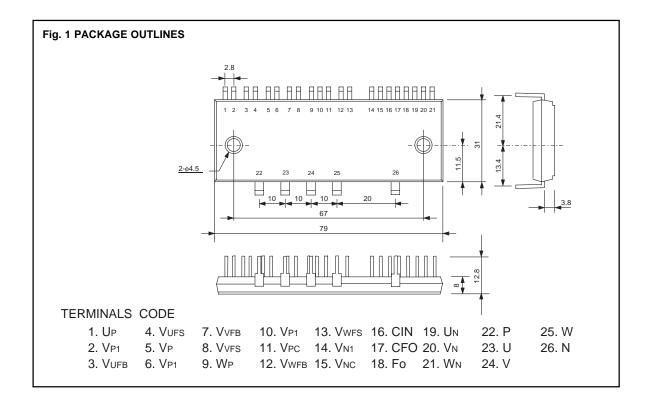
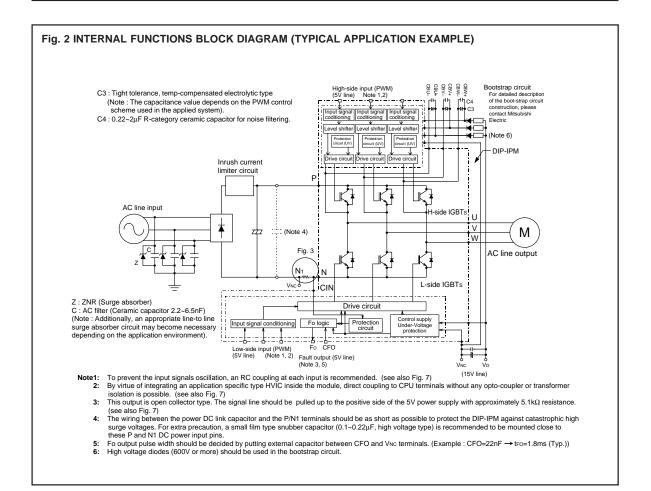
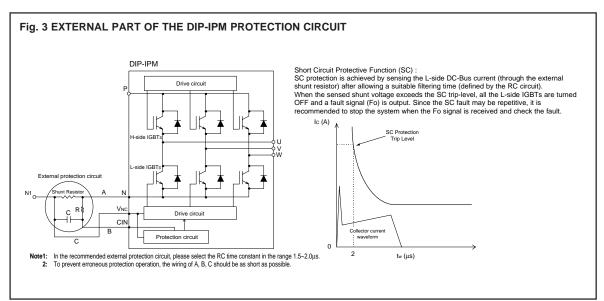

MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>


PS21204

TRANSFER-MOLD TYPE INSULATED TYPE


APPLICATION


AC100V~200V three-phase inverter drive for small power (0.75 kW) motor control.

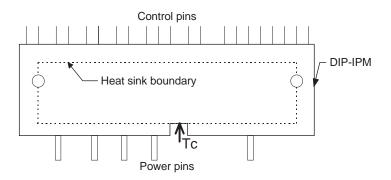
TRANSFER-MOLD TYPE INSULATED TYPE

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-N	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-N	500	V
VCES	Collector-emitter voltage		600	V
±lC	Each IGBT collector current	Tc = 25°C	15	A
±ICP	Each IGBT collector current (peak)	Tc = 25°C, instantaneous value (pulse)	30	A
Pc	Collector dissipation	Tc = 25°C, per 1 chip	43	W
Tj	Junction temperature	(Note 1)	-20~+150	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tc ≤ 100°C) however, to insure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) ≤ 125°C (@ Tc ≤ 100°C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
Vd	Control supply voltage	Applied between VP1-VPC, VN1-VNC	20	V
Vdb	Control supply voltage	Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	20	V
VCIN	Input voltage	Applied between UP, VP, WP-VPC, UN, VN, WN-VNC	-0.5~+5.5	V
Vfo	Fault output supply voltage	Applied between FO-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	15	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$V_D = V_{DB} = 13.5 \sim 16.5 V$, Inverter part T _j = 125°C, non-repetitive, less than 2 μ s	400	v
Тс	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		-40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, AC 1 minute, connection pins to heat-sink plate	1500	Vrms

Note 2 : TC MEASUREMENT POINT

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Oursels at	Descenter	Que d'itien		Limits		
Symbol Parameter	Condition		Тур.	Max.	Unit	
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	—	—	2.85	
Rth(j-c)F	resistance	Inverter FWDi part (per 1/6 module)	—	—	4.5	∘cw
Rth(c-f)	Contact thermal resistance	Case to fin, (per 1 module) thermal grease applied	_	—	0.067	C/VV

ELECTRICAL CHARACTERISTICS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

	Demonster			Limits			1.1 14
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	IC = 15A, Tj = 25°C	—	1.8	_	
	voltage	VCIN = 0V	IC = 15A, Tj = 125°C	—	2.0	—	V
VEC	FWDi forward voltage	Tj = 25°C, –I c = 15A, Vcin = 5V		—	2.2	—	V
ton		VCC = 300V, VD = VDB = 15V		—	0.7	—	
trr		IC = 15A, Tj = 125°C, V C	$CIN = 5V \rightarrow 0V$	—	0.1	—	
tc(on)	Switching times	Inductive load (upper-lower arm)		—	0.4	—	μs
toff	-	Note: ton, toff include delay time of the internal control circuit		—	1.9	—	
tc(off)				_	0.9	—	1
ICES	Collector-emitter cut-off	Tj = 25°C	_	_	1.0	mA	
current	VCE = VCES	Tj = 125°C	_	_	10		

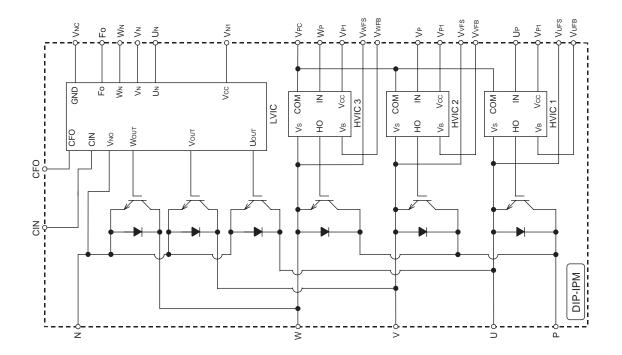
CONTROL (PROTECTION) PART

Ourseland	Devenuetor	Que divier		Limits			
Symbol Parameter		Condition		Min.	Тур.	Max.	Unit
Vd	Control supply voltage	Applied between	VP1-VPC, VN1-VNC	13.5	15.0	16.5	V
Vdb	Control supply voltage	Applied between	VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	13.5	15.0	16.5	V
ID		VD = VDB= 15V,	VP1-VPC, VN1-VNC		4.25	8.50	mA
	Circuit current	input = OFF	VUFB-VUFS, VVFB-VVFS, VWFB-VWFS		0.50	1.00	mA
	Circuit current	VD = VDB = 15V,	VP1-VPC, VN1-VNC		4.95	9.70	mA
		input = ON	VUFB-VUFS, VVFB-VVFS, VWFB-VWFS		0.50	1.00	mA
VFOH		Vsc = 0V, Fo circ	uit : 10kΩ to 5V pull-up	4.9	—	—	V
VFOL	Fault output voltage	Vsc = 1V, Fo circ	uit : $10k\Omega$ to 5V pull-up		1.0	2.0	V
VFOsat		VSC = 1V, IFO = 15mA		0.8	1.2	1.8	V
fpwm	PWM input frequency	Tc ≤ 100°C, Tj ≤ 1	Tc ≤ 100°C, Tj ≤ 125°C		5.0	_	kHz
tdead	Allowable deadtime	Relates to corresponding input signal for blocking arm shoot-through. $-20^{\circ}C \le TC \le 100^{\circ}C$		3.0	-	-	μs
VSC(ref)	Short circuit trip level	Tj = 25°C, V D = 1	5°C (Note 2)	0.45	0.5	0.55	V
UVDBt			Trip level	10.0	_	12.0	V
UVDBr	Supply circuit under-voltage	Ti ≤ 125°C	Reset level	10.5	_	12.5	V
UVDt	protection	1] = 125 C	Trip level	10.3	—	12.5	V
UVDr	-		Reset level	10.8	-	13.0	V
tFO	Fault output pulse width (Note 3)	CFO = 22nF (conr	nected between CFO–VNC)	1.0	1.8	-	ms
Vth(on)	ON threshold voltage	11	Applied between:	0.8	1.4	2.0	v
Vth(off)	OFF threshold voltage	H-side	UP, VP, WP-VPC	2.5	3.0	4.0	1 ^v
Vth(on)	ON threshold voltage	Laida	Applied between:	0.8	1.4	2.0	v
Vth(off)	OFF threshold voltage	L-side	UN, VN, WN-VNC	2.5	3.0	4.0	1 ^v

Note 2: Short circuit protection is functioning only at the low-arms. Please select the value of the external shunt resistor such that the SC triplevel is less than 25.5 A.

3 : Fault signal is output when the low-arms short circuit or control supply under-voltage protective functions operate. The fault output pulse-width tFO depends on the capacitance value of CFO according to the following approximate equation : CFO = 12.2 × 10⁻⁶ × tFO [F].

TRANSFER-MOLD TYPE INSULATED TYPE

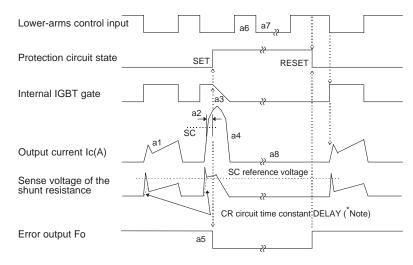

MECHANICAL CHARACTERISTICS AND RATINGS

Deveryoter	Condition		Limits			1.1
Parameter			Min.	Тур.	Max.	Unit
Mounting torque	Mounting corous M4	Recommended 12kg-cm	10	—	15	kg∙cm
	Mounting screw : M4	Recommended 1.18N·m	0.98	—	1.47	N∙m
Weight			_	54	_	g

RECOMMENDED OPERATION CONDITIONS

O week al	Demonster	Condition		Limits			
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
Vcc	Supply voltage	Applied between P-N	0	300	400	V	
Vd	Control supply voltage	Applied between VP1-VPC, VN1-VNC	13.5	15.0	16.5	V	
Vdb	Control supply voltage	Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	13.5	15.0	16.5	V	
$\Delta VD, \Delta VDB$	Control supply variation		-1	_	1.0	V/µs	
tdead	Arm shoot-through blocking time	For each input signal	3	—	—	μs	
fpwm	PWM input frequency	Tc ≤ 100°C, Tj ≤ 125°C	—	5	_	kHz	
VCIN(ON)	Input ON threshold voltage	Applied between UP, VP, WP-VPC 0~0.65			V		
VCIN(OFF)	Input OFF threshold voltage	Applied between UN, VN, WN-VNC		4.0~5.5		V	

Fig. 4 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 5 TIMING CHARTS OF THE DIP-IPM PROTECTIVE FUNCTIONS

[A] Short-Circuit Protection (Lower-arms only)

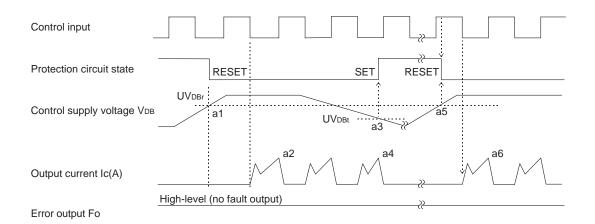
- (For the external shunt resistance and CR connection, please refer to Fig. 3.)
- a1. Normal operation : IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. Hard IGBT gate interrupt.
- a4. IGBT turns OFF.
- a5. Fo timer operation starts : The pulse width of the Fo signal is set by the external capacitor CFo.
- a6. Input "H" : IGBT OFF state.
- a7. Input "L" : IGBT ON state, but during the Fo active signal the IGBT doesn't turn ON.
- a8. IGBT OFF state.

Note : The CR time constant safe guards against erroneous SC fault signals resulting from di/dt generated voltages when the IGBT turns ON. The optimum setting for the CR circuit time constant is 1.5~2.0μs.

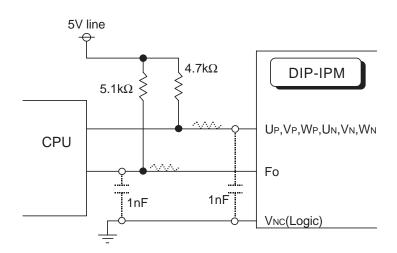
[B] Under-Voltage Protection (N-side, UVD)

- a1. Normal operation : IGBT ON and carrying current.
- a2. Under voltage trip (UVDt).
- a3. IGBT OFF inspite of control input condition.
- a4. Fo timer operation starts : The pulse width of the Fo signal is set by the external capacitor CFo.
- a5. Under voltage reset (UVDr).
- a6. Normal operation : IGBT ON and carrying current.

Control input	
Protection circuit state	SET
Control supply voltage V _D UV _{Dr} UV	V _{Dt} a5
Output current Ic(A)	a3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Error output Fo (N-side only)	a4



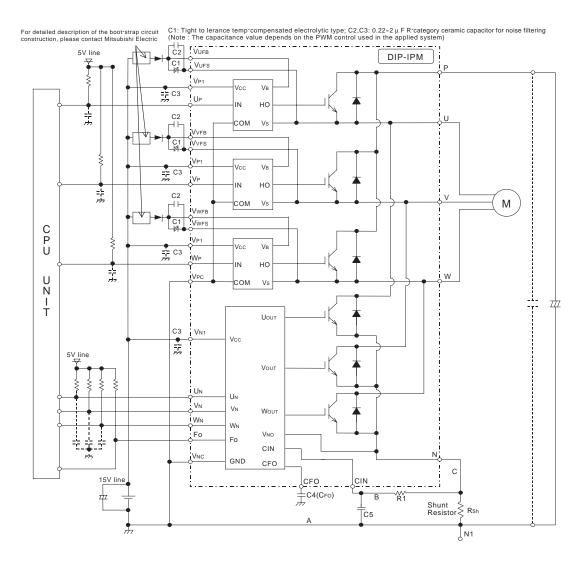
TRANSFER-MOLD TYPE INSULATED TYPE


[C] Under-Voltage Protection (P-side, UVDB)

a1. Control supply voltage rises : After the voltage level reachs UVDBr, the circuits start to operate when the next input is applied.
a2. Normal operation : IGBT ON and carrying current.
a3. Under voltage trip (UVDBi).
a4. IGBT OFF inspite of control input condition, but there is no Fo signal output.

- a5. Under-voltage reset (UVDBr).
- a6. Normal operation : IGBT ON and carrying current.

Fig. 7 RECOMMENDED CPU I/O INTERFACE CIRCUIT



Note : RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and on the wiring impedances of the application's printed circuit board.

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 8 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

Note 1: To prevent the input signals oscillation, an RC coupling at each input is recommended, and the wiring of each input should be as short as possible. (Less than 2cm)

- 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible.
- 3: Fo output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 5.1kΩ resistance.
- 4: Fo output pulse width should be decided by connecting an external capacitor between CFO and VNC terminals (CFO). (Example : CFO = $22 \text{ nF} \rightarrow \text{tFO} = 1.8 \text{ ms} (\text{typ.})$)
- 5: Each input signal line should be pulled up to the 5V power supply with approximately 4.7kΩ resistance (other RC coupling circuits at each input may be needed depending on the PWM control scheme used and on the wiring impedances of the system's printed circuit board). Approximately a 0.22~2µF by-pass capacitor should be used across each power supply connection terminals.
- 6: To prevent errors of the protection function, the wiring of A, B, C should be as short as possible.
- 7: In the recommended protection circuit, please select the R1C5 time constant in the range $1.5 \sim 2\mu$ s.
- 8: Each capacitor should be put as nearby the pins of the DIP-IPM as possible.
- 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P&N1 pins should be as short as possible. Approximately a 0.1~0.22µF snubber capacitor between the P&N1 pins is recommended.

