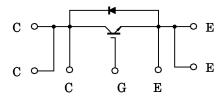
TOSHIBA GTR MODULE SILICON N-CHANNEL IGBT

M G 1 2 0 0 V 1 U S 5 1


HIGH POWER SWITCHING APPLICATIONS

MOTOR CONTROL APPLICATIONS

FEATURES

- High Input Impedance
- Enhancement Mode
- Electrodes are isolated from case.

EQUIVALENT CIRCUIT

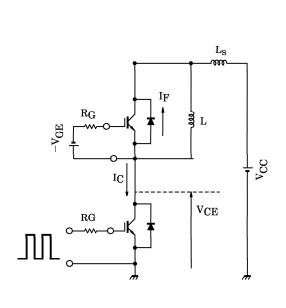
MAXIMUM RATINGS (Ta = 25°C)

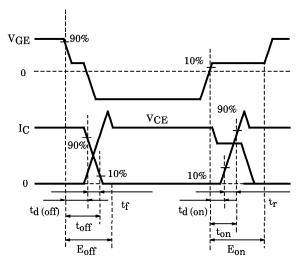
CHARACTERISTICS		SYMBOL	RATING	UNIT	
Collector-Emitter Voltage		$v_{\rm CES}$	1700	V	
Gate-Emitter Voltage		v_{GES}	20	20 V	
Collector Current	DC	$I_{\mathbf{C}}$	1200	A	
	1ms	I_{CP}	2400		
Forward Current	DC	$I_{\mathbf{F}}$	1200	A	
	1ms	I_{FM}	2400		
Collector Power Dissipation (Tc=25°C)		$P_{\mathbf{C}}$	5560	W	
Junction Temperature		T_{j}	-20~125	°C	
Storage Temperature Range		$\mathrm{T_{stg}}$	-40~125	$^{\circ}\mathrm{C}$	
Isolation Voltage		V_{Isol}	5400 (AC 1min.)	V	
Screw Torque	Terminal: M4/M8		2/7	N∙m	
	Mounting	1 -	4		

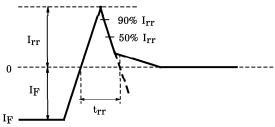
The information contained herein is subject to change without notice.

1998-10-23

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

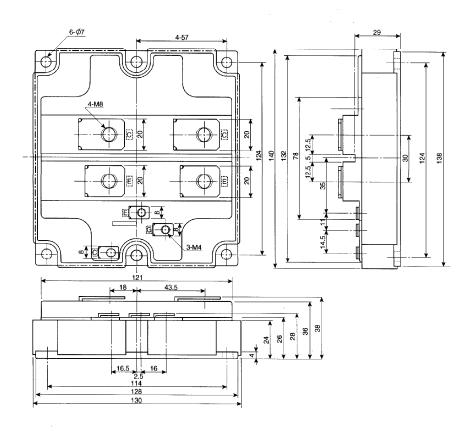

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.


The information contained herein is subject to change without notice.


ELECTRICAL CHARACTERISTICS (Tc = 125°C : except thermal resistance)

CHARACTERISTICS		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Laekage Current		I_{GES}	$V_{GE} = \pm 20V, V_{CE} = 0V$	_	_	±50	nA
Collector Cut-Off Current		ICES	$V_{CE} = 1700V, V_{GE} = 0V$	_	_	100	mA
Gate-Emitter Cut-Off Voltage		V _{GE (off)}	$V_{CE} = 5V, I_{C} = 1.2A$	3.0		7.0	V
Collecter-Emitter Saturation Voltage		V _{CE} (sat)	$V_{GE} = 15V, I_{C} = 1200A$	_	_	5.0	V
Input Capacitance		Cies	V _{CE} =10V, V _{GE} =0V, f=300kHz	_	130	_	nF
Switching Time	Rise Time	$t_{\mathbf{r}}$	$V_{CC} = 900V, I_{C} = 1200A$		_	0.7	μ s
	Turn-On Time	t_{on}	$V_{GE} = \pm 15V, R_G = 1.8\Omega$	_		1.0	μ s
(Note 1)	Fall Time	tf	(Inductive load : Ls=150nH)	_	_	0.8	μ s
	Turn-Off Time	$t_{ m off}$		_	_	1.5	μs
Forward Voltage		$V_{\mathbf{F}}$	$I_{F} = 1200A, V_{GE} = 0V$	_	_	3.2	V
Reverse Recovery Time (Note 1)		t _{rr}	$I_F = 1200A$, $V_{GE} = 15V$ di / dt = 4000A / μ s, $V_{CC} = 900V$	_	_	0.8	μs
Switching	Turn-On Loss	Eon	$V_{CC} = 900V, I_{C} = 1200A$	_	250	_	mJ
Dissipation	Turn-Off Loss	Eoff	$V_{GE} = \pm 15V, R_G = 1.8\Omega$	_	500	_	mJ
(Note 1)	Diode Loss	Edsw	$I_F = 1200A, V_{GE} = -15V$ di / dt = 4000A / μ s, $V_{CC} = 900V$	_	300	_	mJ
Thermal Resistance		R _{th (j-c)}	Transistor (IGBT) Stage	_	_	0.018	°C/W
			Diode Stage	_		0.035	°C/W

(Note 1) Test circuit and timing chart of switching time, reverse recovery time and switching dissipation.



OUTLINE DRAWING

Unit: mm

Weight: 900g (Typ.)