TC7S14F/FU

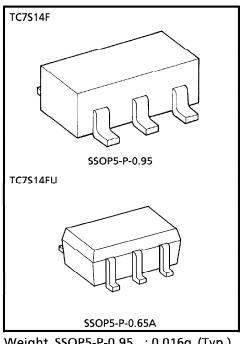
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7S14F, TC7S14FU

SCHMITT INVERTER

The TC7S14 is a high speed C²MOS SCHMITT INVERTER fabricated with silicon gate C²MOS technology. It achieves a high speed operation similar to equivalent LSTTL while maintaining the C²MOS low power dissipation.

Pin Configuration and function are the same as the TC7SU04F but input have 25% V_{CC} hysteresis and with its schmitt trigger function, the TC7S14F can be used as line receivers which will receive slow input signal. Input is equipped with protection circuits against static discharge or transinent excess voltage.

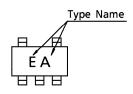

Output currents are 1/2 compared to TC74HC series

FEATURES

models.

•	High Speed	t_{pd} = 11ns (Typ.) at V_{CC} = 5V
•	Low Power Dissipation	$I_{CC} = 1\mu A$ (Max.) at $Ta = 25^{\circ}C$
•	High Noise Immunity	V _H = 1.1V at V _{CC} = 5V

Wide Operating Voltage Range ... V_{CC} (opr) = 2∼6V

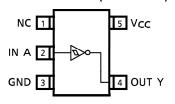


Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.)

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	V
DC Output Voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	ΙΚ	± 20	mA
Output Diode Current	lok	± 20	mA
DC Output Current	IOUT	± 12.5	mΑ
DC V _{CC} /Ground Current	Icc	± 50	mΑ
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	-65∼150	°C
Lead Temperature (10s)	TL	260	°C

MARKING


961001EBA2

■ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

LOGIC DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

TRUTH TABLE

Α	Υ
L	Η
Ι	L

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	V _{IN}	0~V _{CC}	V
Output Voltage	VOUT	0~Vcc	V
Operating Temperature	Topr	- 40~85	°C

DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION			Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC	STIVIBOL			Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	CIVII
Positive	.,			2.0	1.0	1.25	1.5	1.0	1.5	.,
Threshold Voltage	V _P		_	4.5 6.0	2.3 3.0	2.7 3.5	3.15 4.2	2.3 3.0	3.15 4.2	V
				2.0	0.3	0.65	0.9	0.3	0.9	
Negative	V _N		_	4.5	1.13	1.6	2.0	1.13	2.0	V
Threshold Voltage				6.0	1.5	2.3	2.6	1.5	2.6	
				2.0	0.3	0.6	1.0	0.3	1.0	
Hysteresis Voltage	V _H		_	4.5	0.6	1.1	1.4	0.6	1.4	V
				6.0	0.8	1.2	1.7	0.8	1.7	
	VOH	V _{IN} = V _{IL}	I _{OH} = -20μA	2.0	1.9	2.0	_	1.9	_	
High-Level				4.5	4.4	4.5	_	4.4	_	
Output Voltage				6.0	5.9	6.0	_	5.9	_	V
			$I_{OH} = -2mA$	4.5	4.18	4.31	_	4.13	_	
			I _{OH} = -2.6mA	6.0	5.68	5.80		5.63	_	
	VOL			2.0	_	0.0	0.1	_	0.1	
Low-Level			$I_{OL} = 20 \mu A$	4.5	_	0.0	0.1	_	0.1	,,
Output Voltage		$V_{IN} = V_{IH}$	1 2 4	6.0	_	0.0	0.1		0.1	V
			$I_{OL} = 2mA$ $I_{OL} = 2.6mA$	4.5 6.0		0.17	0.26 0.26		0.33 0.33	
Input Leakage Current	IN	V _{IN} = V _{CC} o		6.0	_	_	± 0.1		± 1.0	μΑ
Quiescent Supply Current	lcc	V _{IN} = V _{CC} o	or GND	6.0	_	_	1.0	_	10.0	μΑ

Output currents are 1/2 compared to TC74HC series models.

961001EBA2'

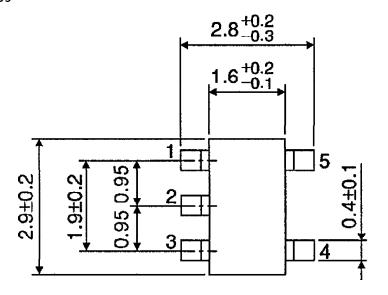
The products described in this document are subject to foreign exchange and foreign trade control laws.

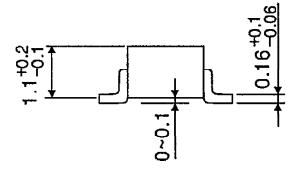
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	Т	UNIT		
CHARACTERISTIC	STIVIBUL	TEST CONDITION	MIN.	TYP.	MAX.	UNII
Output Transition	tTLH				8	
Time	tTHL	_		4		ne
Propagation Delay	t _{pLH}			11	21	ns
Time	t _{pHL}	_	_	''	41	

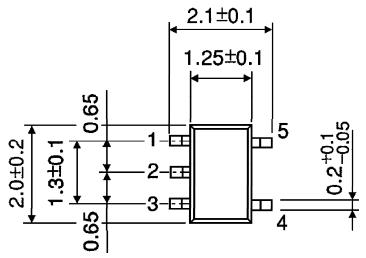

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

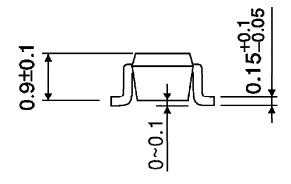

CHARACTERISTIC	SYMBOL	TEST CONDITION		Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC			Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	JUNIT
Output Transition	4		2.0	_	50	125	_	145	
Time	t _{TLH}	_	4.5	—	14	25	_	30	
Time	tTHL		6.0	—	12	21	—	24	
Propagation Dalay	4	<u> </u>	2.0	_	48	100	_	235	ns
Propagation Delay			4.5	l —	12	20	—	48	
Time	t _{pHL}		6.0	—	9	17	—	40	
Input Capacitance	CIN	_		_	5	10	_	10	
Power Dissipation Capacitance	C _{PD}	Note (1)		_	28	_	_	_	pF

Note (1): CPD is defined as the value of internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation : ICC (opr) = CPD·VCC·fIN + ICC

OUTLINE DRAWING SSOP5-P-0.95

Unit: mm




Weight: 0.016g (Typ.)

OUTLINE DRAWING

SSOP5-P-0.65A

Unit: mm

Weight: 0.006g (Typ.)