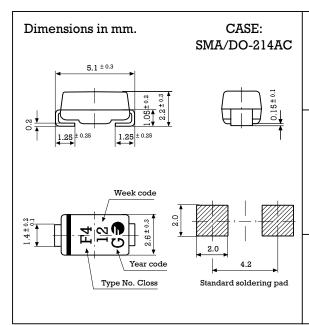
semiconductors :: product :: Fast Recovery Rectifiers

Product: Fast Recovery Rectifiers

Fast Recovery Rectifiers are devices used in applications where commutation times around 150 \div 500ns are required. Switching Power Supplies, Electronic Ballast, Small Household Appliances are some of the typical end uses.


 $\label{thm:manufactured} \mbox{ Manufactured using HYPERECTIFIER@ Glass Passivated technology, we offer these devices housed either in leaded packages or SMD.}$

Product	Family	$I_{F(AV)}(A)$	$I_{FSM}(A)$	$V_{RRM}(V)$	$V_F(V)$	T _{RR} (ns)	OUTLINE
FRS1G	FRS1	1.0	30	400	1.3	150	DO214AC/SMA

1 Amp. Surface Mounted Glass Passivated Fast Recovery Rectifier

Voltage Current
50 to 1000 V 1.0 A

HYPERECTIFIER

- Glass passivated junction
- High current capability
- The plastic material carries U/L 94 V-0
- Low profile package
- Easy pick and place
- High temperature soldering 260 °C 10 sec

MECHANICAL DATA

Terminals: Solder plated, solderable per IEC 68-2-20. Standard Packaging: 4 mm. tape (EIA-RS-481). Weight: 0.064 q.

Maximum Ratings and Electrical Characteristics at 25 $^{\circ}\text{C}$

			FRS1B	FRS1D	FRS1G	FRS1J	FRS1K	FRS1M		
Marking Code			F2	F3	F4	F5	F 6	F 7		
V_{RRM}	Maximum Recurrent Peak Reverse Voltage		100	200	400	600	800	1000		
V_{RMS}	Maximum RMS Voltage		70	140	280	420	560	700		
V_{DC}	Maximum DC Blocking Voltage		100	200	400	600	800	1000		
$I_{F(AV)}$	Forward current at $T_L = 110 ^{\circ}\text{C}$	1.0 A								
I_{FSM}	8.3 ms. peak forward surge current (Jedec Method)	30 A								
V _F	Maximum Instantaneous Forward Voltage at 1.0A	1.3 V								
I_R	$ \begin{array}{llllllllllllllllllllllllllllllllllll$									
t _{rr}	Maximum Reverse Recovery Time (0.5/1/0.25A)		150 ns				500) ns		
C_{j}	Typical Junction Capacitance (1MHz; -4V) 8 pF									
R _{th (j-l)} R _{th (j-a)}	Typical Thermal Resistance (5x5 mm² x 130 µ Copper Area)		27 °C/W 75 °C/W							
$T_{\rm j}$ - $T_{\rm stg}$	Operating Junction and Storage Temperature Range	-55 to + 150 °C								