

HETERO JUNCTION FIELD EFFECT TRANSISTOR

NE3512S02

C TO Ku BAND SUPER LOW NOISE AMPLIFIER N-CHANNEL HJ-FET

FEATURES

- Super low noise figure and high associated gain
 NF = 0.35 dB TYP., Ga = 13.5 dB TYP. @ f = 12 GHz
- · Micro-X plastic (S02) package

APPLICATIONS

- · C to Ku-band DBS LNB
- · Other C to Ku-band communication systems

ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Marking	Supplying Form
NE3512S02-T1C	NE3512S02-T1C-A	S02 (Pb-Free)	2 kpcs/reel	С	• 8 mm wide embossed taping
NE3512S02-T1D	NE3512S02-T1D-A		10 kpcs/reel		Pin 4 (Gate) faces the perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: NE3512S02-A

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	Vos	4	V
Gate to Source Voltage	Vgs	-3	V
Drain Current	ΙD	IDSS	mA
Gate Current	lg	100	μΑ
Total Power Dissipation	P _{tot} Note	165	mW
Channel Temperature	Tch	+125	°C
Storage Temperature	Tstg	-65 to +125	°C

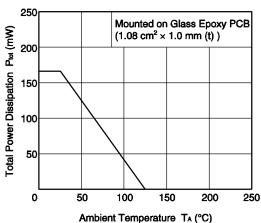
Note Mounted on 1.08 cm² × 1.0 mm (t) glass epoxy PCB

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

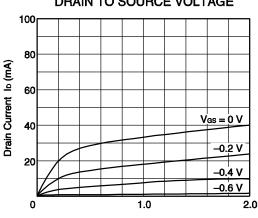
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PG10592EJ01V0DS (1st edition) Date Published February 2006 CP(N)

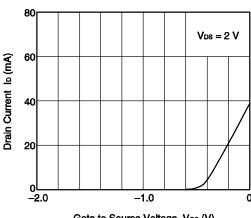
RECOMMENDED OPERATING CONDITIONS (TA = +25°C)

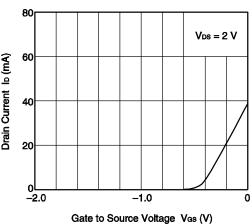

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	VDS	1	2	3	V
Drain Current	lσ	5	10	15	mA
Input Power	Pin	_	_	0	dBm

ELECTRICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	Igso	Vcs = -3 V	ı	0.5	10	μΑ
Saturated Drain Current	IDSS	V _{DS} = 2 V, V _{GS} = 0 V	15	40	70	mA
Gate to Source Cutoff Voltage	VGS (off)	$V_{DS} = 2 \text{ V}, \text{ ID} = 100 \ \mu\text{A}$	-0.2	-0.7	-2.0	V
Transconductance	g m	V _{DS} = 2 V, I _D = 10 mA	40	55	-	mS
Noise Figure	NF	V _{DS} = 2 V, I _D = 10 mA, f = 12 GHz	-	0.35	0.5	dB
Associated Gain	Ga		12.5	13.5	ı	dB

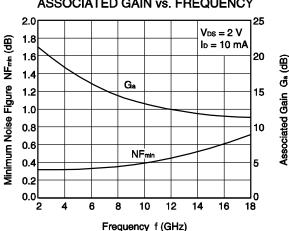
TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)




DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

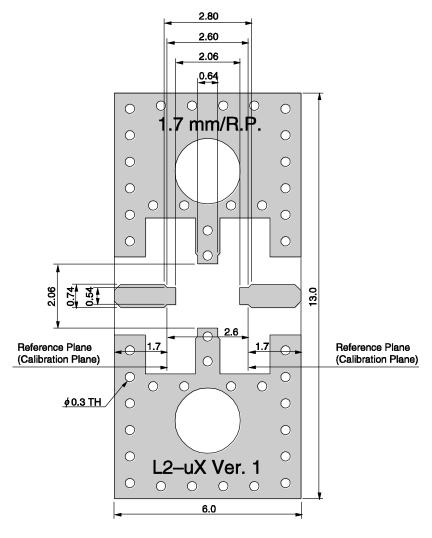
Drain to Source Voltage VDS (V)

DRAIN CURRENT vs. **GATE TO SOURCE VOLTAGE**



MINIMUM NOISE FIGURE,

MINIMUM NOISE FIGURE, ASSOCIATED GAIN vs. FREQUENCY



Remark The graphs indicate nominal characteristics.

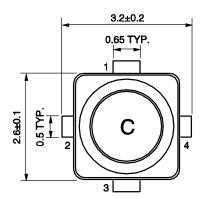
S-PARAMETERS

- S-parameters and noise parameters are provided on our Web site in a format (S2P) that enables the direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.
- · Click here to download S-parameters.
- [RF and Microwave] ® [Device Parameters]
- URL http://www.necel.com/microwave/en/

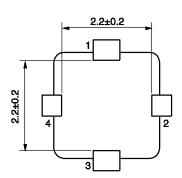
RF MEASURING LAYOUT PATTERN (REFERENCE ONLY) (UNIT: mm)

RT/duroid 5880/ROGERS

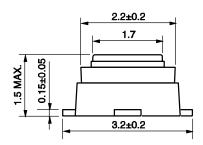
t = 0.254 mm


 $\varepsilon r = 2.20$

tan delta = 0.0009 @ 10 GHz


PACKAGE DIMENSIONS

S02 (UNIT: mm)


(Top View)

(Bottom View)

(Side View)

PIN CONNECTIONS

- 1. Source
- 2. Drain
- 3. Source
- 4. Gate

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
- Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.