Power Factor Correction Power Module

models/rance

1,500 Watts / 3,000 Watts
2,000 Watts / 4,000 Watts

FEATURES AND BENEFITS

- Module contains all power components necessary to provide power factor correction in a switching power supply.
- Rectifier bridge with SCRs for inrush current limiting
- Ultrafast platinum output diode
- 500V . 1Ω Max. FET (7700B)
- Low gate charge, $500 \mathrm{~V}, .0675 \Omega$ max. FET (7700-2A)
- Provides optimum use of available line current
- Allows power supply to meet harmonic requirement
- Module design reduces cost of heat sink
- Saves significant space and assembly time
- Low cost
- Internal temperature sensing
- Replaces up to 10 each T0-220 or TO-247 discrete power semiconductors
- Custom module versions available to meet specific requirements such as:
- Motor drives
- Power servo amplifiers
- Solenoid drivers
- Solid state relays
- 3 phase rectifier bridges

APPLICATIONS

Designed to optimally facilitate a boost type power factor correction (PFC) system for designs with up to 36A rms input current.

Standard applications include switching power supplies from 1,000 watts to 4,000 watts with line voltages up to 300 V rms.

[^0]ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions ${ }^{1}$	Model	Min.	Typ.	Max.	Units
MOS FET							
Continuous Drain Current	I_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	B			56	A
			-2A			80	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	B			34.8	A
			-2A			48	A
Pulsed Drain Current	I_{DM}		B			224	A
			-2A			320	A
Single Pulse Avalanche Energy	$\mathrm{E}_{\text {AS }}$		B			760	mJ
			-2A			960	mJ
Repetitive Avalanche Energy	$\mathrm{E}_{\text {AR }}$		B			19	mJ
			-2A			28	mJ
Avalanche Current	$\mathrm{I}_{\text {AR }}$		B			8.7	A
			-2A			20	A
Gate to Source Voltage	$V_{G S}$		B, -2 A			± 30	V
Leakage Current	$\mathrm{I}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=500 \mathrm{~V}$	B, -2 A			100	$\mu \mathrm{A}$
Drain to Source ON Voltage	$\mathrm{V}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{I}_{\mathrm{C}}=28 \mathrm{~A}, \mathrm{~V}_{G S}=10 \mathrm{~V}$	B	1.5		2.8	V
			-2A	1.0		2.7	V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (TH) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	B, -2 A	2.0		4.0	V
Gate Leakage Current	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{G S} \pm 20 \mathrm{~V}$	B, -2 A			± 400	nA
Total Gate Charge	Qg	$\mathrm{I}_{\mathrm{D}}=56 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=400 \mathrm{~V}$	B			600	nC
Gate Source Charge	Qgs	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	B			80	nC
Gate Drain (Miller) Charge	Qgd		B			320	nC
Total Gate Charge	Qg	$\mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=400 \mathrm{~V}$	-2A			480	nC
Gate Source Charge	Qgs	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	-2A			128	nC
Gate Drain (Miller) Charge	Qgd		-2A			196	nC
Continous Source Current (Body Diode)	I_{S}		B			56	A
			-2A			80	A
Pulsed Source Current (Body Diode)	$\mathrm{I}_{\text {SM }}$		B			224	A
			-2A			320	A
Body Diode Forward Voltage	$V_{S D}$	$\mathrm{I}_{\mathrm{S}}=56 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	B	0.4		1.4	V
		$\mathrm{I}_{\mathrm{S}}=80 \mathrm{~A}, \mathrm{~V} \mathrm{GS}=0 \mathrm{~V}$	-2A	0.5		1.8	V
Reverse Recovery Time (Body Diode)	trr	$\mathrm{I}_{\mathrm{F}}=56 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=400 \mathrm{~A} \mu \mathrm{~s}$	B			810	ns
		$\mathrm{I}_{\mathrm{F}}=80 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=400 \mathrm{~A} \mu \mathrm{~s}$	-2A			860	ns
Reverse Recovery Charge (Body Diode)	Qrr	$\mathrm{I}_{\mathrm{F}}=56 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=400 \mathrm{~A} \mu \mathrm{~s}$	B			28.8	ns
		$\mathrm{I}_{\mathrm{F}}=80 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=400 \mathrm{~A} \mu \mathrm{~s}$	-2A			39.6	ns
Internal Gate Resistor	R_{G}		B		1.25		Ω
			-2A		0.25		Ω
Junction Temperature	T_{J}		B, -2 A			150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\mathrm{R}_{\text {THJC }}$		B		0.20	. 025	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			-2A		. 15	. 20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions ${ }^{1}$	Model	Min.	Typ.	Max.	Units	
SCRS								
Average On Current	$\mathrm{I}_{\mathrm{T}(\mathrm{AV})}$	$\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}, 180^{\circ} \text { half }$ sine wave	B			20	A	
			-2A			35	A	
RMS On Current (As AC switch)	$\mathrm{I}_{\text {RMS }}$		B			30	A	
			-2A			55	A	
Peak Repetitive Off Voltage	$V_{\text {RRM } / ~}$ $V_{\text {DRM }}$		B			600	V	
			-2A			800	V	
Peak One Cycle Non-Repetitive ITSM Surge Current		$\begin{aligned} & T_{J}=T_{J} M a x ., t=10 \mathrm{~ms} \\ & (50 \mathrm{~Hz}) \text {, sine } \end{aligned}$	B			300	A	
		-2A			400	A		
Reverse and Direct Leakage Current	$\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{D}}$		$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}, \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}}$	B			25	$\mu \mathrm{A}$
		-2A				300	$\mu \mathrm{A}$	
On Voltage	V_{T}	$\mathrm{I}_{\mathrm{T}}=25 \mathrm{~A}$	B	0.5		1.6	V	
		$\mathrm{I}_{\mathrm{T}}=45 \mathrm{~A}$	-2A	0.5		1.6	V	
Gate Trigger Voltage (Includes drop across R_{G})	V_{GT}	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}, 22 \Omega$	B, -2 A	0.2		3.5	V	
		$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}, 22 \Omega . \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	B, -2 A	0.3		1.5	V	
		$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}, 22 \Omega . \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	B, -2 A	0.1		1.5	V	
Gate Trigger Current (Each SCR Individually)	$V_{G T}$	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}, 22 \Omega$	B, -2 A	5		60	mA	
		$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}, 22 \Omega . \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	B, -2 A	10		120	mA	
		$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}, 22 \Omega . \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	B, -2 A	2		35	mA	
Holding Current	I_{H}	(Each SCR Individually)	B			100	mA	
			-2A			100	mA	
Internal Gate Resistor	R_{G}	Connected to each SCR	B		10		Ω	
			-2A		10		Ω	
Junction Temperature	T_{j}		B, -2 A			150	${ }^{\circ} \mathrm{C}$	
Thermal Resistance	$\mathrm{R}_{\text {thjc }}$		B		1.4	2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
			-2A		0.7	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Bridge Diodes								
Average Forward Current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}, 180^{\circ}$, half	B			20	A	
		sine wave	-2A			40	A	
Peak Repetitive Reverse Voltage	$V_{\text {RRM }}$		B			600	V	
			-2A			800	V	
Peak One Cycle Non-Repetitive IFSM Surge Current		$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ Max., $\mathrm{t}=10 \mathrm{~ms}$	B			300	A	
		$(50 \mathrm{~Hz}$), sine	-2A			400	A	
Reverse Leakage Current	$\mathrm{I}_{\mathrm{R} /}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	B			100	$\mu \mathrm{A}$	
			-2A			300	$\mu \mathrm{A}$	
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~A}$	B	0.5		1.2	V	
		$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~A}$	-2A	0.5		1.2	V	
Junction Temperature	T_{J}		B, -2 A			150	${ }^{\circ} \mathrm{C}$	
Thermal Resistance	$\mathrm{R}_{\text {THJC }}$		B		1.5	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
			-2A		1.0	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

ELECTRICAL CHARACTERISTICS

$1-$ TCase $=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYSTEM DIAGRAM

Pin 7: FET Drain
Pin 8: Ultrafast Anode
Pin 9: Ultrafast Cathode
Pin 10: Gate Ground
Pin 11: Gate Drive
Pin 12: N.C.
Pin 13: TH 1
Pin 14: TH 2

OUTLINE DIMENSIONS (Inch)

ORDERING INFORMATION

OUTPUT VOLTAGE

The dc output voltage must be greater than the highest peak line voltage expected:

$$
V_{0}>V_{\mathbb{N} \max } \times 1.414
$$

discontinuous conduction

When the line voltage approaches zero volts the PFC PWM will be forced towards its maximum duty cycle. This will cause the current to become discontinuous, which will result in some distortion. The line voltage at which the current will become discontinuous will be:

$$
V_{\mathbb{I N} \text { discontinuous }}=\frac{V_{0} x\left(1-D C_{\max }\right)}{D C_{\max }}
$$

The line voltage at which the PWM will be duty cycle limited will be:

INDUCTOR LI

The inductor value controls the amplitude of the 100 KHz current ripple. This can greatly effect the amount of distortion and thus the amount of EMI filtering required on the input. Ripple current can be calculated for any point along the input sine wave:

$$
I_{P-P}(t)=\frac{V_{\mathbb{I N}}(t) \times D C(t)}{L x f}
$$

Where: $\mathrm{DC}(\mathrm{t})=1-\mathrm{V}_{\text {IN }}(\mathrm{t}) / \mathrm{V}_{\mathrm{O}}$, L is the inductance of L 1 , and f is the switching frequency.

A good starting point would be to set Ip-p equal to 20% of the 120 Hz peakcurrent, solving for L :

$$
L \geq \frac{5 \times V_{\mathbb{N}}^{2} \times\left(1-\frac{1.414 \times V_{N}}{v_{0}}\right)}{P_{\mathbb{N}} \times f}
$$

MODEL 7700 APPLICATION NOTES

OUTPUT CAPACITOR

The output capacitor size is often limited by the line dropout requirements of the power supply:

$$
\mathrm{C}_{0 \text { MIN }}=\frac{2 \times \mathrm{P}_{\text {ouT }} \mathrm{X} \mathrm{t}_{\mathrm{d}}}{\mathrm{~V}_{0}^{2}-\mathrm{V}_{0 \text { MIN }}^{2}}
$$

Where: $\mathrm{P}_{\text {OUT }}$ is the output power, td is the dropout time, and $\mathrm{V}_{\mathrm{O} \text { MIN }}$ is the minimum allowed output voltage.

The 120 Hz output voltage ripple can be calculated to insure it meets the system requirements:

$$
V_{0 \text { p-p } 120}=\left(\frac{2 \times P_{0}}{V_{0}}\right) \times\left(\frac{1}{2 \times \pi \times f \times C_{0}}+E S R\right)
$$

The maximum rms 120 Hz ripple current will be:

$$
I_{\text {RMs 120 }}=\frac{1.414 \times P_{0}}{V_{0}}
$$

The 100 KHz output voltage ripple will be:

$$
V_{o p-p ~ p o o k}=\frac{V_{\text {WI }} \times\left(1^{\left(1.444 \times V_{W W}\right)}\right.}{L \times f} \times\left(\frac{1}{2 \times \pi \times f \times C_{0}}+E S R\right)
$$

The maximum rms 100 KHz ripple current will be:

$$
I_{\text {RMS 100K }}=\frac{V_{\text {IN }} \times\left(1-\frac{1.414 x V_{\text {II }}}{V_{0}}\right)}{2.828 \times L \times f}
$$

GATE DRIVE REQUIREMENTS

FET switching times must be fast enough to insure that the FET turns off when the PWM is at maximum duty cycle. Snubbing circuits across the FET will slow the turn off time and should not be used.

A discrete gate driver circuit will allow the fastest possible switching times. The Unitrode UC3710 or Telcom TC4422 drivers offer a single chip approach
with only slightly slower switching times. The gate driver must be located as close to the module as possible. Ground sense pin 10 should be used to insure the fastest possible switching times.

HEAT RADIATOR

The heat radiator requirements can be determined by the maximum power dissipated (at low line) and the maximum ambient temperature. The back side of the module should be limited to about $100^{\circ} \mathrm{C}$ by utilizing the internal thermistor.

$$
R_{\ominus}=\frac{100-T_{\text {max }} \text { amB }}{P_{0 \text { LowLIME }}}
$$

Care should be used when attaching the module to the heat radiator. The screws must be tightened incrementally in a crisscross pattern. A torque limiting screwdriver should be used.

The high current levels require currrent sense transformers to maintain a reasonable efficiency. We recommend BI Technologies HM31-20200.

PFC PWM VENDORS

Popular sources are:
Unitrode UC3854
Micro Linear ML4812
Linear Technology LT1248

[^0]: Specifications subject to change without notice.

