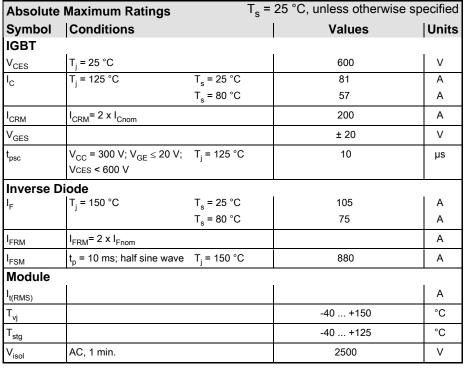
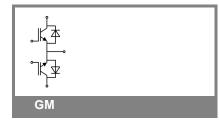
SK80GM063

IGBT Module

SK80GM063


Preliminary Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,3	mA	
		T _j = 125 °C				mA	
I_{GES}	V _{CE} = 0 V, V _{GE} = 30 V	,			240	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		0,9		V	
		T _j = 125 °C		0,9		V	
r_{CE}	V _{GE} = 15 V	$T_j = 25^{\circ}C$		11		mΩ	
		T _j = 125°C		15		mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2	2,5	V	
		$T_j = 125^{\circ}C_{chiplev.}$		2,4		V	
C _{ies}				4,4		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz				nF	
C _{res}				0,4		nF	
Q_G	V _{GE} =0 20 V			310		nC	
t _{d(on)}				45	60	ns	
L _r	R_{Gon} = 11 Ω	V _{CC} = 300V		35 3	50	ns	
E _{on}	$R_{Goff} = 11 \Omega$	I _C = 60A T _i = 125 °C		ა 250	300	mJ ns	
$t_{d(off)} \ t_{f}$	Goff '' 22	V _{GE} =±15V		25	40	ns	
E _{off}		J.		2,3		mJ	
R _{th(j-s)}	per IGBT				0,6	K/W	

SK80GM063

SEMITOP® 2

IGBT Module

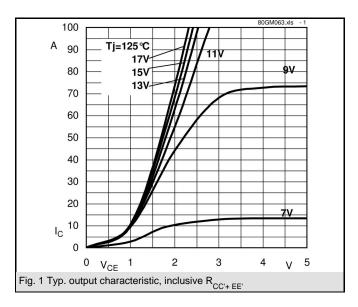
SK80GM063

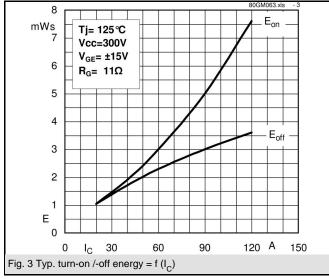
Preliminary Data

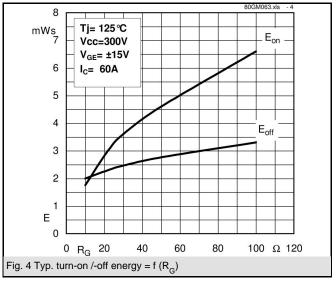
Features

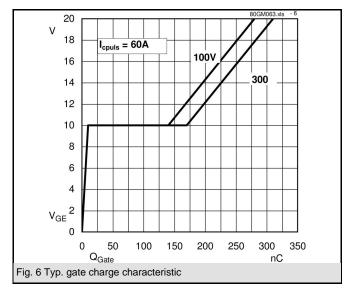
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence

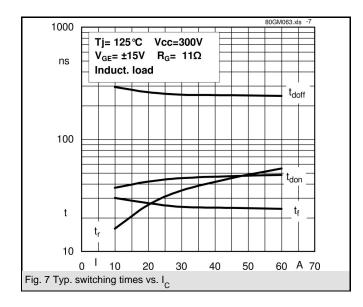
Typical Applications

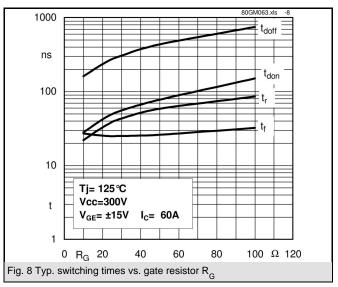

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

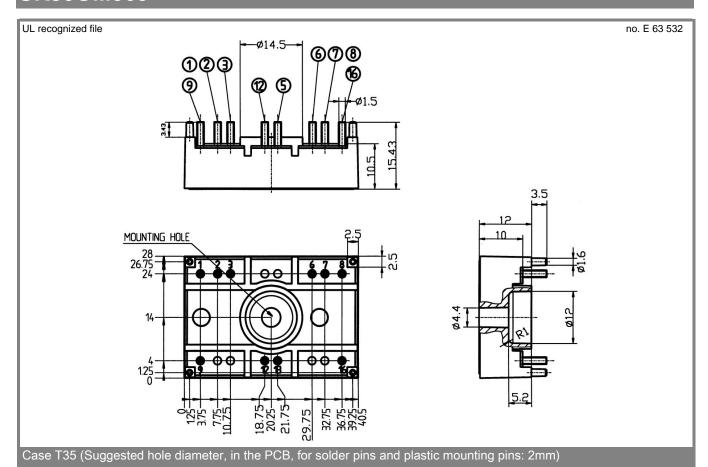

Characteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,3	1,5	V				
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,2	1,45	V				
V_{F0}		T _j = 125 °C		0,85	0,9	V				
r _F		T _j = 125 °C		5,8	7,5	mΩ				
I _{RRM}	I _F = 60 A	T _j = 125 °C		22	26	Α				
Q_{rr}	di/dt = -500 A/µs			2,2	3,5	μC				
E _{rr}	V _{CC} = 300V			0,2	0,3	mJ				
$R_{th(j-s)D}$	per diode				1,2	K/W				
M_s	to heat sink M1				2	Nm				
w			•	21		g				

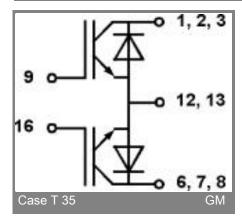

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.








SK80GM063

