DVK90CAN1

Hardware User Guide

.....

Table of Contents

Section 1	
Introduct	ion3
1.1 Ov	/erview3
1.2 D\	/K90CAN1 - AT90CAN128 Development Kit Features4
Section 2	
Getting S	Started5
2.1 Ur	packing the System5
2.2 Sy	/stem Requirements
2.3 QI	JICK Start
Section 3	
Using the	e DVK90CAN16
3.1 Bl	ock Diagram
3.2 PC	Dewer Supply
3.2.1	Power Supply Sources
3.2.2	Power Supply Setting
3.2.3	VCC-ON LED
3.2.4	
3.3 Rt	
3.3.1	Power-on RESET
J.J.∠ 2.2.2	
3.3.3	
3.4 AI	Julian AVR Micro Controller
3.4.1	Using AVR ICE50
3.4.2	USING A 190CAN 128 ON SOCKET
3.5 AI	Socan 128 Configuration
252	
3.5.2	Analas Davies Supply
3.0.0	Analog Power Suppry
3.0 361	PS 2320 15
3.0.1	CAN 17
363	CAN
3.6.4	TWI 10
365	1 IN 20
3.0.0 3.7 ∩r	-hoard Resources 21
371	Compass Card Keyboard 21
3.7.1	
J.1.Z	

3.7.3	Interrupt 0 / 2	23
3.7.4	Piezo Audio Transducer	24
3.7.5	Analog I/O Connector	26
3.7.6	Voltage Reading	27
3.7.7	Temperature Sensor	28
3.7.8	Luminosity Sensor	30
3.8 ST	K500 Resources	32
3.8.1	Supply Voltage from STK500	33
3.8.2	Analog Reference Voltage from STK500	33
3.8.3	EXP.CON 0 & EXP.CON 1 Connectors	
3.8.4	Main Clock from STK500	33
3.8.5	RESET from STK500	34
3.9 In-	System Programming	34
3.9.1	Programming with AVR ISP Programmer	34
3.9.2	Programming with STK500	35
3.9.3	Programming with AVR JTAG ICE	35
3.10 De	bugging	36
3.10.1	Debugging with AVR JTAG ICE	36
3.10.2	Debugging with AVR ICE 50	
3.11 Te	st Points	
3.12 Co	nfiguration Pads	38
3.12.1	Configuration Pads Listing	38
3.12.2	Configuration Pads - Disconnection	39
3.12.3	Configuration Pads - Connection	40
3.12.4	Configuration Pads - Location	40
Section 4		
Basic Te	st Program	42
Section 5		
Troubles	hooting Guide	44
Section 6		
Technica	I Specifications	45
Section 7		
I echnica	I Support	46
Section 8 Complete	Schematics	

Section 1 Introduction

Congratulations on your purchase of the AVR® DVK90CAN1 - AT90CAN128 Development Kit. This kit is designed to give designers a quick start to develop code on the AT90CAN128 and for prototyping and testing of new designs.

1.1 Overview

This document describes the DVK90CAN1 dedicated to the AT90CAN128 AVR micro controller. This board is designed to allow an easy evaluation of the product using demonstration software (refer to Software User Guide).

To complement the evaluation and enable additional development capability, the DVK90CAN1 can be plugged into the Atmel STK500 Starter Kit Board in order to use the AT90CAN128 with advanced features as variable VCC, variable VRef, variable XTAL, ..., and supports all AVR development tools.

To increase its demonstrative capabilities, this stand alone board has numerous serial interfaces (dual RS232, CAN, LIN, SPI & TWI) and on-board resources (keyboard, LEDs, voltage reading, light and temperature sensors, & speaker).

This user guide acts as a general getting started guide as well as a complete technical reference for advanced users.

Figure 1-1. DVK90CAN1

DVK90CAN1 Hardware User Guide

1.2 DVK90CAN1 - AT90CAN128 Development Kit Features

The DVK90CAN1 provides the following features:

- AT90CAN128 TQFP device (3 or 5V),
- AVR Studio® software interface ⁽¹⁾,
- STK500 compatible ⁽²⁾,
- Power supply flagged by "VCC-ON" LED:
 - regulated 3 or 5V,
 - from an external power connector,
 - from an external battery,
 - from STK500⁽²⁾,
- ISP connector for on-chip ISP,
- JTAG connector:
 - for on-chip ISP,
 - for on-chip debugging using JTAG ICE,
- Serial interfaces:
 - 2 RS-232C ports with available RTS/CTS handshake lines,
 - 1 SPI port,
 - 1 TWI port,
 - 1 CAN port with RxCAN and TxCAN LEDs,
 - 1 LIN port with RxLIN and TxLIN LEDs ⁽²⁾
- On-board resources:
 - 5-button keyboard,
 - 8 LEDs,
 - voltage reading (0 12V)
 - luminosity sensor,
 - temperature sensor,
 - speaker for sound generation,
- On-board RESET button,
- On-board INT0 (or INT2) button.
- System clock:
 - external clock (2),
 - 8 MHz crystal,
 - 32 kHz watch crystal,
- RTC implementations:
 - external clock (2),
 - 32 kHz watch crystal,
- Analog I/O connector ⁽²⁾,
- Numerous access points for test ⁽²⁾.
- Notes: 1. The DVK90CAN1 is supported by AVR Studio®, version 3.2 or higher. For up-to-date information on this and other AVR tool products, please read consult our web site. The newest version of AVR Studio®, AVR tools and this User Guide can be found in the AVR section of the Atmel web site, http://www.atmel.com.
 - 2. Optional implementation.

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

Section 2 Getting Started

2.1 Unpacking the System

Kit contents:

- DVK90CAN1:
 - AT90CAN128 sample micro controller
 - default setting configuration
- Cables for DVK90CAN1:
 - (1 pc) 9V battery power cable
 - (1 pc) male JACK outlet and 2-wire cable for DC power supply
- Atmel CD-ROM with datasheets, manuals and software

2.2 System Requirements

DVK90CAN1 is a stand alone board. For AVR tools, the minimum hardware and software PC requirements are:

- 486 processor (Pentium® is recommended)
- 16 MB RAM
- 15 MB free hard disk space (AVR Studio)
- Windows® 95/98/2000/ME and Windows NT® 4.0 or higher
- 115200 baud RS-232 port (COM port)

2.3 Quick Start

The DVK90CAN1 is shipped with an AT90CAN128 micro controller. The default jumper settings will allow the micro controller to execute a basic test program that toggles the LEDs. The test program in the AT90CAN128 is (similar) to the example application code described in Section"Basic Test Program".

An external 5 - 15V DC power supply is required. The input circuit is a full bridge rectifier, and the DVK90CAN1 automatically handles both positive or negative center of the male JACK outlet. The **POWER** switch turns the DVK90CAN1 main power on (or off). The green **VCC-ON** LED is lit when power is on. At power up, the DVK90CAN1 runs the test program flashed in the AT90CAN128.

Section 3 Using the DVK90CAN1

This chapter describes the board with all options implemented.

3.1 Block Diagram

Figure 3-1 . DVK90CAN1 Block Diagram

3.2 Power Supply

The on-board power supply circuitry allows various power supply configurations.

3.2.1 Power Supply Sources

The power supply source can come from three different and exclusive sources:

- either from JACK PWR connector,
- either from EXT PWR connector,
- either from STK500.

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

JACK PWR connector:

– Need of a male JACK outlet,

- Input supply from 2.7 up to 15V⁽¹⁾ DC,
- No specific polarization ⁽²⁾ mandatory.

Figure 3-2. JACK PWR Connector

Figure 3-3. Male JACK Outlet and Wires

Caution: Do not mount more than one power supply source on DVK90CAN1.

EXT PWR connector:

- Need of a female 2 points connector,
- Input supply from 2.7 up to 15V⁽¹⁾ DC (example: 9V battery),
- Polarization mandatory,

Figure 3-5 . EXT PWR Female Connector / Cable for 9V Battery

STK500 Powered: (c.f. "STK500 Resources" on page 32).

(C.f. "STK500 Resources" on page 32).

Notes: 1. 15V is the maximum level limitation of an unidirectional transil diode.

- There is a diode (bridge) voltage level between the negative output of the power supply and the DVK90CAN1 "GND". This could introduce some gap of voltage during measurement and instrumentation.
- 3. Caution: Do not mount more than one power supply source on DVK90CAN1.

3.2.2 Power Supply Setting

Once the power source chosen and the setting done, the "ON/OFF" switch can be set.

Setting	POWER	REGUL	5V / 3V	View
Power "OFF"	OFF	Don't care	Don't care	
Direct Powered	ON	NO REG	Don't care	
5∨ Regulated	ON	REG	5V	
3∨ Regulated	ON	REG	3V	
STK500 ⁽¹⁾	ON	REG or NO REG	If REG , 3V or 5V	(Depends on STK500 VTG setting)

Table 3-1 . Power Supply⁽¹⁾ Setting

Notes: 1. The ML317 regulator is capable of supplying in excess of 1.0 A. 2. **Caution:** The STK500 has its own "ON/OFF" switch.

4381A-AVR-Sept 04

3.2.3 "VCC-ON" LED

The "VCC-ON" LED is always lit when power is applied to DVK90CAN1 regardless of power supply source and the regulation.

Figure 3-6 . "VCC-ON" LED

3.2.4 VCC Test

(c.f. "Test Points" on page 38)

3.3 RESET

Although the AT90CAN128 has its on-chip RESET circuitry (c.f. AT90CAN128 Datasheet, section "System Control and Reset), the DVK90CAN1 provides to the AT90CAN128 a RESET signal witch can come from 3 different sources:

3.3.1 Power-on RESET

The on-board RC network acts as power-on RESET.

3.3.2 RESET Push Button

By pressing the RESET push button on the DVK90CAN1, a warm RESET of the AT90CAN128 is performed.

Figure 3-7. RESET Push Button (RST) Implementation

3.3.3 STK500 RESET

(c.f. "RESET from STK500" on page 34)

3.4 AT90CAN128 AVR Micro Controller

When DVK90CAN1 - AT90CAN128 Development Kit is shipped, the AVR micro controller is soldered in the center of the DVK90CAN1.

The customer can deal with modification of the DVK90CAN1:

- To use AVR ICE 50 (c.f. "Debugging with AVR ICE 50" on page 37),
- To mount a socket in place of the micro controller.

3.4.1 Using AVR ICE50

The TQFP-64 Personality Adapter (provided in AVR ICE50 package - Atmel advanced In-Circuit Emulator) should be soldered in place of the AT90CAN128.

- Provider: WISLOW ADAPTIC. http://www.winslow.co.uk/uk/Default.asp
 - reference: W9844M

When mounting the TQFP-64 adapter, make sure that the adapter is positioned with the correct orientation and use low temperature solder.

page **10**

4381A-AVR-Sept 04

Figure 3-9. DVK90CAN1 with TQFP-64 Personality Adapter

3.4.2 Using AT90CAN128 on Socket

The socket should have the same footprint as the AT90CAN128.

Figure 3-10. DVK90CAN1 with Socket for AT90CAN128

Hereunder is a reference of socket:

- <u>Provider</u>: TET, TOKYO ELETECH CORP. http://www.tetc.co.jp/e_tet_product.htm
 - Connector (bottom part) reference: NQPACK064SA160
 - Top Cover (upper part) reference: HQPACK064SA160

3.5 AT90CAN128 Configuration

3.5.1 Main Clock XTAL

Table 3-2 .	Main Clo	ck Setting
-------------	----------	------------

Se	etting / Source	CKSEL [30] ⁽¹⁾	XTAL1 switch ⁽²⁾	XTAL2 switch ⁽²⁾	View																							
Setting	Clock from STK500	1111 to 1000	2 2																									
Source	STK500 via EXP.CON.1	or 0111 to 0100		2																								
Setting	External Crystal or Ceramic Resonator	1111 to	3-4	3-4																								
Source	Y1	1000			Y1 from 0.4 MHz to 16.0 Mhz																							
Setting	External Low-frequency Crystal	0111 to	5-6	5-6	5-6																							
Source	Y2 ⁽³⁾	0100						-										-										
Setting	ExternalClock	0000	7-8	7= input clock																								
Source	External			8 = GND	pin 7= input clock																							

Notes: 1. CKSEL [3..0] is the clock selection field of Fuse Low Byte (c.f. AT90CAN128 Datasheet, section "Memory Programming").

2. c.f. "Schematics, 1 of 5" on page 48 for connections

3. Y2-to-ground capacitors not required

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

3.5.2 RTC Clock TOSC

Setting / Source		TOSC1 switch ⁽¹⁾	TOSC2 switch ⁽¹⁾	View
Setting	TOSC1 as PG4 & TOSC2 as PG3	2	2	
Source	(Synchronous clock)			
Setting	External Low-frequency Crystal			
Source	Y3 ⁽²⁾	3-4	3-4	
Setting	ExternalClock	5.0	5 = input clock	
Source	External	9-6	6 = GND	pin 5= input clock pin 6= GND

Table 3-3 . RTC Clock Setting

Notes: 1. c.f. "Schematics, 1 of 5" on page 48 for connections 2. Y3-to-ground capacitors not required

3.5.3 Analog Power Supply

AVCC By default, AVCC is equivalent to VCC. An external AVCC source can be chosen.

Table 3-4.	AVCC	Setting
------------	------	---------

S	etting / Source	AVCC switch (*)	View
Setting	On-board AVCC	2	
Source	VCC+ filter		
Setting	ExternalAVCC	off	
Source	External		

Note: *. c.f. "Schematics, 3 of 5" on page 50 for connections

ANA REF By default, AREF is an output of AT90CAN128.

An external AREF source can be chosen (c.f. "STK500 Resources" on page 32).

Table 3-5 . ANA REF Setting

S	etting / Source	ANA REF switch ^(*)	View
Setting	Output		
Source	AT90CAN128	off	
Setting	External Input		TR 2 EN MEF
Source	External	off	
Setting	ExternalAREF		
Source	STK500	2	

Note: *. c.f. "Schematics, 2 of 5" on page 49 for connections

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

3.6 Serial Links

3.6.1 RS-232C

The AT90CAN128 is a micro-controller with two on-chip USART peripherals, USART0. and USART1. Only the asynchronous mode is supported by the DVK90CAN1.

The DVK90CAN1 is supplied with a RS-232 driver/receiver. Only one female DB9 connector assumes the RS-232 connections. A full range of configuration can be set with two Rx lines and two Tx lines.

Figure 3-11 . RS-232 DB9 Connector

Figure 3-12 . RS-232 DB9 Connections

Figure 3-13. Typical PC Connection Lay-out

DVKCAN11 / RS-2	32 DB9		PC / (CC	DB9 serial port DM1 or COMx)
Function	Pin No	[Pin No	Function
TxD (AT90CAN128)	2	••	2	RxD (PC)
RxD (AT90CAN128)	3	•	3	TxD (PC)
GND	5	•	5	GND
• • • • • •	• If I	lardware Data Flow Contro	ol 🔹	• • • • • •
CTS (AT90CAN128)	7	•	7	RTS (PC)
RTS (AT90CAN128)	8	•	8	CTS (PC)

Table 3-6 . UARTs Setting

Mode	UART0	UART1	DE Connec	39 ction ⁽¹⁾	UART Switch ⁽²⁾	View
1 UART & Software Data Flow Control	On (Standard)	Off	Tx0 Rx0	Pin 2 Pin 3	2 4-5	
	Off	On (Standard)	Tx1 Rx1	Pin 2 Pin 3	3-2 6-5	
2 UARTs & Software Data Flow Control	On (Standard)	On	Tx0 Rx0 Tx1 Rx1	Pin 2 Pin 3 Pin 7 Pin 8	2 4-5 3-8 6-11	
	On	On (Standard)	Tx1 Rx1 Tx0 Rx0	Pin 2 Pin 3 Pin 7 Pin 8	3-2 6-5 8 4-11	
1 UART & Hardware Data Flow Control	On (Standard)	Off	Tx0 Rx0 CTS0 RTS0	Pin 2 Pin 3 Pin 7 Pin 8	2 4-5 7-8 10-11	
	Off	On (Standard)	Tx1 Rx1 CTS1 RTS1	Pin 2 Pin 3 Pin 7 Pin 8	3-2 6-5 9-8 12-11	

Notes: 1. Tx reference: DVK90CAN1 source, Rx reference: DVK90CAN1 destination 2. c.f. "Schematics, 1 of 5" on page 48 for connections

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

3.6.2 CAN

The AT90CAN128 is a micro-controller with an on-chip full-CAN controller.

The DVK90CAN1 is supplied with an ATMEL CAN transceiver (ATA6660). A male DB9 connector assumes the CAN bus connections.

Figure 3-14 . CAN DB9 Connector

Figure 3-15 . CAN DB9 Connections

If a network termination is needed (CAN baudrate higher than 100 Kb/s), J10 switch inserts a 120 ohms resistor between CAN-H and CAN-L.

Table 3-7 . CAN Network Termination

Mode	View	Mode	View
120 ohms termination		No termination	

A red LED indicates a TxCAN traffic, a yellow one indicates a RxCAN traffic.

Figure 3-16. CAN LEDs

Using the DVK90CAN1

3.6.3 SPI

The AT90CAN128 is a micro-controller with an on-chip full duplex SPI interface, master or slave.

A 6-pin male connector assumes the SPI bus connections.

Figure 3-17 . SPI 6-pin Connector

The SPI 6-pin connector also provides to the user VCC and GND.

Figure 3-18. SPI 6-pin Connections

A 4.7 K Ω pull-up resistor on \overline{SS} signal is available if needed.

Table 3-8. SS Pull-up

Mode	View	Mode	View
4.7 KΩ pull-up		No pull-up	

3.6.4 TWI

The AT90CAN128 is a micro-controller with an on-chip TWI interface, master or slave.

A 4-pin male connector assumes the TWI bus connections.

Figure 3-19. TWI 4-pin Connector

The TWI 4-pin connector also provides to the user VCC and GND.

Figure 3-20. TWI 4-pin Connections

TWI Connector front view

4.7 K Ω pull-up resistors on SDA or/and SCL signals are available if needed.

Table 3-9 .	SDA or/and SCL	Pull-up SS Pull-up

	Mode	View	Mode	View
SDA	4.7 KW pull-up		No pull-up	
SCL	4.7 KW pull-up		No pull-up	

3.6.5 LIN

The AT90CAN128 may support a software LIN implementation. This software LIN implementation uses either the UART1 or a bit manipulation method on PD.2/PD.3 for LIN master or LIN slave.

The DVK90CAN1 is ready to implement (option) an ATMEL LIN transceiver (ATA6661). A 3-pin male connector assumes the LIN bus connections.

- Note: Due to ATA6661 design, it is mandated to enable the internal pull-up on PD.2 (RxLIN) when LIN is used (c.f. AT90CAN128 Datasheet, section "I/O Ports").
- Figure 3-21 . LIN 3-pin Connector

LIN 3-pin

The LIN 3-pin connector must provide the V-Battery (BAT) up to +12 volts and GND.

LIN Connector front view

For slave LIN, LIN Wake-up is provided by a switch (active low signal).

Figure 3-23 . LIN Wake-up

DVK90CAN1 Hardware User Guide

page 20

4381A-AVR-Sept 04

In case of master LIN, a pull-up resistor is needed. J11 switch enables a 1 $\mbox{K}\Omega$ pull-up resistor on the LIN bus.

Table 3-10 . LIN Pull-up

A red LED indicates a TxLIN traffic, a yellow one indicates a RxLIN traffic.

Figure 3-24 . LIN LEDs

3.7 On-board Resources

3.7.1 Compass Card Keyboard

The 4 de-centered push-buttons of compass card keyboard are connected to the synchronous external interrupts INT[7..4] to filter possible pulses.

Pushing a push-button causes the corresponding signal to be pulled low, while releasing (not pressed) causes an H.Z state on the signal. The user must enable internal pull-ups on the input pins, removing the need for an external pull-up resistor on the push-button. 150Ω resistors limit the current going into the AT90CAN128.

The central push-button receives its own filtering and is connected by default to the asynchronous external interrupt INT[2]. If the "CENTER" switch is set-up in the non-default configuration, the central push-button is connected as "PortE.2" input. Pushing a push-button causes the corresponding signal to be pulled low, while releasing (not pressed) gives a logical "1" without the need of pull-up resistor.

Figure 3-25 . Compass Card Keyboard Schematic

Figure 3-26. Compass Card Keyboard Implementation

Table 3-11 . Center Switch Configuration

Mode	View	Mode	View
PortD.1		PortE.2	

3.7.2 LEDs

The DVK90CAN1 includes 8 green LEDs implemented on one line. They are connected to the "PortA" of AT90CAN128.

To light on a LED, the corresponding port pin must drive an high level. To light off a LED, the corresponding port pin must drive an low level. It is the opposite method of that

DVK90CAN1 Hardware User Guide

page 22 4381A-AVR-Sept 04 which is used in STK500.

Port A.0 drives the right LED (lsb) - index0 and Port A.7 drives the left LED (msb) - index7.

Figure 3-27. Unit Schematic of LED

Figure 3-28. LEDs Implementation

3.7.3 Interrupt 0 / 2

The "INT" push-button receives its own filtering and is connected by default to the asynchronous external interrupt INT[0]. If the "INT0/2" switch is set-up in the non-default configuration, the "INT" push-button is connected to the asynchronous external interrupt INT[2].

Pushing a push-button causes the corresponding signal to be pulled low, while releasing (not pressed) gives a logical "1" without the need of pull-up resistor.

Figure 3-30. Interrupt Push-button (INT) Implementation

Table 3-12. Interrupt 0 / 2 Switch Configuration

3.7.4 Piezo Audio Transducer

The piezo audio transducer is connected to the PortB.7 of the AT90CAN128. This means that each synchronous Timer 0 or Timer 1 (OC0A and OC1C) can drive the transducer or the together using the Output Compare Modulator (OCM). The type of modulation (logical OR or AND) can be selected by PortB.7 bit-register. See the AT90CAN128 Datasheet for how to use Timers.

page 24 4381A-AVR-Sept 04

Table 3-13. Tone Table Proposal

Tone N ^b	Name	Freq. ⁽¹⁾ (Hz)	ICR1 (@ 1 MHz)	Tone N ^b	Name	Freq. ⁽¹⁾ (Hz)	ICR1 (@ 1 MHz)	Tone N ^b	Name	Freq. ⁽¹⁾ (Hz)	ICR1 (@ 1 MHz)	Tone N ^b	Name	Freq. ⁽¹⁾ (Hz)	ICR1 (@ 1 MHz)
0		No To	ne	32	G	98.0	0x13EE	64	D#	622.3	0x0323	96	В	3951.1	0x007E
1	С	16.4	0x7717	33	G#	103.8	0x12D0	65	Е	659.3	0x02F6	97	С	4186.0	0x0077
2	C#	17.3	0x70E5	34	Α	110.0	0x11C1	66	F	698.5	0x02CB	98	C#	4434.9	0x0070
3	D	18.4	0x6A25	35	A#	116.5	0x10C3	67	F#	740.0	0x02A3	99	D	4698.6	0x006A
4	D#	19.4	0x64AD	36	В	123.5	0x0FD0	68	G	784.0	0x027D	100	D#	4978.0	0x0064
5	Е	20.6	0x5ECF	37	С	130.8	0x0EEE	69	G#	830.6	0x0259	101	Е	5274.0	0x005E
6	F	21.8	0x5997	38	C#	138.6	0x0E17	70	А	880.0	0x0238	102	F	5587.7	0x0059
7	F#	23.1	0x548D	39	D	146.8	0x0D4D	71	A#	932.3	0x0218	103	F#	5919.9	0x0054
8	G	24.5	0x4FB8	40	D#	155.6	0x0C8D	72	В	987.8	0x01FA	104	G	6271.9	0x004F
9	G#	26.0	0x4B1E	41	Е	164.8	0x0BD9	73	С	1046.5	0x01DD	105	G#	6644.9	0x004B
10	Α	27.5	0x4705	42	F	174.6	0x0B2F	74	C#	1108.7	0x01C2	106	Α	7040.0	0x0047
11	A#	29.1	0x431E	43	F#	185.0	0x0A8E	75	D	1174.7	0x01A9	107	A#	7458.6	0x0043
12	В	30.9	0x3F35	44	G	196.0	0x09F7	76	D#	1244.5	0x0191	108	В	7902.1	0x003F
13	С	32.7	0x3BBA	45	G#	207.7	0x0967	77	Е	1318.5	0x017B	109	С	8372.0	0x003B
14	C#	34.6	0x3872	46	А	220.0	0x08E0	78	F	1396.9	0x0165	110	C#	8869.8	0x0038
15	D	36.7	0x3537	47	A#	233.1	0x0861	79	F#	1480.0	0x0151	111	D	9397.3	0x0035
16	D#	38.9	0x3235	48	В	246.9	0x07E9	80	G	1568.0	0x013E	112	D#	9956.1	0x0032
17	Е	41.2	0x2F67	49	С	261.6	0x0777	81	G#	1661.2	0x012C	113	Е	10548.1	0x002F
18	F	43.7	0x2CB1	50	C#	277.2	0x070B	82	А	1760.0	0x011C	114	F	11175.3	0x002C
19	F#	46.2	0x2A46	51	D	293.7	0x06A6	83	A#	1864.7	0x010C	115	F#	11839.8	0x002A
20	G	49.0	0x27DC	52	D#	311.1	0x0647	84	В	1975.5	0x00FD	116	G	12543.9	0x0027
21	G#	51.9	0x25A1	53	Е	329.6	0x05EC	85	С	2093.0	0x00EE	117	G#	13289.8	0x0025
22	Α	55.0	0x2382	54	F	349.2	0x0597	86	C#	2217.5	0x00E1	118	Α	14080.0	0x0023
23	A#	58.3	0x2180	55	F#	370.0	0x0547	87	D	2349.3	0x00D4	119	A#	14917.2	0x0021
24	В	61.7	0x1FA7	56	G	392.0	0x04FB	88	D#	2489.0	0x00C8	120	В	15804.3	0x001F
25	С	65.4	0x1DDD	57	G#	415.3	0x04B3	89	Е	2637.0	0x00BD	121	С	16744.0	0x001D
26	C#	69.3	0x1C2F	58 ⁽²⁾	Α	440.0	0x0470	90	F	2793.8	0x00B2	122	C#	17739.7	0x001C
27	D	73.4	0x1A9B	59	A#	466.2	0x0430	91	F#	2960.0	0x00A8	123	D	18794.5	0x001A
28	D#	77.8	0x191A	60	В	493.9	0x03F4	92	G	3136.0	0x009F	124	D#	19912.1	0x0019
29	Е	82.4	0x17B3	61	С	523.3	0x03BB	93	G#	3322.4	0x0096	125	Е	21096.2	0x0017
30	F	87.3	0x165F	62	C#	554.4	0x0385	94	А	3520.0	0x008E	126	F	22350.6	0x0016
31	F#	92.5	0x151D	63	D	587.3	0x0353	95	A#	3729.3	0x0086	127	F#	23679.6	0x0015

Notes: 1. Approximate ideal human hearing range: 20-20,000 Hz 2. Reference A tone = tone Nb 58 = 440 Hz

Using the DVK90CAN1

The 16-bit Timer1 offers a large range of features. See the AT90CAN128 Datasheet for how to use the 16-bit Timers. It is easy to set up the Timer1 to output one of the hereinabove frequencies:

- Timer1 clock at 1 MHz
- Phase/Freq-correct PWM mode
- Top value = ICR1 (Input Capture Register Timer 1)
- Set OC1C (Output Compare "C" of Timer 1) when upcounting & clear when downcounting mode

And use the following expression:

ICR1Value = 1,000,000/ToneFrequency/2

ICR1 (in hexadecimal) is given in Table 3-13 . Tone Table Proposal.

Figure 3-33. Transducer Implementation

3.7.5 Analog I/O Connector

6 ADC inputs and the 2 inputs of the analog comparator are available on this connector. The connector is shaped as STK500 10-pin connector with GND & VCC (pin 9 & 10).

ADC-0, ADC-1 & ADC-2 are already used on board respectively by the temperature sensor, the luminosity sensor and the voltage reading. If another use is required through the Analog I/O Connector, refer to the configuration pads features (c.f. Section "Configuration Pads", page38) to customize these analog inputs.

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

AIN-0, or PortE.2, can be already used as logic input if "CENTER" switch is not in its default configuration (c.f. Section "Interrupt 0 / 2", page23).

Note: ADC-4 & ADC-5 take share with the JTAG connections. If these analog inputs are used through the Analog I/O Connector, be sure that the JTAGEN fuse is unprogrammed.

3.7.6 Voltage Reading

The voltage reading is made with a bridge of ±1% resistors. The read value is 1/5 of the voltage witch is to measure (100 K Ω / (220+180) K Ω + 100 K Ω). The high values of resistors protect the micro controller input. If necessary, the read value can be limited to 2.4V by a zener diode. This will give a voltage reading range from 0 to 12.0V with internal VRef (the zener diode can have a impedance close to 80 K Ω).

Figure 3-35 . Voltage Reading Schematic

The voltage over this resistor (100 K Ω) can be found using the A/D converter. See the AT90CAN128 Datasheet for how to use the ADC. The input voltage value (VIN) is calculate with the following expression:

$$V_{IN} = 5 \cdot V_{ADC2}$$

Where:

VIN = Input voltage value (V) VADC2 = Voltage value on ADC-2 input (V)

The voltage input can be configured. It can be either the board supply voltage (VCC) or an external input on T11 test pin. To improve the connection, close to T11, there is the test pin T12 wrapped to GND.

3.7.7 Temperature Sensor

The temperature sensor uses a thermistor, or temperature-sensitive resistor. This thermistor have a negative temperature coefficient (NTC), meaning the resistance goes up as temperature goes down. Of all passive temperature measurement sensors, thermistors have the highest sensitivity (resistance change per degree of temperature change). Thermistors do not have a linear temperature/resistance curve.

The voltage over the NTC can be found using the A/D converter. See the AT90CAN128 Datasheet for how to use the ADC. The thermistor value (RT) is calculate with the following expression:

$$\boldsymbol{R}_{T} = (\boldsymbol{R}_{H} \cdot \boldsymbol{V}_{ADC0}) / (\boldsymbol{V}CC - \boldsymbol{V}_{ADC0})$$

Where: \mathbf{R}_{T} = Thermistor value (Ω) at \mathbf{T} temperature (°Kelvin) \mathbf{R}_{H} = Second resistor of the bridge -100 K Ω ±10% at 25°C $\mathbf{V}_{\mathsf{ADC0}}$ = Voltage value on ADC-0 input (V) \mathbf{V}_{CC} = Board power supply

The NTC thermistor used in DVK90CAN1 has a resistance of 100 K Ω ±5% at 25°C (T₀) and a beta-value of 4250 ±3%. By the use of the following equation, the temperature (T) can be calculated:

$$\boldsymbol{T} = \frac{\beta}{\left(\ln\frac{R_{T}}{R_{0}}\right) + \frac{\beta}{T_{0}}}$$

Where:

 $\label{eq:RT} \begin{array}{l} \textbf{R} \tau = \text{Thermistor value } (\Omega) \text{ at } \textbf{T} \text{ temperature } (^{\circ}\text{Kelvin}) \\ \textbf{\hat{S}} = 4250 \pm 3\% \\ \textbf{R}_0 = 100 \ \text{K}\Omega \pm 5\% \text{ at } 25^{\circ}\text{C} \\ \textbf{T}_0 = 298 \ ^{\circ}\text{K} \ (273 \ ^{\circ}\text{K} + 25^{\circ}\text{K}) \end{array}$

The following cross table also can be used. It is based on the above equation.

Temp. (°C)	R⊤ (KW)	Temp. (°C)	R⊤ (KW)	Temp. (°C)	R⊤ (KW)	Temp. (°C)	R⊤ (KW)
-20	1263,757	10	212,958	40	50,486	70	15,396
-19	1182,881	11	201,989	41	48,350	71	14,851
-18	1107,756	12	191,657	42	46,316	72	14,329
-17	1037,934	13	181,920	43	44,380	73	13,828
-16	973,006	14	172,740	44	42,537	74	13,347
-15	912,596	15	164,083	45	40,781	75	12,885
-14	856,361	16	155,914	46	39,107	76	12,442
-13	803,984	17	148,205	47	37,513	77	12,017
-12	755,175	18	140,926	48	35,992	78	11,608
-11	709,669	19	134,051	49	34,542	79	11,215
-10	667,221	20	127,555	50	33,159	80	10,838
-9	627,604	21	121,414	51	31,840	81	10,476
-8	590,613	22	115,608	52	30,580	82	10,128
-7	556,056	23	110,116	53	29,378	83	9,793
-6	523,757	24	104,919	54	28,229	84	9,471
-5	493,555	25	100,000	55	27,133	85	9,161
-4	465,300	26	95,342	56	26,085	86	8,863
-3	438,854	27	90,930	57	25,084	87	8,576
-2	414,089	28	86,750	58	24,126	88	8,300
-1	390,890	29	82,787	59	23,211	89	8,035
0	369,145	30	79,030	60	22,336	90	7,779
1	348,757	31	75,466	61	21,498	91	7,533
2	329,630	32	72,085	62	20,697	92	7,296
3	311,680	33	68,876	63	19,930	93	7,067
4	294,826	34	65,830	64	19,196	94	6,847
5	278,995	35	62,937	65	18,493	95	6,635
6	264,119	36	60,188	66	17,820	96	6,430
7	250,134	37	57,576	67	17,174	97	6,233
8	236,981	38	55,093	68	16,556	98	6,043
9	224,606	39	52,732	69	15,964	99	5,860

Table 3-15 . Thermistor Values versus Temperature

Figure 3-36 . Thermistor Schematic

Figure 3-37. Thermistor Implementation

3.7.8 Luminosity Sensor

The luminosity sensor uses a CdS photoconductive cell, or luminosity-sensitive resistor. The luminosity-sensitive resistor have a negative coefficient, meaning the resistance goes up as luminosity goes down. This luminosity sensor have a linear resistance/temperature curve from 0 up to 75° C.

The luminosity sensor used in DVK90CAN1 has a resistance close to 60 K Ω at 10 lux and 5 K Ω at 100 lux for a wavelength of 550 nm.

Table 3-16. CdS Photoconductive Cell Electrical characteristics at temp=	25°(С
--	------	---

Parameter (temp=25°C)	Min	Тур	Max	Units	Test Conditions
Light Desistance	20		100	KΩ	10 lux
LIGHT RESISTANCE		5		KΩ	100 lux
Peak Spectral Wavelength		550		nm	10 s after removal of light
Dark Resistance	20			KΩ	10 s after removal of light

The voltage over the luminosity sensor can be found using the A/D converter. See the AT90CAN128 Datasheet for how to use the ADC. The resistor value (RL) is calculate

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

with the following expression:

$$\boldsymbol{R}_{L} = (\boldsymbol{R}_{H} \cdot \boldsymbol{V}_{ADC1}) / (\boldsymbol{V} \boldsymbol{C} \boldsymbol{C} - \boldsymbol{V}_{ADC1})$$

The following cross table also can be used. It is based on the above table.

Luminosity (lux)	R∟ (KW)	Luminosity (lux)	R∟ (KW)	Luminosity (lux)	R∟ (KWM)	Luminosity (lux)	R∟ (KW)
8	61	32	47	56	32	80	17
10	60	34	45	58	31	82	16
12	59	36	44	60	29	84	15
14	58	38	43	62	28	86	14
16	56	40	42	64	27	88	12
18	55	42	40	66	26	90	11
20	54	44	39	68	25	92	10
22	53	46	38	70	23	94	9
24	51	48	37	72	22	96	7
26	50	50	36	74	21	98	6
28	49	52	34	76	20	100	5
30	48	54	33	78	18	102	4

Table 3-17. Resistor Values versus Luminosity

Figure 3-38 . Luminosity Sensor Schematic

Figure 3-39 . Luminosity Sensor Implementation

3.8 STK500 Resources

Note: **Caution:** Do not mount an AVR micro controller on the STK500 board when DVK90CAN1 is plugged on STK500.

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

3.8.1 Supply Voltage from STK500

The AVR supply voltage coming from STK500 (VTG) can also be controlled from AVR Studio®.

- Need of the optional expended connectors EXP.CON 0 & EXP.CON 1 (J13 & J14),
- Need of the optional specific decoupling capacitors (C14 & C15 = 100 nF),
- The supply voltage coming from STK500 is controlled by power supply circuitry of the DVK90CAN1. Refer to Table 3-1. Power Supply (1) Setting to configure.

3.8.2 Analog Reference Voltage from STK500

The AVR Analog Reference Voltage coming from STK500 (REF) can also be controlled from AVR Studio®.

- Need of the optional expended connectors EXP.CON 0 & EXP.CON 1 (J13 & J14),
- Need of the optional specific decoupling capacitor (C16 = 100 nF),
- Refer to Table 3-5 . ANA REF Setting to configure.

3.8.3 EXP.CON 0 & EXP.CON 1 Connectors

Figure 3-41 . EXP.CON 0 and	EXP.CON 1 Connectors
-----------------------------	----------------------

GND	1	2 GNE)		GNE) 1	2	GNE)	
n.c. (AUXI0)	3	4 n.c. (AUXO0)		n.c. (AUXI1) 3	4	n.c. (AUX	01)
n.c. (CT7)	5	6 n.c. (CT6)		n.c. (DATA7	[']) 5	6	n.c. (DAT	A6)
n.c. (CT5)	7	8 n.c. (CT4)		n.c. (DATA5	5) 7	8	n.c. (DAT	A4)
n.c. (CT3)	9	10 n.c. (CT2)		n.c. (DATA3	3) 9	10	n.c. (DAT	A2)
n.c. (CT1)	11 [·]	12 n.c. (BSEL2)		n.c. (DATA1) 11	12	n.c. (DAT	A0)
n.c.	13	14 REF			n.c. (S/) 13	314	n.c. (SO)	
NRST	15 [•]	16 PG2			n.c. (SCK) 15	516	n.c. (CS)	
PG1	17	18 PG0			XT	1 17	18	XT2		
GND	19	20 GNE)		VTO	3 19	20	VTG	i	
VTG	21	22 VTG	6		GNE	21	22	GNE)	
PC7	23	24 PC6			PB	7 23	324	PB6		
PC5	25	26 PC4			PB	5 25	526	PB4		
PC3	27	28 PC2			PB	3 27	28	PB2		
PC1	29	30 PC0			PB	1 29	30	PB0		
PA7	31 3	32 PA6			PD	7 31	32	PD6		
PA5	33	34 PA4			PD	5 33	34	PD4		
PA3	35	36 PA2			PD	3 35	536	PD2		
PA1	37 3	38 PA0			PD	1 37	38	PD0		
GND	39	40 GNE)		GNE	39	40	GNE)	
EXF	P. C	ON 0			EX	KP.	со	N 1		
			To	op Vie	<u>we</u>					

3.8.4 Main Clock from STK500

The AVR clock frequency (external) coming from STK500 (XT1/XT2) can also be controlled from AVR Studio $\ensuremath{\mathbb{R}}$.

- Need of the optional expended connectors EXP.CON 0 & EXP.CON 1 (J13 & J14),
- Refer to Table 3-2. Main Clock Setting to configure XTAL1 & XTAL2.

3.8.5 RESET from STK500

The AVR RESET coming from STK500 (NRST - EXP.CON 0) can also control the DVK90CAN1. DVK90CAN1 is protected against +12V RESET pulse (parallel programing not allowed for AT90CAN128 on DVK90CAN1) coming from STK500.

3.9 In-System Programming

The AT90CAN128 can be programmed using specific SPI serial links. This sub section will explain how to connect the programming.

The Flash, EEPROM and all Fuse and Lock Bit options ISP-programmable can be programmed individually or with the sequential automatic programming option.

3.9.1 **Programming with AVR ISP Programmer**

The AVR ISP programmer is a compact and easy-to-use In-System Programming tool for developing applications with AT90CAN128. Due to the small size, it is also an excellent tool for field upgrades of existing applications. It is powered by the DVK90CAN1 and an additional power supply is thus not required.

The AVR ISP programming interface is integrated in AVR Studio®.

To program the device using AVR ISP programmer, connect the 6-wire cable on the ISP connector of the DVK90CAN1 as shown in Figure 3-42.

Note: See AVR Studio® on-line Help for information.

Figure 3-42 . Programming from AVR ISP programmer

page 34

4381A-AVR-Sept 04

3.9.2 Programming with STK500

The AT90CAN128 can be programmed using the serial programming mode in the AVR Studio STK500 software. The software interface (In-System Programming of an external target system) is integrated in AVR Studio®.

To program the device using ISP from STK500, connect the 6-wire cable between the ISP6PIN connector of the STK500 board and the ISP connector of the DVK90CAN1 as shown in Figure 3-43.

Note: See AVR Studio® on-line Help for information.

Figure 3-43 . Programming from STK500

3.9.3 Programming with AVR JTAG ICE

The AT90CAN128 can be programmed using specific JTAG link. This sub section will explain how to connect and use the AVR JTAG ICE.

Note: When the JTAGEN Fuse is unprogrammed, the four TAP pins are normal port pins, and the TAP controller is in reset. When programmed, the input TAP signals are internally pulled high and the JTAG is enabled for Boundary-scan and programming. The AT90CAN128 device is shipped with this fuse programmed.

The Flash, EEPROM and all Fuse and Lock Bit options ISP-programmable can be programmed individually or with the sequential automatic programming option.

Note: See AVR Studio® on-line Help for information.

3.10 Debugging

3.10.1 Debugging with AVR JTAG ICE

Every DVK90CAN1 can be used for debugging with JTAG ICE / JTAG ICE MK II.

For debugging, please refer to AVR Studio® Help information.

Note: "AT90CAN128 Plug-in" for AVR Studio®, available on our Web site, offers a dockable window displaying a full view (non-paginated) of the CAN mailbox providing an efficient debugging (JTAG ICE MK II only).

DVK90CAN1 Hardware User Guide

page 36

4381A-AVR-Sept 04

Figure 3-45 . Connecting AVR JTAG ICE for Debugging

3.10.2 Debugging with AVR ICE 50

Only a DVK90CAN1 provided with the TQFP-64 Personality Adapter can be used (c.f.Section "Using AVR ICE50", page10).

For debugging, please refer to AVR Studio® Help information.

Note: "AT90CAN128 Plug-in" for AVR Studio®, available on our Web site, offers a "stop mode" and a dockable window displaying a full view (non-paginated) of the CAN mailbox providing an efficient debugging (JTAG ICE MK II only).

Figure 3-46. Connecting AVR ICE 50 for Debugging

3.11 Test Points

Excepted for T1, all the test points are free of connection. These tests points are referred in the micro controller sheet of schematics.

There are 7 test points implemented close to AT90CAN128 micro-controller:

- 1. (T1) GND Board reference voltage
- 2. (T6) AREF Pin Analog Reference of AT90CAN128
- 3. (T4) VCC Board and AT90CAN128 Power Supply
- 4. (T2) AVCC Pin Analog Power Supply of AT90CAN128
- 5. (T7) **TA0** (no signal)
- 6. (T8) VPP (no signal, PG.2 signal only)
- 7. (T10) **CLKO** Pin PortC.7/Clock Output of AT90CAN128 (c.f. AT90CAN128 Datasheet, sections "I/O Ports" and "Memory Programming")

Figure 3-47 . AT90CAN128 Test Points

3.12 Configuration Pads

All configuration pads are located on the bottom side of the board. They are used to disconnect/connect on-board peripherals or elements.

The default configuration is: connect.

3.12.1 Configuration Pads Listing

page 38

4381A-AVR-Sept 04

T	able	3-18.	Configuration	Pads
---	------	-------	---------------	------

Config. Pads Reference	Related Signals	Function	
CP1	RxCAN (PD6)	These configuration pads are used to disconnect/connect	
CP2	TxCAN (PD5)	the CAN transceiver from AT90CAN128.	
CP3	C-GND (GND)	This configuration pad is used to disconnect/connect the CAN Ground (C-GND) from DVK90CAN1 Ground (GND).	
CP4	RxLIN (PD2)		
CP5	SleepLIN (PD7)	These configuration pads are used to disconnect/connect the LIN transceiver from AT90CAN128	
CP6	TxLIN (PD3)		
CP7	VCCµC (VCC)	This configuration pad is used to disconnect/connect the AT90CAN128 VCC (VCC μ C) from DVK90CAN1 power supply (VCC). It is useful to measure the AT90CAN128 consumption.	
CP8	AVCC (VCC)	This configuration pad is used to disconnect/connect the ferrite bar when AVCC is supplied to AT90CAN128 by VCC.	
CP9	AVCC	This configuration pad is used to disconnect/connect the AT90CAN128 AVCC from DVK90CAN1 AVCC. It is useful to measure the analog AT90CAN128 consumption.	
CP10	AUDIO-T (PB7)	This configuration pad is used to disconnect/connect the piezo audio transducer from AT90CAN128.	
CP11	TEMP-S (PF0)	This configuration pad is used to disconnect/connect the temperature sensor from AT90CAN128, analog connector.	
CP15	LIGHT-S (PF1)	This configuration pad is used to disconnect/connect the luminosity sensor from AT90CAN128.	
CP17	VOLT-S (PF2)	This configuration pad is used to disconnect/connect the voltage reading from AT90CAN128.	
CP12	LED-0 (PA0)		
CP13	LED-1 (PA1)		
CP14	LED-2 (PA2)		
CP16	LED-3 (PA3)	These configuration pads are used to disconnect/connect	
CP18	LED-4 (PA4)	the 8-LED group from AT90CAN128.	
CP19	LED-5 (PA5)		
CP20	LED-6 (PA6)		
CP21	LED-7 (PA7)		
CP22	NRESET (RESET)	This configuration pad is used to disconnect the NRESET from application and re-connect the RESET pin of AT90CAN128 to +12Volts in case of parallel programming (EXP. CON 0 pin15 if STK500 used).	

Using the DVK90CAN1

3.12.3

3.12.2 Configuration Pads - Disconnection

3.12.4 Configuration Pads - Location

page 40

4381A-AVR-Sept 04

Figure 3-48. Configuration Pads Location (Board Bottom View)

Basic Test Program

;* ;* Title : Basic Test Program ;* Version: 1.0 ;* Last updated: 14 May 2004 ;* Target : AT90CAN128 ;* Platform: AVRStudio Assembler ;* ;* DESCRIPTION: ;* This test program is a basic test for DVK90CAN1. ;* This program is a led chaser. ;* The led chaser is stopped in case of keyboard hit. ;* .include "can128def.inc" ;***** Global register variables .def temp1=R16 ; first working register ; second working register .def temp2=R17 .cseg .org 0 ;***** Program Execution Starts Here .equ MAX =0xFF ; Max value for 8-bit data .equ ONE =0x01 ; value=1 for 8-bit data .equ DEL_H_VAL=0xFF ; MSB of delay value .equ DEL L VAL=0xFF ; LSB of delay value ; mask port E (keyboard) .equ MSK E=0xF4 .equ MSK D=0x02 ; mask port D (keyboard) ;***** Test program Reset: ldi templ, MAX out DDRA, temp1 ; Init PortA direction Loop 0: ldi temp1, ONE Loop 1: in temp2, PINE andi temp2, MSK_E ; Wait if keyboard hit brne Loop_1 in temp2, PIND andi temp2, MSK D brne Loop_1 out PORTA, temp1 ; Output PortA value

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

Delay:				
	ldi ldi rjmp	R30, DEL_L_VAL R31, DEL_H_VAL Delay_0	;	Init delay
Delay_1:	sbiw	R31:R30, ONE		
Delay_0.	mov or brne	temp1, R30 temp1, R31 Delay_1		
Shift:				
	in lsl brne rjmp	temp1, PINA temp1 Loop_1 Loop_0	; ;	Read PORTA Shift left

Troubleshooting Guide

Problem	Reason	Solution
The Green "VCC-ON"		Switch-on the "POWER" switch
LED is not on	No power supply	Verify the power supply source
DVK90CAN1 does not work		Connect the DC power supply source
	The STK500ISPheader is not connected.	Connect a 6-pin flexible cable from STK500 ISP6-PIN header to the correct DVK90CAN1 ISP header (page 35)
	The AVR ISP probe is not connected	Connect the AVRISP6-PIN header to the correct DVK90CAN1 ISP header (page 34)
The AT90CAN128 cannot be prgrammed	The AVR JTAG ICE probe is not connected	Connect the JTAGICE 10-PIN header to the correct DVK90CAN1 JTAG header (page 35)
	The memory lock bits are programmed	Erase the memory before programming
	The fuse bits are wrong programmed	Check the fuse bits
	Programming too fast with ISP SPI	Check oscillator settings and make sure it is not set higher than SPI clock
	Serial cable is not connected, or power	Connect serial cable to RS232 (STK500 - AVR ISP - JATG ICE) and check power connections
	is off	Connect serial cable to USB (JATG ICE MKII) and check power connections
AVR Studio does not detect the AVR tool used	PC COM port is in	Disable other programs that are using PC COM port.
	use	Change PC COM port
	AVR Studio does not detect COM port.	Disable COM port auto-detection in AVR Studio file menu. Force COM port to correct COM port

Figure 5-1 . Troubleshooting Guide

4381A-AVR-Sept 04

Technical Specifications

System Unit

- Physical Dimensions	L=119 x W=56 x H=27 mm
- Weight	

Operating Conditions

- Voltage Supply2.7V - 5.5V

Connections

RS 232C ConnectorRS 232C Communications Maximum Speed	9-pin D-SUB female 250 kbps
CAN ConnectorCAN Communications Maximum Speed	9-pin D-SUB male 1 Mbps
– LIN Connector– LIN Communications Maximum Speed	3-pin SIL male 9600 bps
SPI ConnectorSPI Communications Maximum Speed	6-pin SIL male 4 Mbps
TWI ConnectorTWI Communications Maximum Speed	64-pin SIL male 400 kbps

Technical Support

For Technical support, please contact avr@atmel.com. When requesting technical support, please include the following information:

- Which target AVR device is used (complete part number)
- Target voltage and speed
- Clock source and fuse setting of the AVR
- Programming method (ISP, JTAG or specific Boot-Loader)
- Hardware revisions of the AVR tools, found on the PCB
- Version number of AVR Studio. This can be found in the AVR Studio help menu.
- PC operating system and version/build
- PC processor type and speed
- A detailed description of the problem

page 46

4381A-AVR-Sept 04

Complete Schematics

On the next pages, the following documents of DVK90CAN1 revision 4381A are shown:

- Complete schematics,
- Assembly drawing,
- Bill of materials.

Figure 8-1 . Schematics, 1 of 5

page 48

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

EL

page 50

4381A-AVR-Sept 04

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

page 52

AIMEL

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

Figure 8-6. Assembly Drawing, 1 of 2 (component side)

Figure 8-7 . Assembly Drawing, 2 of 2 (solder side)

Table 8-1. Bill of Materials

ltem	Quantity	Reference	Part	Description	Package
1	6	C1, C2, C7, C9, C10, C11	15pF	50V-10% SMD Ceramic Capacitor	CASE 0805
2	3	C35, C36, C37	10nF	50V-10% SMD Ceramic Capacitor	CASE 0805
3	23	C3, C4, C5, C6, C8, C12, C13, C14, C15, C16, C18, C20, C22, C24, C25, C26, C27, C30, C31, C32, C33, C38, C39	100nF	50V-10% SMD Ceramic Capacitor	CASE 0805
4	1	C28	220nF	50V-10% SMD Ceramic Capacitor	CASE 0805
5	2	C29,C34	1uF	10V-10%SMD Polarized Capacitor	EIA/IECQ 3216
6	3	C19, C21, C23	47uF	10V-10%SMD Polarized Capacitor	EIA/IECQ 6032
7	1	C17	47uF	16V-10%SMD Polarized Capacitor	EIA/IECQ 7343
8	1	D2	LS4148/4448	Diode 0.30A	SOD80
9	1	D4	MRA4003/4005	Diode 1,0A	SMA
10	1	D5	SMBJ16A	Transil Diode 16V	DO214
11	1	D14	SOT23	Zener 2.4V	SOT23
12	1	D7	BAT54	Schottky Diode	SOT23
13	2	D1, D3	TOPLED LSY T676	Red & Yellow Double LED	PLCC-4
14	9	D6, D8, D9, D10, D11, D12, D13, D15, D16	TOPLED LP M670	Green LED	PLCC-2
15	7	J10, J11, J27, J24, J15, J19, J28	Jumper 1x2	Need 1 shunt	0,1" pitch
16	2	J6, J7	Jumper 2x3	Need 1 shunt	0,1" pitch
17	1	J25	Connector 2x3		0,1" pitch
18	2	J1, J2	Jumper 2x4	Need 1 shunt	0,1" pitch
19	1	J22	Connector HE10 male 10 pts		0,1" pitch
20	1	J20	Connector 2x5		0,1" pitch
21	2	J13, J14	Connector 2x20		0,1" pitch
22	3	J21, J29, J30	Jumper 1x3	1 shunt	0,1" pitch
23	1	J5	Jumper 3x4	4 shunts	0,1" pitch
24	1	J4	SUB-D9 Female	90° with harpoons	
25	1	J9	SUB-D9 Male	90° with harpoons	

DVK90CAN1 Hardware User Guide

4381A-AVR-Sept 04

Table 8-1 . Bill of Materials

Item	Quantity	Reference	Part	Description	Package
26	1	J17	MTA Connector 1x2	Vertical Connector	0,1" pitch
27	1	J12	MTA Connector 1x3	Vertical Connector	0,1" pitch
28	1	J26	MTA Connector 1x4	Vertical Connector	0,1" pitch
29	1	J23	MTA Connector 1x6	Vertical Connector	0,1" pitch
30	1	J18	JACK Female Connector	Int.Diam=2.5mm	PCB Embase
31	1	L1	BLM-21A102S	Ferrite Bead 1 KΩ @ 100 MHz	CASE 0805
32	1	Q1	BC 847B	NPN Ipeak=200mA	SOT23
33	4	R10, R18, R24, R26	0 Ω	SMD Resistor	CASE 0603
34	2	R1, R2	50 Ω (47 Ω)	1/16W-5% SMD Resistor	CASE 0603
35	1	R9	120 Ω	1/16W-5% SMD Resistor	CASE 0603
36	5	R23, R25, R27, R28, R29	150 Ω	1/16W-5% SMD Resistor	CASE 0603
37	14	R3, R4, R6, R7, R8, R12, R32, R33, R34, R36, R40, R42, R43, R44	1 ΚΩ	1/16W-5% SMD Resistor	CASE 0603
38	1	R35	3.3 ΚΩ	1/16W-5% SMD Resistor	CASE 0603
39	3	R19, R20, R21	4.7 ΚΩ	1/16W-5% SMD Resistor	CASE 0603
40	3	R5, R17, R22	10 ΚΩ	1/16W-5% SMD Resistor	CASE 0603
41	1	R15	47 ΚΩ	1/16W-5% SMD Resistor	CASE 0603
42	1	R30	100 KΩ	1/16W-5% SMD Resistor	CASE 0603
43	1	R11	237 Ω - 1%	0.1W-1% SMD Resistor	CASE 0603
44	1	R13	332 Ω - 1%	0.1W-1% SMD Resistor	CASE 0603
45	1	R14	365 Ω - 1%	0.1W-1% SMD Resistor	CASE 0603
46	1	R41	100 KΩ - 1%	1/16W-1% SMD Resistor	CASE 0603
47	1	R38	180 KΩ - 1%	1/16W-1% SMD Resistor	CASE 0603
48	1	R37	220 KΩ - 1%	1/16W-1% SMD Resistor	CASE 0603
49	1	R31	NCP18WF104J03	100 KΩ - β=4250 SMD NTCR	CASE 0603
50	1	R39	NSL 19M51	20 MΩ Max. LDR	Entraxe=2.5mm
51	3	SW2, SW2, SW3	ON/OFF Switch	Std Cursor - Vertical	0,1" pitch
52	3	SW1, SW5, SW6	Smd Push Button	6x3.5 mm - 1.6N	
53	5	SW7, SW8, SW9, SW10, SW11	Push Button	6x6 mm - 1.2N	
54	9	T1, T2, T4, T6, T7, T8, T10, T11, T12	Test Pin		Diam.=1.32mm

Complete Schematics

Table 8-1 . Bill of Materials

Item	Quantity	Reference	Part	Description	Package
55	1	U1	74HC126	Tri-state Buffer	SOIC14
56	1	U2	MAX3232	RS232-C Buffer	SSOP16_
57	1	U3	ATA6660	ATMEL CAN Transceiver	SO8
58	1	U4	ATA6661	ATMEL LIN Transceiver	SO8
59	1	U5	LM317EMP	Regulator 1A	SOT223
60	1	U6	DF005S/08S	Bridge Rectifier	SMD specific
61	1	U7	AT90CAN128	ATMEL AVR µController	TQFP64
62	1	U8	KTM-1102	Piezo Audio Transducer	10x10mm
63	1	Y1	8MHz Crystal	H=4mm	HC49/4H
64	2	Y2, Y3	32.768 KHz Watch Crystal	Cylinder 2x6mm	Watch B

page 56

4381A-AVR-Sept 04

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Printed on recycled paper.