

Product Description

Sirenza Microdevices' NGA-386 is a high performance Gallium Arsenide Heterojunction Bipolar Transistor MMIC Amplifier. Designed with InGaP process technology for improved reliability, a Darlington configuration is utilized for broadband performance up to 5 Ghz. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products.

Small Signal Gain vs. Frequency

NGA-386

DC-5000 MHz, Cascadable GaAs HBT MMIC Amplifier

Obsolete

Contact Factory

See Application Note AN-059 for Alternates

Product Features

• High Gain: 18.9dB at 1950Mhz

• Cascadable 50 ohm: 1.2:1 VSWR

Operates from Single Supply

• Low Thermal Resistance Package

Unconditionally Stable

Applications

• PA Driver Amplifier

Cellular, PCS, GSM, UMTS

• IF Amplifier

• Wireless Data, Satellite

Symbol	Parameter	Units	Frequency	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	dBm	850 MHz 1950 MHz 2400 MHz		14.5 15.0 15.6	
OIP ₃	Output Third Order Intercept Point	dBm	850 MHz 1950 MHz 2400 MHz		25.8 27.0 27.0	
G	Small Signal Gain	dB	850 MHz 1950 MHz 2400 MHz	18.8	20.9 18.9 18.0	23.0
Bandwidth	Determined by Return Loss (>10dB)	MHz			5000	
	Input VSWR	ı	DC - 5000 MHz		1.2:1	
	Output VSWR	ı	DC - 5000 MHz		1.3:1	
NF	Noise Figure	dB	2000 MHz		2.7	
V _D	Device Operating Voltage	V		3.5	4.0	4.5
I _D	Device Operating Current	mA		30	35	45
R _{TH} , j-l	Thermal Resistance (junction to lead)	°C/W			144	

Test Conditions:

 $V_s = 8 V$ $R_{BLAS} = 120 Ohms$ $I_{D} = 35 \text{ mA Typ.}$ $T_{D} = 25^{\circ}\text{C}$

 OIP_3 Tone Spacing = 1 MHz, Pout per tone = 0 dBm $Z_s = Z_1 = 50$ Ohms

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc.. All worldwide rights reserved.

Phone: (800) SMI-MMIC

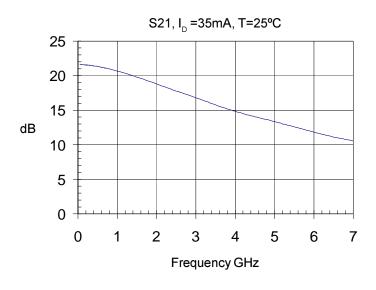
NGA-386 DC-5.0 GHz 4.0V GaAs HBT

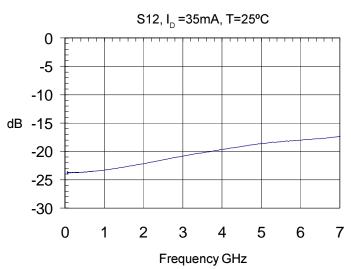
Key parameters, at typical operating frequencies:

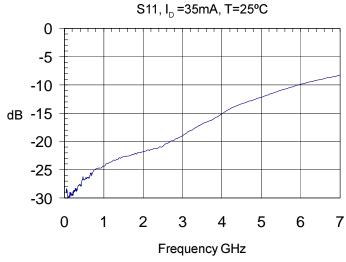
Typical			Test Condition		
Parameter	25°C	Unit	(I _D = 35mA, unless otherwise noted)		
500 MHz					
Gain	21.3	dB			
Output IP3	25.1	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm		
Output P1dB	14.6	dBm			
Input Return Loss	26.8	dB			
Isolation	23.6	dB			
850 MHz					
Gain	20.9	dB			
Output IP3	25.8	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm		
Output P1dB	14.5	dBm			
Input Return Loss	24.8	dB			
Isolation	23.4	dB			
1950 MHz					
Gain	18.9	dB			
Output IP3	27.0	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm		
Output P1dB	15.0	dBm			
Input Return Loss	22.0	dB			
Isolation	22.2	dB			
2400 MHz					
Gain	18.0	dB			
Output IP3	27.0	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm		
Output P1dB	15.6	dBm			
Input Return Loss	21.0	dB			
Isolation	21.6	dB			

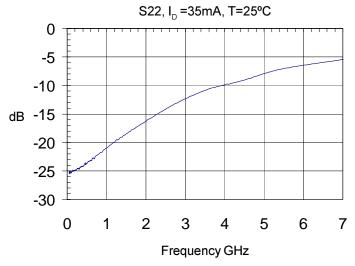
Absolute Maximum Ratings

Parameter	Absolute Limit
Max. Device Current (I _D)	70 mA
Max. Device Voltage (V _D)	6 V
Max. RF Input Power	+10 dBm
Max. Junction Temp. (T _J)	+150°C
Operating Temp. Range (T _L)	-40°C to +85°C
Max. Storage Temp.	+150°C

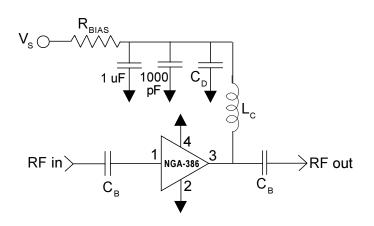

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

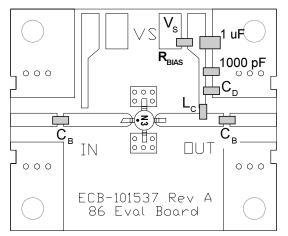

Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) / R_{T_H}$, j-I

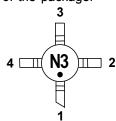




S-parameters over frequency, at 25°C






Basic Application Circuit

Part Identification Marking

The part will be marked with an "N3" designator on the top surface of the package.

Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed.

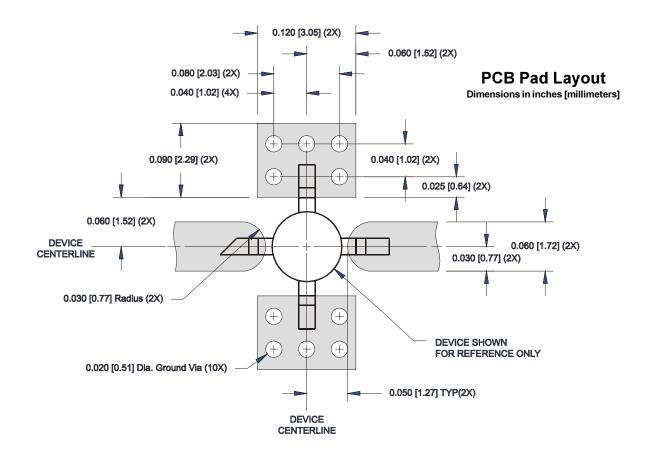
Application Circuit Element Values

Reference	Frequency (Mhz)					
Designator	500	850	1950	2400	3500	
C _B	220 pF	100 pF	68 pF	56 pF	39 pF	
C _D	100 pF	68 pF	22 pF	22 pF	15 pF	
L _c	68 nH	33 nH	22 nH	18 nH	15 nH	

Recommended Bias Resistor Values for I_D =35mA R_{BIAS} =(V_S - V_D) / I_D				
Supply Voltage(V _s)	6 V	8 V	10 V	12 V
R _{BIAS} 56 Ω 120 Ω 160 Ω 220 Ω				
Note: $R_{\mbox{\tiny BMS}}$ provides DC bias stability over temperature.				

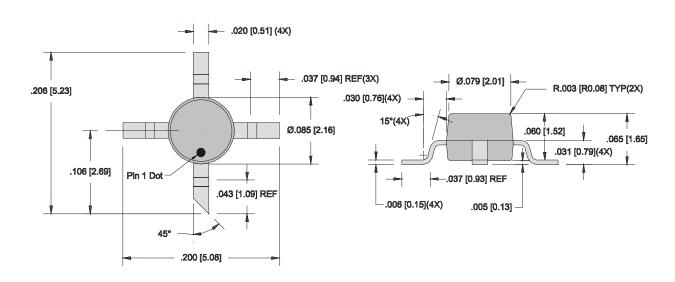
Mounting Instructions

- 1. Use a large ground pad area under device pins 2 and 4 with many plated through-holes as shown.
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.


Pin #	Function	Description		
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.		
2, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.		
3	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.		

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
NGA-386	7"	1000



Nominal Package Dimensions

Dimensions in inches [millimeters] Refer to drawing posted at www.sirenza.com for tolerances.

