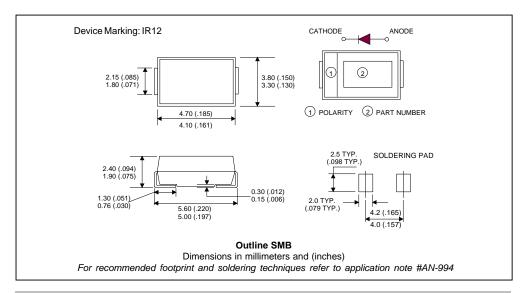

International Rectifier

MBRS120

SCHOTTKY RECTIFIER

1 Amp


Major Ratings and Characteristics

Characteristics	MBRS120	Units	
I _{F(AV)} Rectangular waveform	1.0	Α	
V _{RRM}	20	٧	
I _{FSM} @t _p =5μs sine	310	А	
V _F @ 1.0Apk,T _J =125°C	0.35	٧	
T _J range	- 65 to 150	°C	

Description/Features

The MBRS120 surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

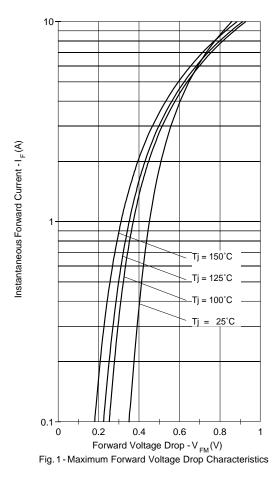
Part number	MBRS120
V _R Max. DC Reverse Voltage (V)	20
V _{RWM} Max. Working Peak Reverse Voltage (V)	20

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 138°C, rectangular wave for	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	310		5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	40		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	2.0	mJ	T _J =25 °C, I _{AS} =1A, L=4mH	
I _{AR}	Repetitive Avalanche Current	0.8	А	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Тур.	Max.	Units	Conditio	ns
V _{FM}	Max. Forward Voltage Drop (1)	0.42	0.45	V	@ 1A	T 25 %C
		0.46	0.52	V	@ 2A	T _J = 25 °C
		0.33	0.37	V	@ 1A	T 400.00
		0.39	0.45	V	@ 2A	T _J = 100 °C
		0.30	0.35	V	@ 1A	T 405.00
		0.36	0.43	V	@ 2A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current (1)	0.015	0.2	mA	T _J = 25 °C	
		2.0	6.0	mA	T _J = 100 °C	$V_R = rated V_R$
		7.0	20	mA	T _J = 125 °C	
C _T	Typical Junction Capacitance	110	-	pF	$V_R = 5V_{DC}$ (te	st signal range 100kHz to
					1Mhz), @ 25°	C
L _S	Typical Series Inductance	2.0	-	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)	


⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-65 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	30	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient		80	°C/W
Wt	Approximate Weight	0.10(0.003)	gr (oz)	
	Case Style	SMB		Similar DO-214AA
	Device Marking	IR12		

 $[\]frac{\text{(*) dPtot}}{\text{dTi}} < \frac{1}{\text{Rth(j-a)}} \text{ thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

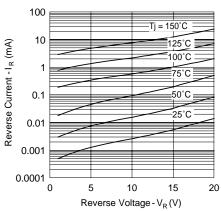


Fig. 2 - Typical Peak Reverse Current Vs. Reverse Voltage

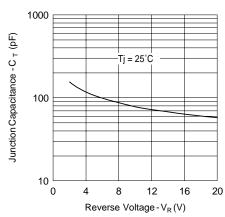


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

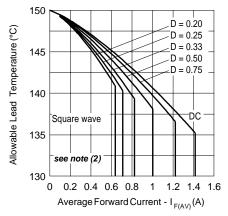


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

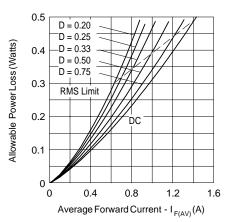


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

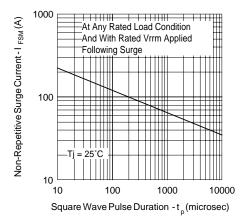
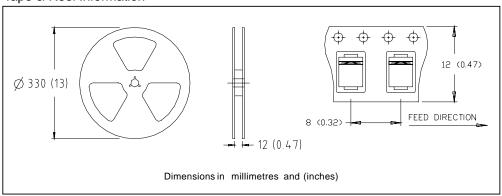
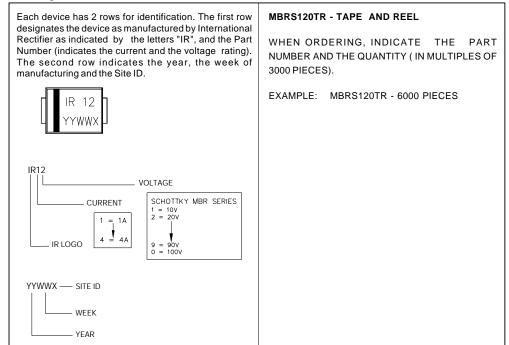



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\label{eq:pd} \textit{Pd=ForwardPowerLoss=I}_{F(AV)} x \, V_{FM} \, @ \, (I_{F(AV)} / \, D) \ \, (\text{see Fig. 6});$ $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_{R} (1 - D)$

Tape & Reel Information

Marking & Identification

Ordering Information

MBRS120

Bulletin PD-20644 rev. D 03/03

Data and specifications subject to change without notice.
This product has been designed for Industrial Level.
Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 03/03