```
SAA1042
SAA1042
```


Stepper Motor Driver

The SAA1042 drives a two-phase stepper motor in the bipolar mode. The device contains three input stages, a logic section and two output stages. The IC is contained in a 16 pin dual-in-line heat tab plastic package for improved heatsinking capability. The center four ground pins are connected to the copper alloy heat tab and improve thermal conduction from the die to the circuit board.

- Drive Stages Designed for Motors: 6.0 V and 12 V : SAA1042V
- $500 \mathrm{~mA} /$ Coil Drive Capability
- Built-In Clamp Diodes for Overvoltage Suppression
- Wide Logic Supply Voltage Range
- Accepts Commands for CW/CCW and Half/Full Step Operation
- Inputs Compatible with Popular Logic Families: MOS, TTL, DTL
- Set Input Defined Output State
- Drive Stage Bias Adaptable to Motor Power Dissipation for Optimum Efficiency

Figure 1. Representative Block Diagram

ORDERING INFORMATION

Device	Operating Temperature Range	Package
SAA1042V	$\mathrm{TJ}_{\mathrm{J}}=-30^{\circ}$ to $+125^{\circ} \mathrm{C}$	Plastic DIP

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	SAA1042V	Unit
Clamping Voltage (Pins 1, 3, 14, 16)	$\mathrm{V}_{\text {clamp }}$	20	V
Over Voltage ($\mathrm{V}_{\mathrm{OV}}=\mathrm{V}_{\text {clamp }}-\mathrm{V}_{\mathrm{M}}$)	V_{OV}	6.0	V
Supply Voltage	V_{CC}	20	V
Switching or Motor Current/Coil	1 M	500	mA
Input Voltage (Pins 7, 8, 10)	$V_{\text {in }}$ clock $\mathrm{V}_{\text {in }}$ Full/Half $V_{\text {in }}$ CW/CCW	V_{CC}	V
Power Dissipation (Note 1) Thermal Resistance, Junction-to-Air Thermal Resistance, Junction-to-Case	$\begin{aligned} & \hline \mathrm{PD} \\ & \theta \mathrm{JA} \\ & \theta \mathrm{JC} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 80 \\ & 15 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{w} \end{gathered}$
Operating Junction Temperature Range	TJ	-30 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: 1. The power dissipation (P_{D}) of the circuit is given by the supply voltage (V_{M} and V_{C}) and the motor current $\left(I_{M}\right)$, and can be determined from Figures 3 and $5 . \mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\text {drive }}-\mathrm{P}_{\text {logic }}$.
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Pin(s)	Symbol	$\mathrm{V}_{\text {cc }}$	Min	Typ	Max	Unit
Supply Current	11	ICC	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 20 \mathrm{~V} \end{aligned}$	-	-	$\begin{aligned} & 3.5 \\ & 8.5 \end{aligned}$	mA
Motor Supply Current (IPin $6=-400 \mu \mathrm{~A}$, Pins 1, 3, 14, 16 Open) $\begin{aligned} & \mathrm{V}_{\mathrm{M}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{M}}=24 \mathrm{~V} \end{aligned}$	15	1 M	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	—	mA
Input Voltage, High State	7, 8, 10	V_{IH}	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 7.0 \\ & 10 \\ & 14 \end{aligned}$	-	-	V
Input Voltage, Low State		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 1.5 \\ & 2.5 \\ & 3.5 \end{aligned}$	
Input Reverse Current, High State $\left(V_{i n}=V_{C C}\right)$	7, 8, 10	IIR	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 20 \mathrm{~V} \end{aligned}$	-	-	$\begin{aligned} & \hline 2.0 \\ & 2.0 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
Input Forward Current, Low State $\left(V_{\text {in }}=G n d\right)$		IIF	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline-10 \\ & -25 \\ & -40 \\ & -50 \end{aligned}$	-	-	
$\begin{aligned} & \text { Output Voltage, High State }\left(\mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\right) \\ & I_{\text {out }}=-500 \mathrm{~mA} \\ & \mathrm{I}_{\text {out }}=-50 \mathrm{~mA} \end{aligned}$	1, 3, 14, 16	V_{OH}	$\begin{aligned} & 5.0- \\ & 20 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{M}}-2.0 \\ & \mathrm{~V}_{\mathrm{M}}-1.2 \end{aligned}$		V
Output Voltage, Low State $\begin{aligned} & \text { lout }=500 \mathrm{~mA} \\ & \text { l }_{\text {out }}=50 \mathrm{~mA} \end{aligned}$		V_{OL}	$\begin{aligned} & 5.0- \\ & 20 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 0.7 \\ & 0.2 \end{aligned}$		
Output Leakage Current, Pin $6=$ Open $\left(\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {clamp max }}\right)$	1, 3, 14, 16	IDR	$\begin{aligned} & 5.0- \\ & 20 \mathrm{~V} \end{aligned}$	-100	-	-	$\mu \mathrm{A}$
Clamp Diode Forward Voltage (Drop at $\mathrm{I}_{\mathrm{M}}=500 \mathrm{~mA}$)	2	V_{F}	-	-	2.5	3.5	V
Clock Frequency	7	f_{C}	$\begin{aligned} & 5.0- \\ & 20 \mathrm{~V} \end{aligned}$	0	-	50	kHz
Clock Pulse Width	7	$\mathrm{t}_{\text {w }}$	$\begin{aligned} & 5.0- \\ & 20 \mathrm{~V} \end{aligned}$	10	-	-	$\mu \mathrm{s}$
Set Pulse Width	6	$\mathrm{t}_{\text {s }}$	-	10	-	-	$\mu \mathrm{s}$
Set Control Voltage, High State Low State	6	-	-	V_{M}	-	$\overline{0.5}$	V

SAA1042
 INPUT/OUTPUT FUNCTIONS

Clock - (Pin 7) This input is active on the positive edge of the clock pulse and accepts Logic '1' input levels dependent on the supply voltage and includes hysteresis for noise immunity.
CW/CCW - (Pin 10) This input determines the motor's rotational direction. When the input is held low, (OV, see the electrical characteristics) the motor's direction is nominally clockwise (CW). When the input is in the high state, Logic ' 1 ', the motor direction is nominally counter clockwise (CCW), depending on the motor connections.
Full/Half Step - (Pin 8) This input determines the angular rotation of the motor for each clock pulse. In the low state, the motor will make a full step for each applied clock pulse, while in the high state, the motor will make half a step.
$V_{\mathbf{D}}$ - (Pin 2) This pin is used to protect the outputs (1, 3,14, 16) where large positive spikes occur due to switching the motor coils. The maximum allowable voltage on these pins is the clamp voltage ($\mathrm{V}_{\text {clamp }}$). Motor performance is improved if a zener diode is connected between Pin 2 and 15, as shown in Figure 1.

The following conditions have to be considered when selecting the zener diode:

$$
\begin{aligned}
\mathrm{V}_{\text {clamp }} & =\mathrm{V}_{\mathrm{M}}+6.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{Z}} & =\mathrm{V}_{\text {clamp }}-\mathrm{V}_{\mathrm{M}}-\mathrm{V}_{\mathrm{F}}
\end{aligned}
$$

where: $\quad V_{F}=$ clamp diodes forward voltage drop (see Figure 4)
Vclamp: $\leq 20 \mathrm{~V}$ for SAA1042V $\leq 30 \mathrm{~V}$ for SAA1042AV

Pins 2 and 15 can be linked, in this case $\mathrm{V}_{\mathrm{Z}}=0 \mathrm{~V}$.

Set/Bias Input - (Pin 6) This input has two functions:

1) The resistor R_{B} adapts the drivers to the motor current.
2) A pulse via the resistor R_{B} sets the outputs $(1,3,14,16)$ to a defined state.
The resistor R_{B} can be determined from the graph of Figure 2 according to the motor current and voltage. Smaller values of R_{B} will increase the power dissipation of the circuit and larger values of R_{B} may increase the saturation voltage of the driver transistors.

When the "set" function is not used, terminal A of the resistor R_{B} must be grounded. When the set function is used, terminal A has to be connected to an open-collector (buffer) circuit. Figure 7 shows this configuration. The buffer circuit (off-state) has to sustain the motor voltage (V_{M}). When a
pulse is applied via the buffer and the bias resistor $\left(R_{B}\right)$, the motor driver transistors are turned off during the pulse and after the pulse has ended, the outputs will be in defined states. Figure 6 shows the Timing Diagram.

Figure 7 illustrates a typical application in which the SAA1042 drives a 12 V stepper motor with a current consumption of $200 \mathrm{~mA} /$ coil. A bias resistor (R_{B}) of $56 \mathrm{k} \Omega$ is chosen according to Figure 2.

The maximum voltage permitted at the output pin is $\mathrm{V}_{\mathrm{M}}+6.0 \mathrm{~V}$ (see Maximum Ratings table), in this application $\mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}$, therefore the maximum voltage is 18 V . The outputs are protected by the internal diodes and an external zener connected between Pins 2 and 15.

From Figure 4, it can be seen that the voltage drop across the internal diodes is about 1.7 V at 200 mA . This results in a zener voltage between Pins 2 and 15 of:

$$
\mathrm{V}_{\mathrm{Z}}=6.0 \mathrm{~V}-1.7 \mathrm{~V}=4.3 \mathrm{~V}
$$

To allow for production tolerances and a safety margin, a 3.9 V zener has been chosen for this example.

The clock is derived from the line frequency which is phase-locked by the MC14046B and the MC14024. The voltage on the clock input is normally low (Logic ' 0 '). The motor steps on the positive going transition of the clock pulse.

The Logic '0' applied to the Full/Half input (Pin 8) operates the motor in Full Step mode. A Logic '1' at this input will result in Half Step mode. The logic level state on the CW/CCW input (Pin 10), and the connection of the motor coils to the outputs determines the rotational direction of the motor.

These two inputs should be biased to a Logic ' 0 ' or ' 1 ' and not left floating. In the event of non-use, they should be tied to ground or the logic supply line, V_{CC}.

The output drivers can be set to a fixed operating point by use of the Set input and a bias resistor, RB. A positive pulse to this input turns the drivers off and sets the logic state of the outputs.

After the negative going transition of the Set pulse, and until the first positive going transition of the clock, the outputs will be:
$\mathrm{L} 1=\mathrm{L} 3=$ high and $\mathrm{L} 2=\mathrm{L} 4=$ low, (see Figure 6).
The Set input can be driven by a MC14007B or a transistor whose collector resistor is R_{B}. If the input is not used, the bottom of R_{B} must be grounded.

The total power dissipation of the circuit can be determined from Figures 3 and 5:
$\mathrm{PD}=0.9 \mathrm{~W}+0.08 \mathrm{~W}=0.98 \mathrm{~W}$.
The junction temperature can then be computed using Figure 8.

Figure 2. Bias Resistor R_{B} versus Motor Current

Figure 4. Clamp Diode Forward Current versus Forward Voltage

Figure 3. Drive Stage Power Dissipation

Figure 5. Power Dissipation versus Logic Supply Voltage

Figure 6. Timing Diagram

SAA1042

Figure 7. Typical Application

Selectable Step Rates with the Time Base Derived from the Line Frequency

Figure 8. Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and \mathbb{M} are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

