High Surge Current Three-pin SIDACtor® Device

This *SIDACtor* device is a 1000 A solid state protection device offered in a TO-220 package. It protects equipment located in the severe surge environment of CATV (Community Antenna TV) systems and antenna locations.

Electrical Parameters

Part	V _{DRM}	V _S	V _T	I _{DRM}	I _S	I _T	I _H
Number *	Volts	Volts	Volts	μAmps	mAmps	Amps	mAmps
P6002ADL	550	700	5.5	5	800	2.2	50

^{* &}quot;L" in part number indicates RoHS compliance. For non-RoHS compliant device, delete "L" from part number. For surge ratings, see table below.

Electrical Parameters

Part	V _{DRM}	V _S	V _T	I _{DRM}	I _S	I _T	I _H
Number *	Volts	Volts	Volts	μAmps	mAmps	Amps	mAmps
P3100ADL	280	360	5.5	5	800	2.2	

^{* &}quot;L" in part number indicates RoHS compliance. For non-RoHS compliant device, delete "L" from part number. For surge ratings, see table below.

General Notes

- All measurements are made at an ambient temperature of 25 °C. Ipp applies to -40 °C through +85 °C temperature range.
- IPP is a repetitive surge rating and is guaranteed for the life of the product.
- · Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM}.
- V_S is measured at 100 V/μs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

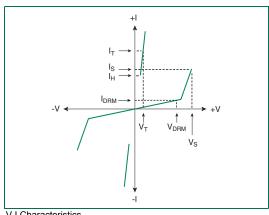
Surge Ratings in Amps

		l _{PP}			
	8x20 * 1.2x50 **	10x1000 * 10x1000 **	I _{TSM} 50 / 60 Hz	di/dt	
Series	Amps	Amps	Amps	Amps/µs	
D	1000	250	120	500	

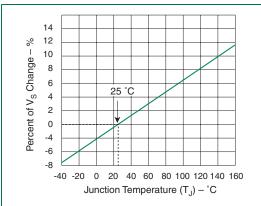
^{*} Current waveform in µs

Note: P6002AD is shown. P3100AD has no center lead.

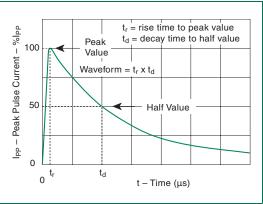
^{**} Voltage waveform in μs

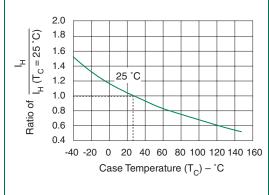

Thermal Considerations

Package	Symbol	Parameter	Value	Unit
	T_J	Operating Junction Temperature Range	-40 to +150	°C
Modified TO-220	T _S	Storage Temperature Range	-65 to +150	°C
PIN 1 PIN 3	$R_{ hetaJA}$	Thermal Resistance: Junction to Ambient	60	°C/W


Capacitance Values

	pF		
Part Number	MIN	MAX	
P6002ADL	60	200	
P3100ADL	100	150	


Note: Off-state capacitance (C_{O}) is measured at 1 MHz with a 2 V bias.


V-I Characteristics

Normalized V_S Change versus Junction Temperature

t_r x t_d Pulse Waveform

Normalized DC Holding Current versus Case Temperature