National Semiconductor

54AC157 • 54ACT157 Quad 2-Input Multiplexer

General Description

The 'AC/'ACT157 is a high-speed quad 2 -input multiplexer Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (noninverted) form. The 'AC/ 'ACT157 can also be used as a function generator.
Features

- I_{Cc} and I_{Oz} reduced by 50%
- Outputs source/sink 24 mA
- 'ACT157 has TTL-compatible inputs
- Standard Microcircuit Drawing (SMD)
-'AC157: 5962-89539
-'ACT157: 5962-89688
Logic Symbols

Pin Names	Description
$I_{0 \mathrm{aa}}-I_{0 d}$	Source 0 Data Inputs
$I_{1 \mathrm{a}}-I_{1 \mathrm{~d}}$	Source 1 Data Inputs
$\overline{\mathrm{E}}$	Enable Input
S	Select Input
$\mathrm{Z}_{\mathrm{a}}-Z_{\mathrm{d}}$	Outputs

Connection Diagrams

FACTTM is a trademark of Fairchild Semiconductor Corporation

Functional Description

The 'AC/'ACT157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input ($\overline{\mathrm{E}}$) is active-LOW. When E is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The 'AC/'ACT157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& Z_{\mathrm{a}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{a}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{~b}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{ob}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{c}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{c}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{oc}} \cdot \overline{\mathrm{~S}}\right)
\end{aligned}
$$

$$
Z_{d}=\bar{E} \cdot\left(I_{1 d} \cdot S+I_{o d} \cdot \bar{S}\right)
$$

A common use of the 'AC/ACT157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'AC/'ACT157 can generate any four
of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions

Truth Table

Inputs				
$\overline{\mathbf{E}}$	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Outputs
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage (V_{CC})
-0.5 V to +7.0 V
DC Input Diode Current (I_{IK})

$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$	+20 mA
DC Input Voltage (V_{l})	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
DC Output Diode Current (l_{OK})	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$	+20 mA
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current (I_{O})	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current per Output Pin (I_{Cc} or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 50 \mathrm{~mA}$

$\pm 50 \mathrm{~mA}$
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T_{J})
CDIP
$175^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage (V_{CC})

'AC	2.0 V to 6.0 V
'ACT	4.5 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{1}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}

Operating Temperature $\left(T_{A}\right)$ 54AC/ACT
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ 'AC Devices
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\mathrm{Cc}} @ 3.3 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
'ACT Devices
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{cc}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and outputinput loading variables. National does not recommend operation of FACT $^{T M}$ circuits outside databook specifications.

DC Characteristics for 'AC Family Devices

Symbol	Parameter	V_{cc} (V)	54AC	Units	Conditions
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		
			Guaranteed Limits		
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.7 \\ & 4.7 \\ & \hline \end{aligned}$	V	(Note 2) $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	V	(Note 2) $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	5.5	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$, GND
$\mathrm{I}_{\text {OLD }}$	Minimum Dynamic Output Current (Note 3)	5.5	50	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$		5.5	-50	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min

DC Characteristics for 'AC Family Devices (Continued)

Symbol	Parameter	V_{cc} (V)	54AC	Units	Conditions
			$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		
			Guaranteed Limits		
I_{cc}	Maximum Quiescent Supply Current	5.5	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

Note 2: All outputs loaded; thresholds on input associated with output under test
Note 3: Maximum test duration 2.0 ms , one output loaded at a time.
Note 4: I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.
I_{CC} for $54 \mathrm{AC} @ 25^{\circ} \mathrm{C}$ is identical to $74 \mathrm{AC} @ 25^{\circ} \mathrm{C}$.
DC Characteristics for 'ACT Family Devices

Symbol	Parameter	V_{cc} (V)	54ACT	Units	Conditions
			$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		
			Guaranteed Limits		
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 4.70 \end{aligned}$	V	(Note 5) $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	V	(Note 5) $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{N}	Maximum Input Leakage Current	5.5	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\mathrm{I}_{\text {CCT }}$	Maximum $\mathrm{I}_{\mathrm{CC}} /$ Input	5.5	1.6	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}-2.1 \mathrm{~V}$
$\mathrm{I}_{\text {OLD }}$	Minimum Dynamic Output Current (Note 6)	5.5	50	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$		5.5	-50	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
I_{CC}	Maximum Quiescent Supply Current	5.5	80.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$

Note 5: All outputs loaded; thresholds on input associated with output under test.
Note 6: Maximum test duration 2.0 ms , one output loaded at a time.
Note 7: I_{CC} for 54 ACT @ $25^{\circ} \mathrm{C}$ is identical to $74 \mathrm{ACT} @ 25^{\circ} \mathrm{C}$.

AC Electrical Characteristics					
Symbol	Parameter	V_{cc} (V) (Note 8)			Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.3	1.0	16.0	ns
	S to Z_{n}	5.0	1.0	12.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	3.3	1.0	14.0	ns
	$S \text { to } Z_{n}$	5.0	1.0	11.5	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay	3.3	1.0	16.0	ns
	\bar{E} to Z_{n}	5.0	1.0	12.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	3.3	1.0	14.0	ns
	\bar{E} to Z_{n}	5.0	1.0	11.5	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.3	1.0	11.0	ns
	$I_{n} \text { to } Z_{n}$	5.0	1.0	9.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	3.3	1.0	11.0	ns
	I_{n} to Z_{n}	5.0	1.0	9.0	

Note 8: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V) (Note 9)	$\begin{gathered} 54 \mathrm{ACT} \\ \hline \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay S to Z_{n}	5.0	1.0	11.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay S to Z_{n}	5.0	1.0	11.5	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{E}}$ to Z_{n}	5.0	1.0	12.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{E}}$ to Z_{n}	5.0	1.0	10.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay I_{n} to Z_{n}	5.0	1.0	8.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $I_{n} \text { to } Z_{n}$	5.0	1.0	9.0	ns

Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ OPEN
C_{PD}	Power Dissipation Capacitance	50.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

