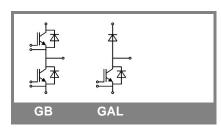


### **IGBT Modules**


SKM 150GB123D SKM 150GAL123D

#### **Features**

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

### **Typical Applications**

- AC inverter drives
- UPS



| <b>Absolute Maximum Ratings</b> $T_c = 25  ^{\circ}C$ , unless otherwise specified |                                                         |                           |                  |       |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|------------------|-------|--|
| Symbol                                                                             | Conditions                                              |                           | Values           | Units |  |
| IGBT                                                                               |                                                         |                           |                  |       |  |
| V <sub>CES</sub>                                                                   | T <sub>j</sub> = 25 °C                                  |                           | 1200             | V     |  |
| I <sub>C</sub>                                                                     | T <sub>j</sub> = 150 °C                                 | T <sub>case</sub> = 25 °C | 150              | Α     |  |
|                                                                                    |                                                         | T <sub>case</sub> = 80 °C | 110              | Α     |  |
| I <sub>CRM</sub>                                                                   | I <sub>CRM</sub> =2xI <sub>Cnom</sub>                   |                           | 200              | Α     |  |
| $V_{GES}$                                                                          |                                                         |                           | ± 20             | V     |  |
| t <sub>psc</sub>                                                                   | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V | T <sub>j</sub> = 125 °C   | 10               | μs    |  |
| Inverse D                                                                          | iode                                                    |                           |                  |       |  |
| I <sub>F</sub>                                                                     | T <sub>j</sub> = 150 °C                                 | T <sub>case</sub> = 25 °C | 150              | Α     |  |
|                                                                                    |                                                         | T <sub>case</sub> = 80 °C | 100              | Α     |  |
| I <sub>FRM</sub>                                                                   | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                   |                           | 200              | Α     |  |
| I <sub>FSM</sub>                                                                   | $t_p = 10 \text{ ms}; \sin.$                            | T <sub>j</sub> = 150 °C   | 1100             | Α     |  |
| Freewhee                                                                           | ling Diode                                              |                           |                  |       |  |
| I <sub>F</sub>                                                                     | T <sub>j</sub> = 150 °C                                 | $T_{case}$ = 25 °C        | 200              | Α     |  |
|                                                                                    |                                                         | T <sub>case</sub> = 80 °C | 135              | Α     |  |
| I <sub>FRM</sub>                                                                   |                                                         |                           | 300              | Α     |  |
| I <sub>FSM</sub>                                                                   | t <sub>p</sub> = 10 ms; sin.                            | T <sub>j</sub> = 150 °C   | 1440             | Α     |  |
| Module                                                                             |                                                         |                           |                  |       |  |
| I <sub>t(RMS)</sub>                                                                |                                                         |                           | 500              | Α     |  |
| T <sub>vj</sub>                                                                    |                                                         |                           | - 40 + 150       | °C    |  |
| T <sub>stg</sub>                                                                   |                                                         |                           | -40 <b>+</b> 125 | °C    |  |
| V <sub>isol</sub>                                                                  | AC, 1 min.                                              |                           | 2500             | V     |  |

| <b>Characteristics</b> $T_c = 25  ^{\circ}\text{C}$ , unless otherwise specified |                                                   |                                         |      |      |      | ecified          |
|----------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|------|------|------|------------------|
| Symbol                                                                           | Conditions                                        |                                         | min. | typ. | max. | Units            |
| IGBT                                                                             |                                                   |                                         |      |      |      |                  |
| $V_{GE(th)}$                                                                     | $V_{GE} = V_{CE}$ , $I_C = 4 \text{ mA}$          |                                         | 4,5  | 5,5  | 6,5  | V                |
| I <sub>CES</sub>                                                                 | $V_{GE} = 0 V, V_{CE} = V_{CES}$                  | T <sub>j</sub> = 25 °C                  |      | 0,1  | 0,3  | mA               |
|                                                                                  |                                                   | T <sub>j</sub> = 125 °C                 |      |      |      | mA               |
| V <sub>CE0</sub>                                                                 |                                                   | T <sub>j</sub> = 25 °C                  |      | 1,4  | 1,6  | V                |
|                                                                                  |                                                   | T <sub>j</sub> = 125 °C                 |      | 1,6  | 1,8  | V                |
| r <sub>CE</sub>                                                                  | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C                   |      | 11   | 14   | mΩ               |
|                                                                                  |                                                   | T <sub>j</sub> = 125°C                  |      | 15   | 19   | $\text{m}\Omega$ |
| V <sub>CE(sat)</sub>                                                             | I <sub>Cnom</sub> = 100 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = °C <sub>chiplev.</sub> |      | 2,5  | 3    | V                |
| C <sub>ies</sub>                                                                 |                                                   |                                         |      | 6,5  | 8,5  | nF               |
| C <sub>oes</sub>                                                                 | $V_{CE} = 25, V_{GE} = 0 V$                       | f = 1 MHz                               |      | 1    | 1,5  | nF               |
| C <sub>res</sub>                                                                 |                                                   |                                         |      | 0,5  | 0,6  | nF               |
| $Q_G$                                                                            | V <sub>GE</sub> = -8V - +20V                      |                                         |      | 1000 |      | nC               |
| R <sub>Gint</sub>                                                                | T <sub>j</sub> = °C                               |                                         |      | 2,5  |      | Ω                |
| t <sub>d(on)</sub>                                                               |                                                   |                                         |      | 160  | 320  | ns               |
| t <sub>r</sub>                                                                   | $R_{Gon}$ = 6,8 $\Omega$                          | V <sub>CC</sub> = 600V                  |      | 80   | 160  | ns               |
| E <sub>on</sub>                                                                  |                                                   | I <sub>C</sub> = 100A                   |      | 13   |      | mJ               |
| t <sub>d(off)</sub>                                                              | $R_{Goff} = 6.8 \Omega$                           | T <sub>j</sub> = 125 °C                 |      | 400  | 520  | ns               |
| t <sub>f</sub>                                                                   |                                                   | $V_{GE} = \pm 15V$                      |      | 70   | 100  | ns               |
| E <sub>off</sub>                                                                 |                                                   |                                         |      | 11   |      | mJ               |
| R <sub>th(j-c)</sub>                                                             | per IGBT                                          |                                         |      |      | 0,15 | K/W              |

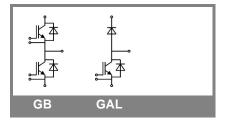


#### **IGBT Modules**

SKM 150GB123D SKM 150GAL123D

#### **Features**

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)


### Typical Applications

- AC inverter drives
- UPS

| Characte             | ristics                                          |                                                                 |      |         |       |       |
|----------------------|--------------------------------------------------|-----------------------------------------------------------------|------|---------|-------|-------|
| Symbol               | Conditions                                       |                                                                 | min. | typ.    | max.  | Units |
| Inverse D            | Diode                                            |                                                                 |      |         |       | •     |
| $V_F = V_{EC}$       | $I_{Fnom}$ = 100 A; $V_{GE}$ = 0 V               |                                                                 |      | 2       | 2,5   | V     |
|                      |                                                  | $T_j = 125 ^{\circ}C_{\text{chiplev.}}$<br>$T_j = 25 ^{\circ}C$ |      | 1,8     |       | V     |
| $V_{F0}$             |                                                  |                                                                 |      | 1,1     | 1,2   | V     |
|                      |                                                  | T <sub>j</sub> = 125 °C                                         |      |         |       | V     |
| r <sub>F</sub>       |                                                  | T <sub>j</sub> = 25 °C                                          |      | 9       | 13    | mΩ    |
|                      |                                                  | T <sub>j</sub> = 125 °C                                         |      |         |       | mΩ    |
| I <sub>RRM</sub>     | I <sub>F</sub> = 100 A                           | T <sub>j</sub> = 125 °C                                         |      | 50      |       | A     |
| Q <sub>rr</sub>      | di/dt = 1000 A/µs                                |                                                                 |      | 5       |       | μC    |
| E <sub>rr</sub>      | V <sub>GE</sub> = 0 V; V <sub>CC</sub> = 600 V   |                                                                 |      |         |       | mJ    |
| $R_{th(j-c)D}$       | per diode                                        |                                                                 |      |         | 0,3   | K/W   |
|                      | eling Diode                                      | ı                                                               |      |         |       | •     |
| $V_F = V_{EC}$       | I <sub>Fnom</sub> = 150 A; V <sub>GE</sub> = 0 V |                                                                 |      | 2       | 2,5   | V     |
|                      |                                                  | $T_j = 125 ^{\circ}C_{\text{chiplev.}}$<br>$T_j = 25 ^{\circ}C$ |      | 1,8     |       | V     |
| $V_{F0}$             |                                                  |                                                                 |      | 1,1     | 1,2   | V     |
|                      |                                                  | T <sub>j</sub> = 125 °C                                         |      |         |       | V     |
| r <sub>F</sub>       |                                                  | T <sub>j</sub> = 25 °C                                          |      | 6       | 8,7   | V     |
|                      |                                                  | T <sub>j</sub> = 125 °C                                         |      |         |       | V     |
| I <sub>RRM</sub>     | I <sub>F</sub> = 100 A                           | T <sub>j</sub> = 25 °C                                          |      | 40<br>5 |       | A     |
| Q <sub>rr</sub>      | \/ -0\/:\/ -600\/                                |                                                                 |      | 5       |       | μC    |
| E <sub>rr</sub>      | V <sub>GE</sub> = 0 V; V <sub>CC</sub> = 600 V   |                                                                 |      |         |       | mJ    |
| $R_{th(j-c)FD}$      | per diode                                        |                                                                 |      |         | 0,25  | K/W   |
| Module               | i.                                               | ı                                                               |      |         |       | •     |
| L <sub>CE</sub>      |                                                  |                                                                 |      | 15      | 20    | nH    |
| R <sub>CC'+EE'</sub> | res., terminal-chip                              | T <sub>case</sub> = 25 °C                                       |      | 0,35    |       | mΩ    |
|                      |                                                  | T <sub>case</sub> = 125 °C                                      |      | 0,5     |       | mΩ    |
| $R_{\text{th(c-s)}}$ | per module                                       |                                                                 |      |         | 0,038 | K/W   |
| M <sub>s</sub>       | to heat sink M6                                  |                                                                 | 3    |         | 5     | Nm    |
| M <sub>t</sub>       | to terminals M6                                  |                                                                 | 2,5  |         | 5     | Nm    |
| w                    |                                                  |                                                                 |      |         | 325   | g     |

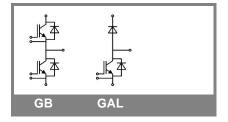
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

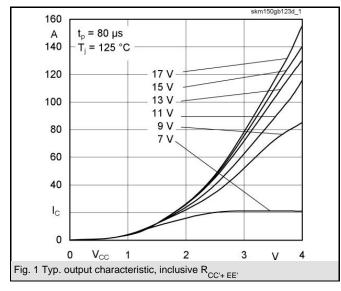


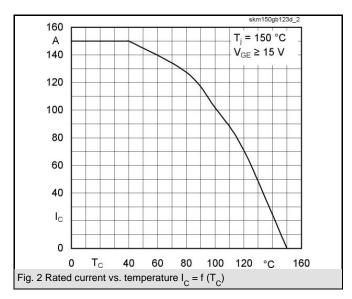


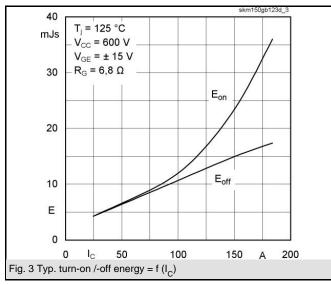
**IGBT Modules** 

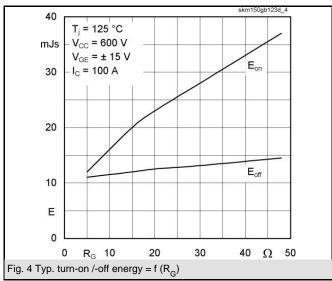

SKM 150GB123D SKM 150GAL123D

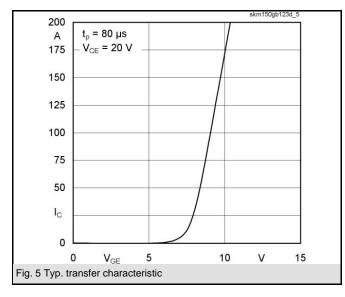
| <b>-</b> |    |     |
|----------|----|-----|
| Fea      | tU | res |


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)


### **Typical Applications**


- AC inverter drives
- UPS





| Z <sub>th</sub>     |            |        |       |  |  |  |
|---------------------|------------|--------|-------|--|--|--|
| Symbol              | Conditions | Values | Units |  |  |  |
|                     |            |        |       |  |  |  |
| Z<br><sub>Ri</sub>  | i = 1      | 105    | mk/W  |  |  |  |
| $R_i$               | i = 2      | 35     | mk/W  |  |  |  |
| $R_i$               | i = 3      | 8      | mk/W  |  |  |  |
| $R_{i}$             | i = 4      | 2      | mk/W  |  |  |  |
| tau <sub>i</sub>    | i = 1      | 0,03   | s     |  |  |  |
| tau <sub>i</sub>    | i = 2      | 0,03   | s     |  |  |  |
| tau <sub>i</sub>    | i = 3      | 0,0014 | s     |  |  |  |
| tau <sub>i</sub>    | i = 4      | 0,0001 | s     |  |  |  |
| Z<br>R <sub>i</sub> |            |        |       |  |  |  |
| R <sub>i</sub>      | i = 1      | 210    | mk/W  |  |  |  |
| $R_i$               | i = 2      | 70     | mk/W  |  |  |  |
| $R_{i}$             | i = 3      | 16     | mk/W  |  |  |  |
| $R_{i}$             | i = 4      | 4      | mk/W  |  |  |  |
| tau <sub>i</sub>    | i = 1      | 0,0623 | s     |  |  |  |
| tau <sub>i</sub>    | i = 2      | 0,0083 | s     |  |  |  |
| tau <sub>i</sub>    | i = 3      | 0,003  | s     |  |  |  |
| tau <sub>i</sub>    | i = 4      | 0,0002 | s     |  |  |  |

