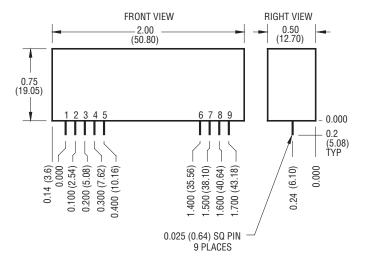


Description

With power densities up to 25 watts per cubic inch (1.53 watts per cm³), the DSN17 Series delivers 3.5 amperes of current at either 5 or 3.3 volts. Designed for digital and microprocessor applications, the non-isolated flat package requires only 1 square inch (6.45 cm²) of PCB area. Remote On/Off gives additional system flexibility. The 100 kHz operating frequency of the DSN17 Series allows an increased power density while including adequate heat sinking and input/output filtering. This eliminates the need for external components in some applications. The Series' input range and no load input current (5 mA) makes it well suited for battery operation in commercial and industrial applications. Full overload protection is provided by pulse-by-pulse current limiting.

Selection Chart					
Model	Input Range VDC		Output	Output	
	Min	Max	VDC	m A	
DSN17N5S3.3	4.5	6	3.3	3500	
DSN17N12S5	6.5	15.5	5	3500	


Model numbers highlighted in yellow or shaded are not recommended for new designs.

General Specifications (1)					
All Mod	Units				
ON/OFF Function					
OFF Logic Level or Leave Pin Open	MIN	> 2.0	VDC		
ON Logic Level or Tie Pin to -Input	MAX	< 0.5	VDC		
Maximum Voltage	MAX	Vin +0.3V	VDC		
Converter Idle Current ON/OFF Pin High	TYP	5	μΑ		
Environmental					
Case Operating Range, To No Derating	MIN MAX	-40 85	°C		
Case Functional Range (2)	MIN MAX	-50 95	°C		
Storage Range	MIN MAX	-55 105	°C		
Thermal Impedance (3)	TYP	20	°C/Watt		
General					
MTBF (Calculated)	TYP	800,000	HRS		
Unit Weight	TYP	1.0 / 28	oz / gm		

Features

- · RoHS lead solder exemption compliant
- Up to 17 watts output power
- Single in line package
- Power density up to 25 watts per cubic inch
- Efficiencies to 88% (lower for 3.3 V output)
- High efficiency step-down regulator
- · Remote On/Off

Mechanical tolerances unless otherwise noted:

X.XX dimensions: ±0.020 inches X.XXX dimensions: ±0.005 inches

Pin	Function	Pin	Function
1	ON/OFF	6	-OUTPUT
2	+INPUT	7	-OUTPUT
3	+INPUT	8	+OUTPUT
4	-INPUT	9	+OUTPUT
5	-INPUT		

NOTES

- All parameters measured at Tc = 25 °C, nominal input voltage and full rated load unless otherwise noted.
- (2) The functional temperature range is intended to give an additional data point for use in evaluating this power supply. At the low functional temperature the power supply will function with no side effects, however, sustained operation at the high functional temperature will reduce expected operational life. The data sheet specifications are not guaranteed beyond the case operating range.
- (3) The case thermal impedance is specified as the case temperature rise over ambient per package watt dissipated.

Input Parameters (1)						
Model			DSN17N5S3.3	DSN17N12S5	Units	
Voltage Range		MIN MAX	4.5 6.0	6.5 15.5	VDC	
Input Current	Full Load No Load	TYP TYP	2615 1	1635 1	mA	
Efficiency		TYP	86	88	%	
Switching Freque	ency	TYP	10	100		
Maximum Input Overvoltage, 200ms Maxim		MAX	7.5	17.0	VDC	
Turn-on Time, 1% Output Err	or	TYP	200	10	ms	

Output Parameters (1)					
Model		DSN17N5S3.3	DSN17N12S5	Units	
Output Voltage		3.30	5.00	VDC	
Output Voltage Accuracy (3) Worst Case	MIN TYP MAX	3.20 3.30 3.39	4.80 5.00 5.25	VDC	
Rated Load Range	MIN MAX	0 3500		mA	
Load Regulation 25% Max Load - Max Load (5)	TYP MAX	1.7 2.5		%	
Line Regulation Vin = Min-Max VDC	TYP MAX	0.2 1.0	0.4 1.0	%	
Short Term Stability (4)	TYP	< 0.01		%/24Hrs	
Noise, Peak - Peak (2) (5)	TYP	40	60	mV _{PP}	
RMS Noise	TYP	5	8	mV _{rms}	
Temperature Coefficient	TYP MAX	50 150		ppm/°C	
Short Circuit Protection to Common		Contin	uous Current Limit	•	

NOTES

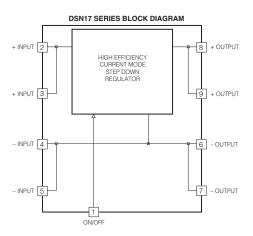
- (1) All parameters measured at Tc = 25 °C, nominal input voltage and full rated load unless otherwise
- (2) Noise measurement bandwidth is 0-20 MHz. RMS noise is measured over a 0.01-1 MHz bandwidth. To simulate standard PCB decoupling practices, output noise is measured with a 1 μF tantalum and 0.01 μF ceramic capacitor located 1 inch away from the converter.
- (3) The worst case output voltage includes line, load and temperature effects.
- (4) Short term stability is defined as the drift over 24 hours with constant line, load and ambient temperature conditions.
- (5) Requires a 470 μF/16 V capacitor across output terminals.

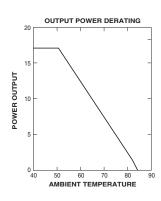
DSN17 SERIES APPLICATION NOTES:

External Capacitance Requirements

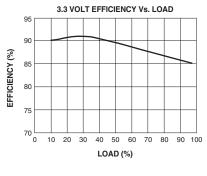
No external input capacitance is required for operation of the DSN17 Series. To meet the reflected ripple requirements of the converter, an input impedance of less than 0.075 Ω from DC to 100 kHz is required. If a capacitive input source is farther than 2" from the converter, an additional capacitor may be required at the input pins for proper operation. External output capacitance is not required for operation above 50% output power, however it is

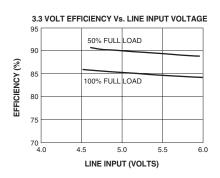
recommended that 1 μF to 10 μF of tantalum and 0.001 to 0.1 μF ceramic capacitance be selected for reduced system noise. Operation below 50% output power may require the addition of a 470 μF capacitor to meet noise specifications.

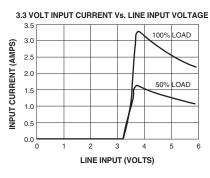

Negative Outputs

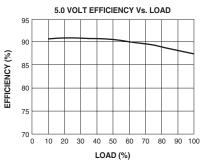

Due to the non-isolated nature of the DSN17 Series, generation of negative output voltages is not possible.

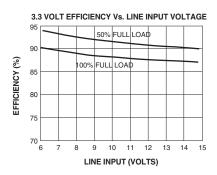
Remote ON/OFF Operation

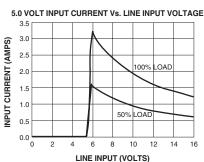

The remote ON/OFF pin should be tied to the -INPUT pin if this function is not used. It is recommended to drive this pin with a CMOS or TTL gate. An open collector output may be used with a 2.2 k Ω to 50 k Ω resistor tied to +INPUT. When the ON/OFF pin is pulled low with respect to the -INPUT, the converter is placed in a low power drain state. The input capacitors are kept fully charged in the OFF mode. The OFF state current is typically less than 5mA.








Typical Performance: (Tc=25°C, Vin=Nom VDC, Rated Load)



NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.