 5.25V$

				LIMITS			
SYMBOL PARAMETER		TEST CONDITIONS	MIN	TYP ¹ MAX		UNIT	
Input volt	age ²	•					
V _{IL}	Low	V _{CC} = MIN			0.8	V	
V _{IH}	High	$V_{CC} = MAX$	2.0				
V _{IC}	Clamp ³	$V_{CC} = MIN, I_{IN} = -12mA$		-0.8	-1.2	V	
Output vo	oltage ²	•					
		V _{CC} = MIN					
V _{OL}	Low ⁴	I _{OL} = 15mA			0.5	V	
V _{OH}	High ⁵	$I_{OH} = -2mA$	2.4			V	
Input cur	rent ⁹						
		V _{CC} = MAX					
IIL	Low	$V_{IN} = 0.45V$			-100	μA	
I _{IH}	High	V _{IN} = 5.5V			40	μA	
Output cu	urrent						
		V _{CC} = MAX					
I _{O(OFF)}	Hi-Z state ⁸	V _{OUT} = 5.5V			80	μA	
		V _{OUT} = 0.45V			-140		
I _{OS}	Short circuit ^{3, 5, 6}	V _{OUT} = 0V	-15		-70	mA	
I _{CC}	V _{CC} supply current ⁷	V _{CC} = MAX		130	155	mA	
Capacitar	nce			-	-		
		$V_{\rm CC} = 5V$					
C _{IN}	Input	V _{IN} = 2.0V		8		pF	
CB	I/O	V _B = 2.0V		15		pF	

NOTES:

1. All typical values are at $V_{CC} = 5V$, $T_{amb} = +25^{\circ}C$.

2. All voltage values are with respect to network ground terminal.

3. Test one at a time.

4. Measured with +10V applied to I_7 .

5. Measured with +10V applied to I₀₋₇. Output sink current is supplied through a resistor to V_{CC}.

6. Duration of short circuit should not exceed 1 second.

7. I_{CC} is measured with $I_0,\,I_1$ at 0V, I_2-I_7 and B_{0-9} at 4.5V.

8. Leakage values are a combination of input and output leakage.

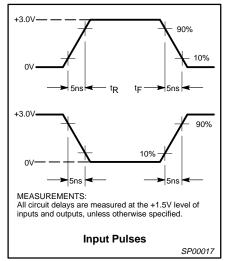
9. I_{IL} and I_{IH} limits are for dedicated inputs only $(I_0 - I_7)$.

PLS153/A

PLS153/A

Product specification

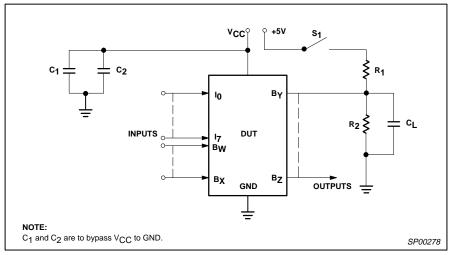
AC ELECTRICAL CHARACTERISTICS


 $0^{\circ}C \le T_{amb} \le +75^{\circ}C, \ 4.75V \le V_{CC} \le 5.25V, \ R_1 = 300\Omega, \ R_2 = 390\Omega$

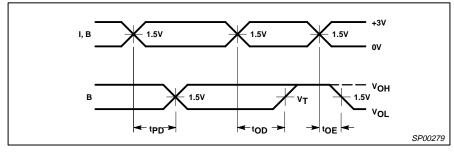
	LIMITS										
SYMBOL	PARAMETER	FROM	то	TEST		PLS153		F	PLS153A	۱	UNIT
				CONDITION	MIN	TYP ¹	MAX	MIN	TYP ¹	MAX	
t _{PD}	Propagation delay	Input ±	Output ±	$C_L = 30 pF$		30	40		20	30	ns
t _{OE}	Output enable ²	Input ±	Output –	$C_L = 30 pF$		25	35		20	30	ns
t _{OD}	Output disable ²	Input ±	Output +	C _L = 5pF		25	35		20	30	ns

NOTES:

1. All typical values are at $V_{CC} = 5V$, $T_{amb} = +25^{\circ}C$. 2. For 3-State output; output enable times are tested with $C_L = 30pF$ to the 1.5V level, and S_1 is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with CL = 5pF. High-to-High impedance tests are made to an output voltage of V_T = (V_{OH} - 0.5V) with S₁ open, and Low-to-High impedance tests are made to the V_T = (V_{OL} + 0.5V) level with S₁ closed. 3. All propagation delays are measured and specified under worst case conditions.


VOLTAGE WAVEFORMS

TIMING DEFINITIONS


SYMBOL	PARAMETER
t _{PD}	Propagation delay between input and output.
t _{OD}	Delay between input change and when output is off (Hi-Z or High).
t _{OE}	Delay between input change and when output reflects specified output level.

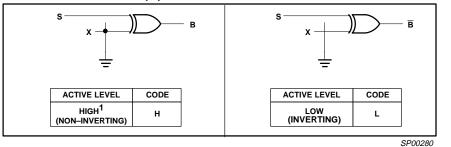
TEST LOAD CIRCUIT

PLS153/A

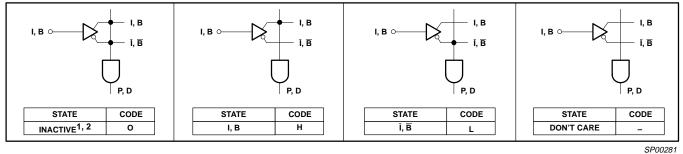
TIMING DIAGRAM

LOGIC PROGRAMMING

The PLS153/A is fully supported by industry standard (JEDEC compatible) PLD CAD tools, including Philips Semiconductors SNAP, Data I/O's ABEL[™] and Logical Devices, Inc. CUPL[™] design software packages.

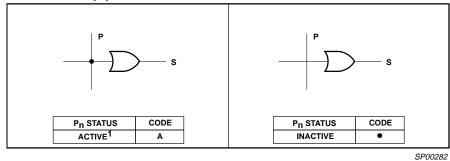

All packages allow Boolean and state equation entry formats. SNAP, ABEL and CUPL also accept, as input, schematic capture format. PLS153/A logic designs can also be generated using the program table entry format detailed on the following page. This program table entry format is supported by the Philips Semiconductors SNAP PLD design software package.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.


PROGRAMMING/SOFTWARE SUPPORT

Refer to Section 9 (*Development Software*) and Section 10 (*Third-Party Programmer/ Software Support*) of this data handbook for additional information

OUTPUT POLARITY – (B)


AND ARRAY - (I, B)

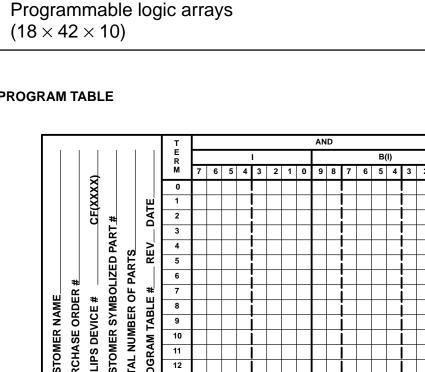
ABEL is a trademark of Data I/O Corp. CUPL is a trademark of Logical Devices, Inc.

OR ARRAY - (B)

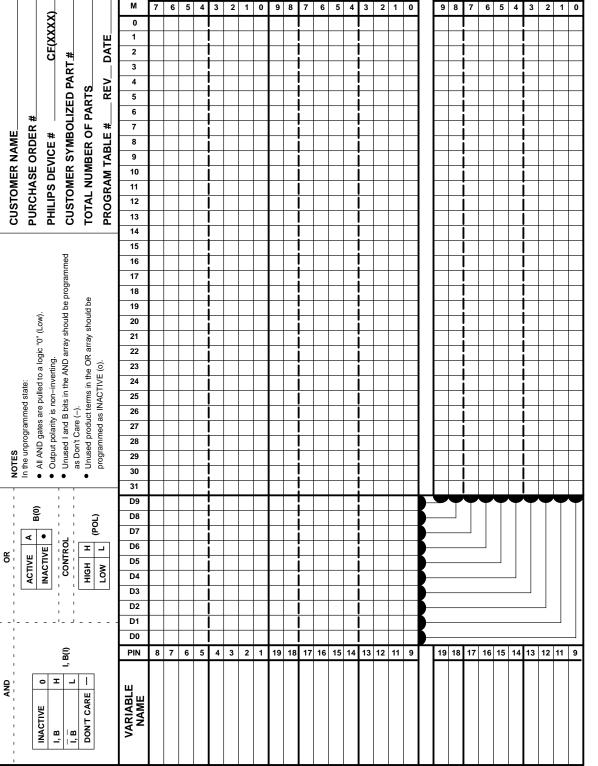
NOTES:

- 1. This is the initial unprogrammed state of all links.
- 2. Any gate P_n will be unconditionally inhibited if both the True and Complement of an input (either I or B) are left intact.

VIRGIN STATE


A factory shipped virgin device contains all fusible links intact, such that:

- 1. All outputs are at "H" polarity.
- 2. All P_n terms are disabled.
- 3. All Pn terms are active on all outputs.

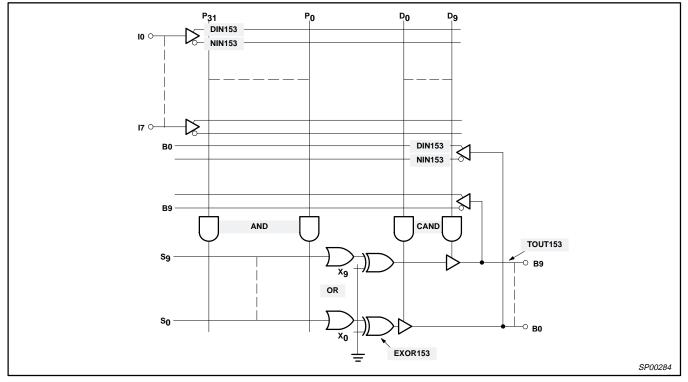

The PLS153A incorporates two columns not shown in the logic block diagram. These columns are used for in-house testing of the device in the unprogrammed state. These columns must be disabled prior to using the PLS153A in your application. If you are using a Philips Semiconductors-approved programmer, the disabling is accomplished during the device programming sequence. If these columns are not disabled, abnormal operation is possible.

Furthermore, because of these test columns, the PLS153A cannot be programmed using the programmer algorithm for the PLS153.

Philips Semiconductors Programmable Logic Devices

PROGRAM TABLE

PLS153/A


POLARITY

OR

B(0)

PLS153/A

SNAP RESOURCE SUMMARY DESIGNATIONS

