Trimmer Potentiometers

muRata

Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.R50E-17

R50E.pdf 11.1.17

for EU RoHS Compliant

- · All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment".
- · For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).

CONTENTS

Part Numbering 2 PVZ2/PVA2 Series Notice SMD Open Type 3mm Size PVZ3 Series 10 PVZ3 Series Notice — SMD Sealed Type 3mm Size PVG3 Series — 16 PVG3 Series Notice — 19 SMD Sealed Type 4mm Size PVM4 Series — 21 23 PVM4 Series Notice — SMD Sealed Type Multi-turn PVG5 Series ———— 26 PVG5 Series Notice — 29 PV32 Series Notice — 34 Lead Sealed Type Multi-turn PV12/PV37/PV36 Series 36 PV12/PV37/PV36 Series Notice 43 SMD Open Type (PVZ2/A2/Z3)/SMD Sealed Type (PVM4A_C01 Series) Specifications and Test Methods | — 45 SMD Sealed Type (PVG3/M4A_D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods | -46 Packaging 49 Recommended Adjustment Tools/Qualified Standards – 52

[•] The RoHS compliance means that we judge from EU Directive 2002/95/EC the products do not contain lead, cadmium, mercury, hexavalent

chromium, PBB and PBDE, except exemptions stated in EU Directive 2002/95/EC annex and impurities existing in the natural world.

This statement does not insure the compliance of any of the listed parts with any laws or legal imperatives developed by any EU members individually with regards to the RoHS Directive.

Part Numbering

Trimmer Potentiometers

(Part Number) PV Z3 A 103 C01 R00

Product ID

Product ID	
PV	Trimmer Potentiometers

3Adjustment Direction /Lead Type

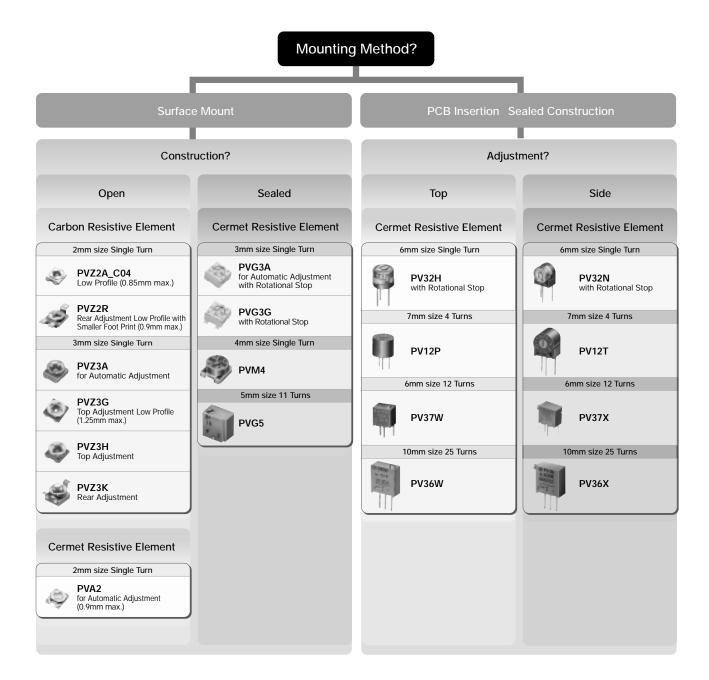
Code	Series	Code	Adjustment Direction/ Lead Type
Z2	SMD Open 2mm Size	Α	Тор
22	Carbon Resistive Element	R	Rear
A2	SMD Open 2mm Size	Α	Тор
		Α	Тор
Z3	SMD Open 3mm Size	G	Тор
23	Carbon Resistive Element	Н	Тор
		K	Rear
G3	SMD Sealed 3mm Size	Α	Top, J-hook
GS	SIVID Sealed SITIITI SIZE	G	Top, Gull-wing
M4	SMD Sealed 4mm Size	Α	Тор
	SMD Sealed 5mm Square	Α	Тор
G5	11-turns	Н	Side
32	Lead Sealed 6mm Round	Н	Top, Triangle
32	Single-turn	N	Side, Triangle
12	Lead Sealed 7mm Round	Р	Top, Triangle
12	4-turns	Т	Side, Triangle
26	Lead Sealed 10mm Square	w	Top, Inline
36	25-turns	Х	Side, Inline
27	Lead Sealed 6mm Square	w	Top, Triangle
37	12-turns	Х	Side, Triangle

4Total Resistance

Expressed by three figures. The unit is ohm. The first and second $% \left(x\right) =\left(x\right) +\left(x\right) +$ figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

Ex.)	Code	Total Resistance
	100	10Ω
	102	1000Ω
	104	100000Ω (=100kΩ)

6 Individual Specification


Series	Code	Individual Specification Code
PVA2	A01	Standard Type
PVZ2	C04	Standard Type (High-heat Resistance Type/Ultra-thin Type)
	C01	Standard Type (High-heat Resistance Type/Top Adjustment)
PVZ3	F01	High Characteristic Carbon Type (only PVZ3G)
	E01	High-heat Resistance Type (for Rear Adjustment)
D)/844	C01	Standard Type
PVM4	D01	High-liability Type
PV32/PV12	A01	Standard Type
PVG3/ PV36/PV37	C01	Standard Type
PVG5	C03	Standard Type

6 Packaging

Code	Packaging
B00	Bulk
R00	Reel

Selection Guide of Trimmer Potentiometers

Trimmer Potentiometers

SMD Open Type 2mm Size PVZ2/PVA2 Series

PVZ2 Series

■ Features

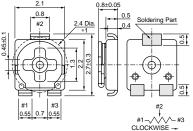
 Ultra-small and thin external dimensions of 2.1(W)x2.7(L)x0.85 max. (T)mm.
 (Top adjustment type: PVZ2A_C04 Series)

2. Ultra-small and thin external dimensions of 2.1(W)x4.8(L)x0.9 max. (T)mm.

(Rear adjustment type: PVZ2R_C04 Series) Compact PCB design is possible by smaller adjustment hole (3.0mm dia.) due to short wing length (4.8mm).

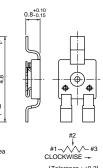
- 3. Au plated termination achieves a high density PCB mounting.
- Cross-shaped driver slot allows for in-process automatic adjustment and it provides superior adjustability.
- Two-piece parts construction achieves low cost and excellent quality.
- Special resin substrate allows high peak temperature for reflow soldering. (PVZ2_Cxx Series)
- 7. PVZ2 series comply with RoHS directive.

■ Applications


Pick-up module
 LCD
 Cellular-phone
 PHS
 Pager
 DVC

7. Digital camera 8. Portable audio, etc.

9. RKE 10. E-BOOK



*1 Driver Plate Rotation Area: Please do not place any components more than 0.5mm in height within this area

> (Tolerance: ±0.2) in mm

PV72R *1: Driver Plate Rotation Area

Top Adjustment

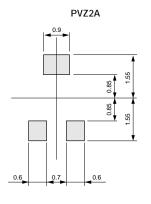
Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVZ2A471C04	0.1(50°C)	1(240±10°)	Continuous	470ohm ±30%	±500
PVZ2A102C04	0.05(50°C)	1(240±10°)	Continuous	1k ohm ±30%	±500
PVZ2A222C04	0.1(50°C)	1(240±10°)	Continuous	2.2k ohm ±30%	±500
PVZ2A472C04	0.1(50°C)	1(240±10°)	Continuous	4.7k ohm ±30%	±500
PVZ2A103C04	0.05(50°C)	1(240±10°)	Continuous	10k ohm ±30%	±500
PVZ2A223C04	0.1(50°C)	1(240±10°)	Continuous	22k ohm ±30%	±500
PVZ2A473C04	0.1(50°C)	1(240±10°)	Continuous	47k ohm ±30%	±500
PVZ2A104C04	0.05(50°C)	1(240±10°)	Continuous	100k ohm ±30%	±500
PVZ2A224C04	0.1(50°C)	1(240±10°)	Continuous	220k ohm ±30%	±500
PVZ2A474C04	0.1(50°C)	1(240±10°)	Continuous	470k ohm ±30%	±500
PVZ2A105C04	0.05(50°C)	1(240±10°)	Continuous	1M ohm ±30%	±500

*Available for other resistance value.

Operating Temperature Range: -25 to 85 $^{\circ}\text{C}$

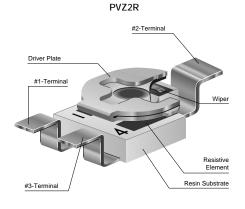
Soldering Method: Reflow/Soldering Iron

Rear Adjustment

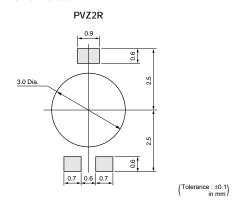

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVZ2R471C04	0.1(50°C)	1(240±10°)	Continuous	470ohm ±30%	±500
PVZ2R102C04	0.1(50°C)	1(240±10°)	Continuous	1k ohm ±30%	±500
PVZ2R222C04	0.1(50°C)	1(240±10°)	Continuous	2.2k ohm ±30%	±500
PVZ2R472C04	0.1(50°C)	1(240±10°)	Continuous	4.7k ohm ±30%	±500
PVZ2R103C04	0.1(50°C)	1(240±10°)	Continuous	10k ohm ±30%	±500
PVZ2R223C04	0.1(50°C)	1(240±10°)	Continuous	22k ohm ±30%	±500
PVZ2R473C04	0.1(50°C)	1(240±10°)	Continuous	47k ohm ±30%	±500
PVZ2R104C04	0.1(50°C)	1(240±10°)	Continuous	100k ohm ±30%	±500
PVZ2R224C04	0.1(50°C)	1(240±10°)	Continuous	220k ohm ±30%	±500
PVZ2R474C04	0.1(50°C)	1(240±10°)	Continuous	470k ohm ±30%	±500
PVZ2R105C04	0.1(50°C)	1(240±10°)	Continuous	1M ohm ±30%	±500

^{*}Available for other resistance value. Operating Temperature Range: -25 to 85 °C Soldering Method: Reflow/Soldering Iron

■ Construction



■ Standard Land Pattern



(Tolerance : ±0.1) in mm)

■ Construction

■ Standard Land Pattern

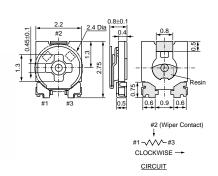
Continued on the following page.

Continued from the preceding page.

■ Characteristics

Humidity Exposure	Res. Change: +10, -2%
High Temperature Exposure	Res. Change: R≦50kohm···+2, -10% 50kohm <r···+2, -15%<="" td=""></r···+2,>
Humidity Load Life	Res. Change: ±10%
Load Life	Res. Change: R≦50kohm···+2, -10% 50kohm <r···+2, -15%<="" td=""></r···+2,>
Temperature Cycle	Res. Change: ±5%
Rotational Life	Res. Change: ±10% (10 cycles)

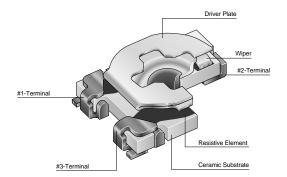
PVA2 Series


■ Features

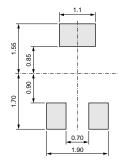
- 1. Ultra-small and thin external dimensions of 2.2(W)x2.75(L)x0.90 max.(T)mm.
- 2. For the terminal attachment method of construction which uses neither solder nor adhesives, good solderability and terminal attachment intensity are realized.
- 3. Because of multi-contact wiper structure, PVA2 has a stable characteristics (low noise).
- 4. PVA2 series do not use a solder, flux and cleaning solvent, so they are environmentally friendly products.
- 5. Heat resistance performance enables high temperature peak re-flow soldering.
- 6. PVA2 series comply with RoHS directive.

Applications

- 1. Thin-model optical pick-up module
- 2. LCD module
- 3. Optical communication module
- 4. Small sensor module
- 5. Digital camera
- 6. Small telecommunications equipment, etc.
- 7. E-BOOK



Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVA2A101A01	0.1(70°C)	1(260±10°)	Continuous	100ohm ±25%	±250
PVA2A221A01	0.1(70°C)	1(260±10°)	Continuous	220ohm ±25%	±250
PVA2A471A01	0.1(70°C)	1(260±10°)	Continuous	470ohm ±25%	±250
PVA2A102A01	0.1(70°C)	1(260±10°)	Continuous	1k ohm ±25%	±250
PVA2A222A01	0.1(70°C)	1(260±10°)	Continuous	2.2k ohm ±25%	±250
PVA2A472A01	0.1(70°C)	1(260±10°)	Continuous	4.7k ohm ±25%	±250
PVA2A103A01	0.1(70°C)	1(260±10°)	Continuous	10k ohm ±25%	±250
PVA2A223A01	0.1(70°C)	1(260±10°)	Continuous	22k ohm ±25%	±250
PVA2A473A01	0.1(70°C)	1(260±10°)	°) Continuous 47k ohm ±25%		±250
PVA2A104A01	0.1(70°C)	1(260±10°)	Continuous	100k ohm ±25%	±250
PVA2A224A01	0.1(70°C)	1(260±10°)	Continuous	220k ohm ±25%	±250
PVA2A474A01	0.1(70°C)	1(260±10°)	Continuous	470k ohm ±25%	±250
PVA2A105A01	0.1(70°C)	1(260±10°)	Continuous	1M ohm ±25%	±250
PVA2A225A01	0.1(70°C)	1(260±10°)	Continuous	2.2M ohm ±25%	±250


^{*}Available for other resistance value. Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Reflow/Soldering Iron

■ Construction

■ Standard Land Pattern

(Tolerance : ±0.1) in mm

■ Characteristics

Humidity Exposure	Res. Change: ±3%
High Temperature Exposure	Res. Change: ±3%
Humidity Load Life	Res. Change: ±3%
Load Life	Res. Change: ±3%
Temperature Cycle	Res. Change: ±3%
Rotational Life	Res. Change: ±10% (10 cycles)

PVZ2/PVA2 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

■ Notice (Rating)

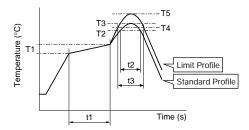
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.
- If the trimmer potentiometer is used in DC and high humidity conditions, please connect wiper (#2) for plus and resistive element (#1 or #3) for minus. (PVZ Series only)

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

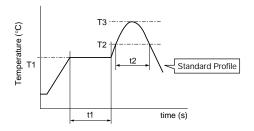
- 1. Soldering
- (1) Reflow soldering method and soldering iron are available. Cannot be soldered using the flow soldering method (dipping). If you use the flow soldering method, the trimmer potentiometer may not function.
- (2) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (3) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (4) Apply the appropriate amount of solder paste. The thickness of solder paste should be printed from 100 micro m to 150 micro m and the dimension of land pattern used should be Murata's standard land pattern at reflow soldering. Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging between the terminals.

- (5) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- 2. Mounting
- Do not apply excessive force, preferably 4.9N max. (Ref. 500gf) when the trimmer potentiometer is mounted to the PCB.
- (2) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (3) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 1.5-1.8mm dia. and inner dimension 1.3mm dia.
- 3. Cleaning
- In case there is flux on the resistive element, clean sufficiently with cleaning solvents and completely remove all residual flux.
- (2) Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please evaluate performance with your product.



PVZ2/PVA2 Series Notice

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

	Standard Profile						Limit Profile					
Series	Pre-heating		Heating		Peak Temperature	Cycle of	Pre-heating		Heating		Peak Temperature	Cycle of
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5) Re	Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVA2	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260 +5/-0	2
PVZ2	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

Series	Standard Profile								
	Pre-h	eating	Hea	ting	Peak Temperature	Cycle of			
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow			
	°C	sec.	°C	sec.	°C	Time			
PVA2 PVZ2	150	60 to 120	183	30	230	1			

Soldering Iron

		Standard		
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron
°C		sec.	W	Time
PVA2 PVZ2	350±10	3 max.	30 max.	1

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdriver below.
 - * Recommended screwdriver for manual adjustment Murata P/N: KMDR190
- 2. The screwdriver should be set in the products vertically, do not apply more than 4.9N (Ref. 500gf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.
- Notice (Other)
- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.

- 3. Please use within the effective rotational angle. The trimmer potentiometer does not have a mechanical stop for over rotation. In cases out of effective rotational angle, the trimmer potentiometer may not function.
- 4. When using a lock paint to fix slot position or cover the rotor, please evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

Trimmer Potentiometers

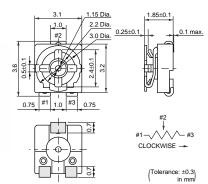
SMD Open Type 3mm Size PVZ3 Series

PVZ3 Series

■ Features

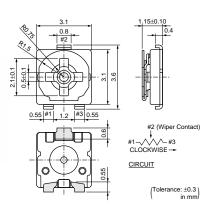
- 1. Excellent solderability characteristics are achieved via special plating techniques on each termination.
- 2. Specially designed substrate prevents wicking of flux onto the top of the part body.
- 3. Funnel shaped adjustment slot allows for in-process automatic adjustment. (PVZ3A/PVZ3H/PVZ3K Series)
- 4. High-heat resistance type is available (PVZ3A_C01/PVZ3K_E01).
- 5. Enlarged bottom termination enhances soldering strength while reducing the necessary land area required promoting high-density PCB mounting (PVZ3A/PVZ3H/PVZ3G Series).
- 6. The standard position of driver plate is adjusted at the center normally, but another position is also available.
- 7. This product meets PB-free standards.
- 8. Complies with RoHS directive.

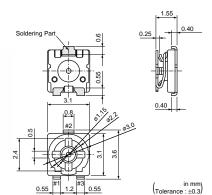
■ Applications


- 1. Optical pick up
- 2. Cordless telephones 3. CD players 4. E-BOOK

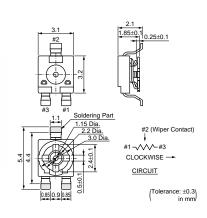
6. CD-ROMs

8. TFT-LCD TV sets


- 5. Motor
- 7. Car stereos
- 9. Headphone stereos



PV73G



PVZ3H

PVZ3K

Top Adjustment (H 1.85)

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVZ3A221C01	0.1(50°C)	1(230±10°)	Continuous	220ohm ±30%	±500
PVZ3A471C01	0.1(50°C)	1(230±10°)	Continuous	470ohm ±30%	±500
PVZ3A102C01	0.1(50°C)	1(230±10°)	Continuous	1k ohm ±30%	±500
PVZ3A222C01	0.1(50°C)	1(230±10°)	Continuous	2.2k ohm ±30%	±500
PVZ3A472C01	0.1(50°C)	1(230±10°)	Continuous	4.7k ohm ±30%	±500
PVZ3A103C01	0.1(50°C)	1(230±10°)	Continuous	10k ohm ±30%	±500
PVZ3A223C01	0.1(50°C)	1(230±10°)	Continuous	22k ohm ±30%	±500
PVZ3A473C01	0.1(50°C)	1(230±10°)	Continuous	47k ohm ±30%	±500
PVZ3A104C01	0.1(50°C)	1(230±10°)	Continuous	100k ohm ±30%	±500
PVZ3A224C01	0.1(50°C)	1(230±10°)	Continuous	220k ohm ±30%	±500
PVZ3A474C01	0.1(50°C)	1(230±10°)	Continuous	470k ohm ±30%	±500
PVZ3A105C01	0.1(50°C)	1(230±10°)	Continuous	1M ohm ±30%	±500
PVZ3A225C01	0.1(50°C)	1(230±10°)	Continuous	2.2M ohm ±30%	±500

^{*}Available for other resistance value.

Operating Temperature Range: -25 to 85 $^{\circ}\text{C}$ $\,$ Soldering Method: Reflow/Soldering Iron

Top Adjustment (H 1.55)

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVZ3H221C01	0.1(50°C)	1(230±10°)	Continuous	220ohm ±30%	±500
PVZ3H471C01	0.1(50°C)	1(230±10°)	Continuous	470ohm ±30%	±500
PVZ3H102C01	0.1(50°C)	1(230±10°)	Continuous	1k ohm ±30%	±500
PVZ3H222C01	0.1(50°C)	1(230±10°)	Continuous	2.2k ohm ±30%	±500
PVZ3H472C01	0.1(50°C)	1(230±10°)	Continuous	4.7k ohm ±30%	±500
PVZ3H103C01	0.1(50°C)	1(230±10°)	Continuous	10k ohm ±30%	±500
PVZ3H223C01	0.1(50°C)	1(230±10°)	Continuous	22k ohm ±30%	±500
PVZ3H473C01	0.1(50°C)	1(230±10°)	Continuous	47k ohm ±30%	±500
PVZ3H104C01	0.1(50°C)	1(230±10°)	Continuous	100k ohm ±30%	±500
PVZ3H224C01	0.1(50°C)	1(230±10°)	Continuous	220k ohm ±30%	±500
PVZ3H474C01	0.1(50°C)	1(230±10°)	Continuous	470k ohm ±30%	±500
PVZ3H105C01	0.1(50°C)	1(230±10°)	Continuous	1M ohm ±30%	±500
PVZ3H225C01	0.1(50°C)	1(230±10°)	Continuous	2.2M ohm ±30%	±500

^{*}Available for other resistance value.

Operating Temperature Range: -25 to 85 $^{\circ}\text{C}$ Soldering Method: Reflow/Soldering Iron

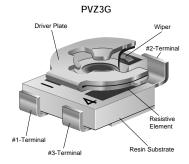
Top Adjustment and Thin Type (H 1.15)

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVZ3G221C01	0.1(50°C)	1(230±10°)	Continuous	220ohm ±30%	±500
PVZ3G471C01	0.1(50°C)	1(230±10°)	Continuous	470ohm ±30%	±500
PVZ3G102C01	0.1(50°C)	1(230±10°)	Continuous	1k ohm ±30%	±500
PVZ3G222C01	0.1(50°C)	1(230±10°)	Continuous	2.2k ohm ±30%	±500
PVZ3G472C01	0.1(50°C)	1(230±10°)	Continuous	4.7k ohm ±30%	±500
PVZ3G103C01	0.1(50°C)	1(230±10°)	Continuous	10k ohm ±30%	±500
PVZ3G223C01	0.1(50°C)	1(230±10°)	Continuous	22k ohm ±30%	±500
PVZ3G473C01	0.1(50°C)	1(230±10°)	Continuous	47k ohm ±30%	±500
PVZ3G104C01	0.1(50°C)	1(230±10°)	Continuous	100k ohm ±30%	±500
PVZ3G224C01	0.1(50°C)	1(230±10°)	Continuous	220k ohm ±30%	±500
PVZ3G474C01	0.1(50°C)	1(230±10°)	Continuous	470k ohm ±30%	±500
PVZ3G105C01	0.1(50°C)	1(230±10°)	Continuous	1M ohm ±30%	±500
PVZ3G225C01	0.1(50°C)	1(230±10°)	Continuous	2.2M ohm ±30%	±500

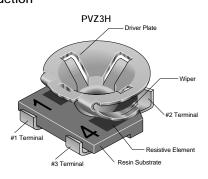
^{*}Available for other resistance value.

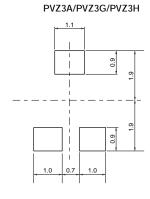
Operating Temperature Range: -25 to 85 °C Soldering Method: Reflow/Soldering Iron

Rear Adjustment

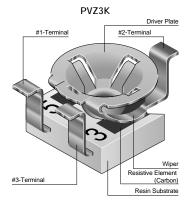

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVZ3K221E01	0.1(50°C)	1(230±10°)	Continuous	220ohm ±30%	±500
PVZ3K471E01	0.1(50°C)	1(230±10°)	Continuous	470ohm ±30%	±500
PVZ3K102E01	0.1(50°C)	1(230±10°)	Continuous	1k ohm ±30%	±500
PVZ3K222E01	0.1(50°C)	1(230±10°)	Continuous	2.2k ohm ±30%	±500
PVZ3K472E01	0.1(50°C)	1(230±10°)	Continuous	4.7k ohm ±30%	±500
PVZ3K103E01	0.1(50°C)	1(230±10°)	Continuous	10k ohm ±30%	±500
PVZ3K223E01	0.1(50°C)	1(230±10°)	Continuous	22k ohm ±30%	±500
PVZ3K473E01	0.1(50°C)	1(230±10°)	Continuous	47k ohm ±30%	±500
PVZ3K104E01	0.1(50°C)	1(230±10°)	Continuous	100k ohm ±30%	±500
PVZ3K224E01	0.1(50°C)	1(230±10°)	Continuous	220k ohm ±30%	±500
PVZ3K474E01	0.1(50°C)	1(230±10°)	Continuous	470k ohm ±30%	±500
PVZ3K105E01	0.1(50°C)	1(230±10°)	Continuous	1M ohm ±30%	±500
PVZ3K225E01	0.1(50°C)	1(230±10°)	Continuous	2.2M ohm ±30%	±500

^{*}Available for other resistance value.


■ Construction

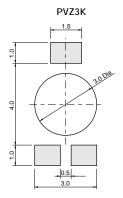

■ Construction

■ Construction



■ Standard Land Pattern

Operating Temperature Range: -25 to 85 $^{\circ}\text{C}$ $\,$ Soldering Method: Reflow/Soldering Iron


■ Construction

■ Characteristics

Humidity Exposure	Res. Change: +10, -2%
High Temperature Exposure	Res. Change: R≦100kohm···+2, -10% 100kohm <r···+2, -15%<="" td=""></r···+2,>
Humidity Load Life	Res. Change: ±10%
Load Life	Res. Change: R≦100kohm···+2, -10% 100kohm <r···+2, -15%<="" td=""></r···+2,>
Temperature Cycle	Res. Change: ±5%
Rotational Life	Res. Change: ±10% (10 cycles)

■ Standard Land Pattern

(Tolerance : ±0.1) in mm)

PVZ3 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

■ Notice (Rating)

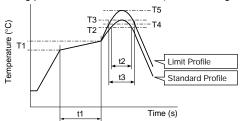
- When using with partial load (rheostat), minimize the power depending on the resistance value.
- The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.
- If the trimmer potentiometer is used in DC and high humidity conditions, please connect wiper (#2) for plus and resistive element (#1 or #3) for minus.

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

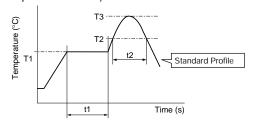
- 1. Soldering
- (1) Soldering conditions Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics. Do not use flow soldering method (dipping). If you use the flow soldering method, the trimmer potentiometer may not function.
- (2) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (3) Apply the appropriate amount of solder paste. The thickness of solder paste should be printed from 100 micro m to 150 micro m and the dimension of land pattern used should be Murata's standard land pattern at reflow soldering. Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging between the terminals.

- (4) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged. (PVZ Series only)
- Mounting
- Do not apply excessive force, preferably 4.9N max. (Ref. 500gf) when the trimmer potentiometer is mounted to the PCB.
- (2) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (3) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 2.5-2.8mm dia. and inner dimension 2mm dia.
- 3. Cleaning
- In case there is flux on the resistive element, clean sufficiently with cleaning solvents and completely remove all residual flux.
- (2) Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please evaluate performance with your product.



PVZ3 Series Notice

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

Standard Profile							Limit Profile					
Carlan	Pre-he	eating	Hea	ting	Peak Temperature	Cycle of	Pre-h	eating	Hea	ting	Peak Temperature	Cycle of
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVZ3	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

		Standard Profile							
Conto	Pre-heating		Heating		Peak Temperature	Cycle of			
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow			
	°C	sec.	°C	sec.	°C	Time			
PVZ3	150	60 to 120	183	30	230 max.	1			

Soldering Iron

• • • • • • • • • • • • • • • • • • • •				
		Standard		
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Solder Iron
	°C	sec.	W	Time
PVZ3	350±10	3 max.	30 max.	1

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdriver for manual adjustment >VESSEL MFG.: NO.9000+1.7x30 (Murata P/N: KMDR080)
 - * Recommended screwdriver for automatic adjustment >TORAY MFG.: JB-2225 (Murata P/N: KMBT070)
- 2. Don't apply more than 4.9N (Ref.; 500gf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.

■ Notice (Other)

- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- 3. Please use within the effective rotational angle. Do not have a mechanical stop for over rotation. In cases out of effective rotational angle, the trimmer potentiometer may not function.
- 4. When using a lock paint to fix slot position or cover the rotor, please evaluate performance by your product. Lock paint may cause corrosion or electrical contact problems.

Trimmer Potentiometers

SMD Sealed Type 3mm Size PVG3 Series

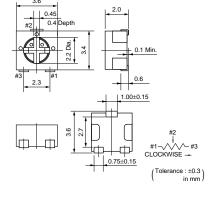
■ Features

- 1. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 2. Driver plate with cross-slot is suitable for automatic adjustment.
- 3. Rotor with large diameter and deep groove improves driver insertion.
- 4. 3mm and 4mm land pattern can be used without change. (Gull wing is suitable for 4mm size land pattern.)
- 5. Heat resistance performance enables high temperature peak re-flow soldering.
- 6. Complies with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.

■ Applications

1. Small sensors

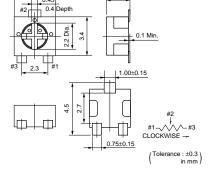
2. Optical Transceiver Module


3. Copier

4. Printer

5. Compact Power Supply

7. Corner Sensor 8. E-BOOK

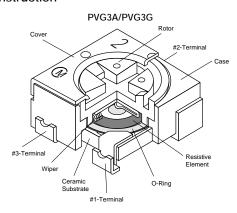

6. Wireless Radio module

PVG3G

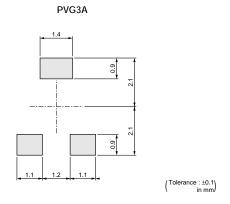
PVG3A

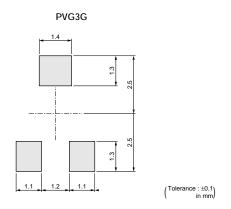
Top Adjustment (Standard Type)

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVG3A100C01	0.25(70°C)	1(210±10°)	250±10°	10ohm ±20%	±150
PVG3A200C01	0.25(70°C)	1(210±10°)	250±10°	20ohm ±20%	±150
PVG3A500C01	0.25(70°C)	1(210±10°)	250±10°	50ohm ±20%	±150
PVG3A101C01	0.25(70°C)	1(210±10°)	250±10°	100ohm ±20%	±150
PVG3A201C01	0.25(70°C)	1(210±10°)	250±10°	200ohm ±20%	±150
PVG3A501C01	0.25(70°C)	1(210±10°)	250±10°	500ohm ±20%	±150
PVG3A102C01	0.25(70°C)	1(210±10°)	250±10°	1k ohm ±20%	±150
PVG3A202C01	0.25(70°C)	1(210±10°)	250±10°	2k ohm ±20%	±150
PVG3A502C01	0.25(70°C)	1(210±10°)	250±10°	5k ohm ±20%	±150
PVG3A103C01	0.25(70°C)	1(210±10°)	250±10°	10k ohm ±20%	±150
PVG3A203C01	0.25(70°C)	1(210±10°)	250±10°	20k ohm ±20%	±150
PVG3A503C01	0.25(70°C)	1(210±10°)	250±10°	50k ohm ±20%	±150
PVG3A104C01	0.25(70°C)	1(210±10°)	250±10°	100k ohm ±20%	±150
PVG3A204C01	0.25(70°C)	1(210±10°)	250±10°	200k ohm ±20%	±150
PVG3A504C01	0.25(70°C)	1(210±10°)	250±10°	500k ohm ±20%	±150
PVG3A105C01	0.25(70°C)	1(210±10°)	250±10°	1M ohm ±20%	±150
PVG3A205C01	0.25(70°C)	1(210±10°)	250±10°	2M ohm ±20%	±150


Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Reflow/Soldering Iron

Top Adjustment (Gull Wing Type)


Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVG3G100C01	0.25(70°C)	1(210±10°)	250±10°	10ohm ±20%	±150
PVG3G200C01	0.25(70°C)	1(210±10°)	250±10°	20ohm ±20%	±150
PVG3G500C01	0.25(70°C)	1(210±10°)	250±10°	50ohm ±20%	±150
PVG3G101C01	0.25(70°C)	1(210±10°)	250±10°	100ohm ±20%	±150
PVG3G201C01	0.25(70°C)	1(210±10°)	250±10°	200ohm ±20%	±150
PVG3G501C01	0.25(70°C)	1(210±10°)	250±10°	500ohm ±20%	±150
PVG3G102C01	0.25(70°C)	1(210±10°)	250±10°	1k ohm ±20%	±150
PVG3G202C01	0.25(70°C)	1(210±10°)	250±10°	2k ohm ±20%	±150
PVG3G502C01	0.25(70°C)	1(210±10°)	250±10°	5k ohm ±20%	±150
PVG3G103C01	0.25(70°C)	1(210±10°)	250±10°	10k ohm ±20%	±150
PVG3G203C01	0.25(70°C)	1(210±10°)	250±10°	20k ohm ±20%	±150
PVG3G503C01	0.25(70°C)	1(210±10°)	250±10°	50k ohm ±20%	±150
PVG3G104C01	0.25(70°C)	1(210±10°)	250±10°	100k ohm ±20%	±150
PVG3G204C01	0.25(70°C)	1(210±10°)	250±10°	200k ohm ±20%	±150
PVG3G504C01	0.25(70°C)	1(210±10°)	250±10°	500k ohm ±20%	±150
PVG3G105C01	0.25(70°C)	1(210±10°)	250±10°	1M ohm ±20%	±150
PVG3G205C01	0.25(70°C)	1(210±10°)	250±10°	2M ohm ±20%	±150


Operating Temperature Range: -55 to 125 °C Soldering Method: Reflow/Soldering Iron

■ Construction

■ Standard Land Pattern

Continued on the following page.

Continued from the preceding page.

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	ΔTR : ±2% ΔV.S.S.: ±1% IR : 10M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR :±1% ΔV.S.S.:±1%
Temperature Load Life	ΔTR : $\pm 3\%$ or 3 ohm max., whichever is greater $\Delta V.S.S.$: $\pm 1\%$
Low Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±2%
High Temperature Exposure	ΔTR : ±3% ΔV.S.S.: ±2%
Rotational Life	ΔTR : R≦100 kohm ··· ±3% or 2 ohm max., whichever is greater R>100 kohm ··· +0/-10% (50 cycles)

: Total Resistance Change $\Delta \text{V.S.S.:}$ Voltage Setting Stability IR : Insulation Resistance : Standard Total Resistance

PVG3 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- 6. If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

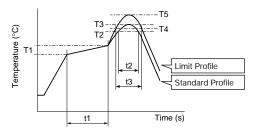
- (1) Corrosive gaseous atmosphere (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Soldering conditions Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (2) Cannot be soldered using the flow soldering method. If you use the flow soldering method, the trimmer potentiometer may not function.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- (4) Apply the appropriate amount of solder paste. If the amount of solder paste applied to the land is insufficient, the required adhesive strength cannot be obtained. If an excessive amount of solder paste is applied, solder bridging or flux overflow to the resistive element surface can occur.

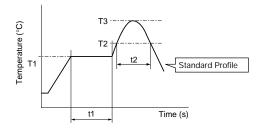
2. Mounting

- (1) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (2) Do not apply excessive force, preferably 4.9N max. (Ref. 500gf) when the trimmer potentiometer is mounted to the PCB.
- (3) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (4) In chip placers, the size of the cylindrical pick-up nozzle should be outer dimension 2.5-3.0mm dia. and inner dimension 2.0-2.5mm dia.
- 3. Cleaning


Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.

PVG3 Series Notice

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

			Standar	d Profile			Limit Profile					
Series Pre-heatin		eating	Hea	ting	Peak	Cycle	Pre-he	eating	Hea	ting	Peak Temperature	Cycle
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	Temperature (T3)	of Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	of Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVG3	150 to 180	60 to 120	220	30 to 60	245±3	1	150 to 180	60 to 120	230	30 to 50	260 +5/-0	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

Series	Standard Profile								
	Pre-heating		Hea	ting	Peak Temperature	Cycle			
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	of Reflow			
	°C	sec.	°C	sec.	°C	Time			
PVG3	150	60 to 120	183	30	230	1			

Soldering Iron

	Standard Condition							
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron				
	°C	sec.	w	Time				
PVG3	350±10	3 max.	30 max.	1				

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in
 - * Recommended screwdriver for manual adjustment TORAY INDUSTRIES, INC.: SA-2225 (Murata P/N: KMDR070)
 - * Recommended screwdriver bit for automatic adiustment

TORAY INDUSTRIES, INC.: JB-2225 (Mutata P/N: KMBT070)

We can supply the screwdrivers above. If you place order, please specify the Murata P/N.

2. Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence.

■ Notice (Other)

1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.

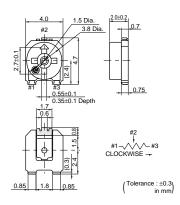
- 3. When adjusting with an adjustment tool, the applied force to the adjustment screw should not exceed 4.9N (Ref. 500gf). If excessive force is applied, the trimmer potentiometer may not function due to damage.
- 4. The rotational torque at the position of the adjustment range should not exceed the stop strength.
- 5. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

Trimmer Potentiometers

SMD Sealed Type 4mm Size PVM4 Series

■ Features

- 1. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 2. Available for flow and reflow soldering method while maintaining unique sealed construction.
- 3. Simple construction by 3-piece parts achieves high reliability.
- 4. Large diameter slot of rotor improves driver insertion.
- 5. Available for cleaning after soldering
- 6. High grade version is available (PVM4AxxxD01).
- 7. To be complied with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.



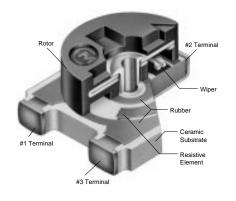
1. Security 2. OA, FA equipments 3. Measuring equipments 4. Professional cameras

5. Encoders 6. Sensors

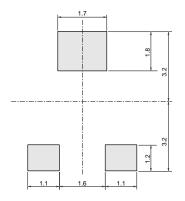
7. RKE

Top Adjustment (Standard Type)

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVM4A101C01	0.1(70°C)	1(240±10°)	Continuous	100ohm ±25%	±250
PVM4A201C01	0.1(70°C)	1(240±10°)	Continuous	200ohm ±25%	±250
PVM4A501C01	0.1(70°C)	1(240±10°)	Continuous	500ohm ±25%	±250
PVM4A102C01	0.1(70°C)	1(240±10°)	Continuous	1k ohm ±25%	±250
PVM4A202C01	0.1(70°C)	1(240±10°)	Continuous	2k ohm ±25%	±250
PVM4A502C01	0.1(70°C)	1(240±10°)	Continuous	5k ohm ±25%	±250
PVM4A103C01	0.1(70°C)	1(240±10°)	Continuous	10k ohm ±25%	±250
PVM4A203C01	0.1(70°C)	1(240±10°)	Continuous	20k ohm ±25%	±250
PVM4A503C01	0.1(70°C)	1(240±10°)	Continuous	50k ohm ±25%	±250
PVM4A104C01	0.1(70°C)	1(240±10°)	Continuous	100k ohm ±25%	±250
PVM4A204C01	0.1(70°C)	1(240±10°)	Continuous	200k ohm ±25%	±250
PVM4A504C01	0.1(70°C)	1(240±10°)	Continuous	500k ohm ±25%	±250
PVM4A105C01	0.1(70°C)	1(240±10°)	Continuous	1M ohm ±25%	±250
PVM4A205C01	0.1(70°C)	1(240±10°)	Continuous	2M ohm ±25%	±250


Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Flow/Reflow/Soldering Iron

Top Adjustment (High-Liability Type)


Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PVM4A101D01	0.25(70°C)	1(240±10°)	Continuous	100ohm ±20%	±100
PVM4A201D01	0.25(70°C)	1(240±10°)	Continuous	200ohm ±20%	±100
PVM4A501D01	0.25(70°C)	1(240±10°)	Continuous	500ohm ±20%	±100
PVM4A102D01	0.25(70°C)	1(240±10°)	Continuous	1k ohm ±20%	±200
PVM4A202D01	0.25(70°C)	1(240±10°)	Continuous	2k ohm ±20%	±200
PVM4A502D01	0.25(70°C)	1(240±10°)	Continuous	5k ohm ±20%	±200
PVM4A103D01	0.25(70°C)	1(240±10°)	Continuous	10k ohm ±20%	±150
PVM4A203D01	0.25(70°C)	1(240±10°)	Continuous	20k ohm ±20%	±150
PVM4A503D01	0.25(70°C)	1(240±10°)	Continuous	50k ohm ±20%	±150
PVM4A104D01	0.25(70°C)	1(240±10°)	Continuous	100k ohm ±20%	±150
PVM4A204D01	0.25(70°C)	1(240±10°)	Continuous	200k ohm ±20%	±150
PVM4A504D01	0.25(70°C)	1(240±10°)	Continuous	500k ohm ±20%	±150
PVM4A105D01	0.25(70°C)	1(240±10°)	Continuous	1M ohm ±20%	±150
PVM4A205D01	0.25(70°C)	1(240±10°)	Continuous	2M ohm ±20%	±150

Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Flow/Reflow/Soldering Iron

■ Construction

■ Standard Land Pattern

■ Characteristics

Item	PVM4A□□□C01	PVM4A□□□D01
Humidity Exposure	Res. Change: ±3%	Res. Change: ±2%
High Temperature Exposure	Res. Change: ±3%	Res. Change: ±2%
Humidity Load Life	Res. Change: ±3%	Res. Change: ±3%
Temperature Load Life	Res. Change: ±3%	Res. Change: ±3%
Temperature Cycle	Res. Change: ±3%	Res. Change: ±2%
Rotational Life	Res. Change: ±10% (20 cycles)	Res. Change: ±5% (100 cycles)

PVM4 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- 6. If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

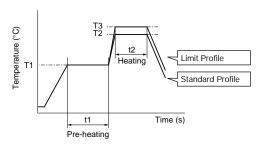
- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- (1) Corrosive gaseous atmosphere (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Can be soldered by reflow soldering method, flow soldering method, and soldering iron.
- (2) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (3) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (4) Apply the appropriate amount of solder paste. The thickness of solder paste should be printed from 100 micro m to 150 micro m and the dimension of land pattern used should be Murata's standard land pattern at reflow soldering. Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging between the terminals.

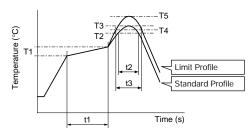
- (5) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- 2. Mounting
- (1) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
- (2) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (3) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 4.0mm dia. and inner dimension 2.0mm dia.
- 3. Cleaning


Isopropyl alcohol and Ethyl alcohol are available materials for cleaning.

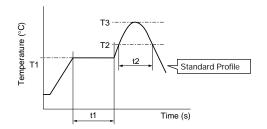
For other materials, please consult with a Murata factory representative prior to using.

■ Soldering Profile

Flow Soldering Profile


Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu), Eutectic solder (63Sn/37Pb)

			Standard Profil	le				Limit Profile					
Series	Pre-heating		Hea	ting	Cycle	Pre-h	eating	Hea	ting	Cycle			
Selles	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	of Flow	Temp. (T1)	Time (t1)	Temp. (T3)	Time (t2)	of Flow			
	°C	sec.	°C	sec.	Time	°C	sec.	°C	sec.	Time			
PVM4	150	60 to 120	250	5 max.	1	150	60 to 120	265±3	5 max.	2			


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

			Stand	ard Profile			Limit Profile					
Sorios	Pre-heating Series		Hea	ting	Peak Temperature	Cycle	Pre-he	eating	Heating Peak		Peak Temperature	Cycle
Selles	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	of Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	of Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVM4	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	230	30 to 50	260 +5/-0	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

Series		Standard Profile									
	Pre-heating		Hea	ting	Peak Temperature	Cycle					
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	of Reflow					
	°C	sec.	°C	sec.	°C	Time					
PVM4	150	60 to 120	183	30	230	1					

Soldering Iron

	Standard Condition							
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron				
	°C	sec.	w	Time				
PVM4	350±10	3 max.	30 max.	1				

PVM4 Series Notice

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdriver below.
 - * Recommended screwdriver for manual adjustment VESSEL MFG.: NO. 9000-2.6x30 (Murata P/N: KMDR120)
 - We can supply the screwdrivers above. If you place order, please specify the Murata P/N.
- 2. Do not apply more than 4.9N (Ref. 500gf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.
- Notice (Other)
- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- 3. Please use within the effective rotational angle. The potentiometer does not have a mechanical stop for over rotation. In cases out of effective rotational angle, the trimmer potentiometer may not function.
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.

SMD Sealed Type Multi-turn PVG5 Series

■ Features

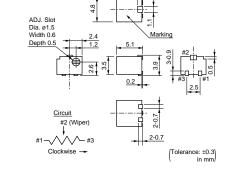
- 1. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 2. Available with reflow soldering method
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. Both Top and side adjustment directions
- 6. Ultra smaller volume (1/5-1/2) than leaded multi-turn potentiometer.
- 7. Complies with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.

■ Applications

1. Measuring instruments

2. OA equipment

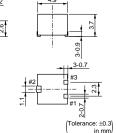
3. Medical equipment


4. Power supply

5. Sensors

6. Base station for cellular phone

PVG5A

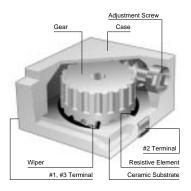


PVG5H

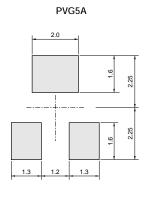
ADJ. Slot

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVG5A100C03	0.25(70°C)	11	10ohm ±10%	±150
PVG5A200C03	0.25(70°C)	11	20ohm ±10%	±150
PVG5A500C03	0.25(70°C)	11	50ohm ±10%	±150
PVG5A101C03	0.25(70°C)	11	100ohm ±10%	±150
PVG5A201C03	0.25(70°C)	11	200ohm ±10%	±150
PVG5A501C03	0.25(70°C)	11	500ohm ±10%	±150
PVG5A102C03	0.25(70°C)	11	1k ohm ±10%	±150
PVG5A202C03	0.25(70°C)	11	2k ohm ±10%	±150
PVG5A502C03	0.25(70°C)	11	5k ohm ±10%	±150
PVG5A103C03	0.25(70°C)	11	10k ohm ±10%	±150
PVG5A203C03	0.25(70°C)	11	20k ohm ±10%	±150
PVG5A503C03	0.25(70°C)	11	50k ohm ±10%	±150
PVG5A104C03	0.25(70°C)	11	100k ohm ±10%	±150
PVG5A204C03	0.25(70°C)	11	200k ohm ±10%	±150
PVG5A504C03	0.25(70°C)	11	500k ohm ±10%	±150
PVG5A105C03	0.25(70°C)	11	1M ohm ±10%	±150
PVG5A205C03	0.25(70°C)	11	2M ohm ±10%	±150

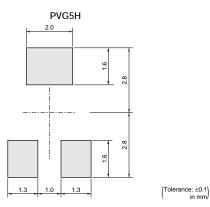
Operating Temperature Range: -55 to 125 °C Soldering Method: Reflow/Soldering Iron


J

Side Adjustment


Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVG5H100C03	0.25(70°C)	11	10ohm ±10%	±150
PVG5H200C03	0.25(70°C)	11	20ohm ±10%	±150
PVG5H500C03	0.25(70°C)	11	50ohm ±10%	±150
PVG5H101C03	0.25(70°C)	11	100ohm ±10%	±150
PVG5H201C03	0.25(70°C)	11	200ohm ±10%	±150
PVG5H501C03	0.25(70°C)	11	500ohm ±10%	±150
PVG5H102C03	0.25(70°C)	11	1k ohm ±10%	±150
PVG5H202C03	0.25(70°C)	11	2k ohm ±10%	±150
PVG5H502C03	0.25(70°C)	11	5k ohm ±10%	±150
PVG5H103C03	0.25(70°C)	11	10k ohm ±10%	±150
PVG5H203C03	0.25(70°C)	11	20k ohm ±10%	±150
PVG5H503C03	0.25(70°C)	11	50k ohm ±10%	±150
PVG5H104C03	0.25(70°C)	11	100k ohm ±10%	±150
PVG5H204C03	0.25(70°C)	11	200k ohm ±10%	±150
PVG5H504C03	0.25(70°C)	11	500k ohm ±10%	±150
PVG5H105C03	0.25(70°C)	11	1M ohm ±10%	±150
PVG5H205C03	0.25(70°C)	11	2M ohm ±10%	±150

Operating Temperature Range: -55 to 125 °C Soldering Method: Reflow/Soldering Iron


■ Construction

■ Standard Land Pattern

(Tolerance: ±0.1) in mm)

Continued on the following page. $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

\(\) Continued from the preceding page.

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	ΔTR : ±2% IR : 10M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : $\pm 3\%$ or 3 ohm max., whichever is greater $\Delta V.S.S.$: $\pm 1\%$
Low Temperature Exposure	ΔTR : ±1% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
Rotational Life	ΔTR : ±3% or 3 ohm max., whichever is greater (100 cycles)

: Total Resistance Change ΔV.S.S.: Voltage Setting Stability : Insulation Resistance

PVG5 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- 6. If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- (1) Corrosive gaseous atmosphere (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

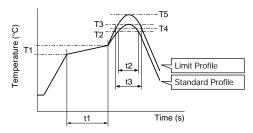
■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer capacitor may deviate from the specified characteristics.
- (2) Cannot be soldered using the flow soldering method. If you use the flow soldering method, the trimmer potentiometer may not function.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- (4) Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging between the terminals.

2. Mounting

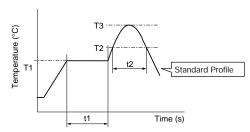
- (1) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (2) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
- (3) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (4) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 4.0mm dia. and inner dimension 2.0mm dia.
- 3. Cleaning

Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using



PVG5 Series Notice

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

Standard Profile						Limit Profile								
Sorios	Pre-he	eating	Hea	ing Peak		ting Peak Temperature		Cycle of	Pre-h	eating	Hea	ting	Peak Temperature	Cycle of
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	Reflow		
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time		
PVG5	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	230	30 to 50	260 +5/-0	2		

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

	Standard Profile							
Series	Pre-he	eating	Hea		Peak Temperature	Cycle of		
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow		
	°C	sec.	°C	sec.	°C	Time		
PVG5	150	60 to 120	183	30	230	1		

Soldering Iron

		Condition		
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron
	°C	sec.	W	Time
PVG5	350±10	3 max.	30 max.	1

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdrivers for manual adjustment <PVG5 series>

VESSEL MFG.: NO.9000-1.3x30 (Murata P/N: KMDR130)

We can supply the screwdrivers above. If you place order, please specify Murata P/N.

2. Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.

- 3. When adjusting with a screwdriver, do not apply excessive force, preferable 4.9N max. (Ref 500gf).
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical problems.

■ Notice (Other)

- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

Trimmer Potentiometers

Lead Sealed Type Single-turn PV32 Series

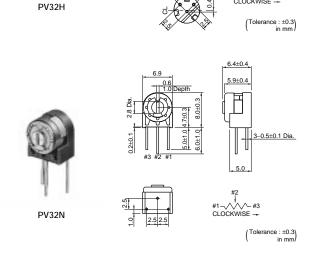
■ Features

- 1. Round shaped body enables smaller area mount than same 6mm square potentiometer.
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Flammability: UL94V-0
- 5. PV32 series comply with RoHS directive.

■ Applications

1. HDTVs

2. Professional cameras


3. CATV

4. FAX

5. Printers

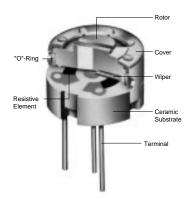
6. Sensors

7. Power supply

0.9 Dia. max

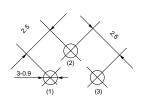
3-0.5±0.1 Dia

Top Adjustment

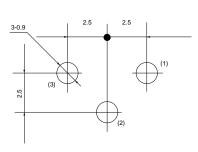

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PV32H100A01	0.5(70°C)	1(230±5°)	270±5°	10ohm ±20%	±100
PV32H200A01	0.5(70°C)	1(230±5°)	270±5°	20ohm ±20%	±100
PV32H500A01	0.5(70°C)	1(230±5°)	270±5°	50ohm ±20%	±100
PV32H101A01	0.5(70°C)	1(230±5°)	270±5°	100ohm ±20%	±100
PV32H201A01	0.5(70°C)	1(230±5°)	270±5°	200ohm ±20%	±100
PV32H501A01	0.5(70°C)	1(230±5°)	270±5°	500ohm ±20%	±100
PV32H102A01	0.5(70°C)	1(230±5°)	270±5°	1k ohm ±20%	±100
PV32H202A01	0.5(70°C)	1(230±5°)	270±5°	2k ohm ±20%	±100
PV32H502A01	0.5(70°C)	1(230±5°)	270±5°	5k ohm ±20%	±100
PV32H103A01	0.5(70°C)	1(230±5°)	270±5°	10k ohm ±20%	±100
PV32H203A01	0.5(70°C)	1(230±5°)	270±5°	20k ohm ±20%	±100
PV32H503A01	0.5(70°C)	1(230±5°)	270±5°	50k ohm ±20%	±100
PV32H104A01	0.5(70°C)	1(230±5°)	270±5°	100k ohm ±20%	±100
PV32H204A01	0.5(70°C)	1(230±5°)	270±5°	200k ohm ±20%	±100
PV32H504A01	0.5(70°C)	1(230±5°)	270±5°	500k ohm ±20%	±100
PV32H105A01	0.5(70°C)	1(230±5°)	270±5°	1M ohm ±20%	±100
PV32H205A01	0.5(70°C)	1(230±5°)	270±5°	2M ohm ±20%	±100
PV32H505A01	0.5(70°C)	1(230±5°)	270±5°	5M ohm ±20%	±100

Operating Temperature Range: -55 to 125 °C Soldering Method: Flow/Soldering Iron

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Mechanical Angle	Total Resistance Value	TCR (ppm/°C)
PV32N100A01	0.5(70°C)	1(230±5°)	270±5°	10ohm ±20%	±100
PV32N200A01	0.5(70°C)	1(230±5°)	270±5°	20ohm ±20%	±100
PV32N500A01	0.5(70°C)	1(230±5°)	270±5°	50ohm ±20%	±100
PV32N101A01	0.5(70°C)	1(230±5°)	270±5°	100ohm ±20%	±100
PV32N201A01	0.5(70°C)	1(230±5°)	270±5°	200ohm ±20%	±100
PV32N501A01	0.5(70°C)	1(230±5°)	270±5°	500ohm ±20%	±100
PV32N102A01	0.5(70°C)	1(230±5°)	270±5°	1k ohm ±20%	±100
PV32N202A01	0.5(70°C)	1(230±5°)	270±5°	2k ohm ±20%	±100
PV32N502A01	0.5(70°C)	1(230±5°)	270±5°	5k ohm ±20%	±100
PV32N103A01	0.5(70°C)	1(230±5°)	270±5°	10k ohm ±20%	±100
PV32N203A01	0.5(70°C)	1(230±5°)	270±5°	20k ohm ±20%	±100
PV32N503A01	0.5(70°C)	1(230±5°)	270±5°	50k ohm ±20%	±100
PV32N104A01	0.5(70°C)	1(230±5°)	270±5°	100k ohm ±20%	±100
PV32N204A01	0.5(70°C)	1(230±5°)	270±5°	200k ohm ±20%	±100
PV32N504A01	0.5(70°C)	1(230±5°)	270±5°	500k ohm ±20%	±100
PV32N105A01	0.5(70°C)	1(230±5°)	270±5°	1M ohm ±20%	±100
PV32N205A01	0.5(70°C)	1(230±5°)	270±5°	2M ohm ±20%	±100
PV32N505A01	0.5(70°C)	1(230±5°)	270±5°	5M ohm ±20%	±100


Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Flow/Soldering Iron

■ Construction



■ Standard Mounting Holes

PV32H

Tolerance: ±0.1 in mm

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	ΔTR : ±2% IR : 100M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±2% ΔV.S.S.: ±2%
Low Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
Rotational Life	ΔTR : ±4% (200 cycles)

: Total Resistance Change Δ V.S.S.: Voltage Setting Stability IR : Insulation Resistance

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

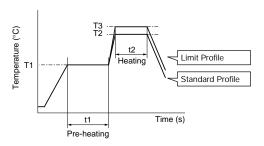
■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (2) To minimize mechanical stress when adjusting, the trimmer potentiometer should be mounted onto PCB without gap.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.

2. Mounting

- (1) Use PCB hole to meet the pin of the trimmer potentiometer. If the trimmer potentiometer installs into insufficient PCB hole, the trimmer potentiometer may be damaged by mechanical stress.
- (2) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
- 3. Cleaning

Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.



PV32 Series Notice

■ Soldering Profile

Flow Soldering Profile

Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu), Eutectic solder (63Sn/37Pb)

Series	Standard Profile					Limit Profile				
	Pre-h	eating	Hea	leating Cycle		Pre-heating		Heating		Cycle
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	of Flow	Temp. (T1)	Time (t1)	Temp. (T3)	Time (t2)	of Flow
	°C	sec.	°C	sec.	Time	°C	sec.	°C	sec.	Time
PV32	150	60 to 120	250	5 max.	1	150	60 to 120	260	3 max.	1

Soldering Iron

	Standard Condition						
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron			
	°C	sec.	W	Time			
PV32	350±10	3 max.	30 max.	1			

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdriver for manual adjustment <PV32 series>

ENGINEER INC.: DA-40 (Murata P/N: KMDR180)

We can supply the screwdrivers above. If you place an order, please specify the Murata P/N.

2. Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.

■ Notice (Other)

- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- 3. When adjusting with an adjustment tool, the applied force to the adjustment screw should not exceed 4.9N (Ref. 500gf). If excessive force is applied, the trimmer potentiometer may not function due to damage.
- 4. The rotational torque at the position of the adjustment range should not exceed the stop strength.
- 5. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.

Trimmer Potentiometers

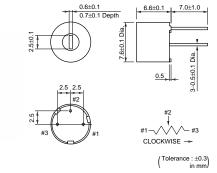
Lead Sealed Type Multi-turn PV12/PV37/PV36 Series

PV12 Series

■ Features

- 1. The unique inner gear system recognizes the position of the center of the shaft of the potentiometer.
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. PV12 series comply with RoHS directive.

■ Applications


1. HDTVs 2. Professional cameras

3. CATV 4. FAX 5. Printers 6. Sensors

7. Switching power supplies

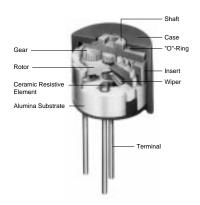
PV12P

PV12T

-0.5±0.1 Dia. CLOCKWISE -

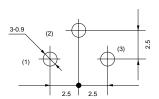
Top Adjustment

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV12P100A01	0.5(70°C)	4	10ohm ±10%	±100
PV12P200A01	0.5(70°C)	4	20ohm ±10%	±100
PV12P500A01	0.5(70°C)	4	50ohm ±10%	±100
PV12P101A01	0.5(70°C)	4	100ohm ±10%	±100
PV12P201A01	0.5(70°C)	4	200ohm ±10%	±100
PV12P501A01	0.5(70°C)	4	500ohm ±10%	±100
PV12P102A01	0.5(70°C)	4	1k ohm ±10%	±100
PV12P202A01	0.5(70°C)	4	2k ohm ±10%	±100
PV12P502A01	0.5(70°C)	4	5k ohm ±10%	±100
PV12P103A01	0.5(70°C)	4	10k ohm ±10%	±100
PV12P203A01	0.5(70°C)	4	20k ohm ±10%	±100
PV12P503A01	0.5(70°C)	4	50k ohm ±10%	±100
PV12P104A01	0.5(70°C)	4	100k ohm ±10%	±100
PV12P204A01	0.5(70°C)	4	200k ohm ±10%	±100
PV12P504A01	0.5(70°C)	4	500k ohm ±10%	±100
PV12P105A01	0.5(70°C)	4	1M ohm ±10%	±100
PV12P205A01	0.5(70°C)	4	2M ohm ±10%	±100

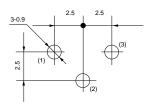

Operating Temperature Range: -55 to 125 °C Soldering Method: Flow/Soldering Iron

Side Adjustment

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV12T100A01	0.5(70°C)	4	10ohm ±10%	±100
PV12T200A01	0.5(70°C)	4	20ohm ±10%	±100
PV12T500A01	0.5(70°C)	4	50ohm ±10%	±100
PV12T101A01	0.5(70°C)	4	100ohm ±10%	±100
PV12T201A01	0.5(70°C)	4	200ohm ±10%	±100
PV12T501A01	0.5(70°C)	4	500ohm ±10%	±100
PV12T102A01	0.5(70°C)	4	1k ohm ±10%	±100
PV12T202A01	0.5(70°C)	4	2k ohm ±10%	±100
PV12T502A01	0.5(70°C)	4	5k ohm ±10%	±100
PV12T103A01	0.5(70°C)	4	10k ohm ±10%	±100
PV12T203A01	0.5(70°C)	4	20k ohm ±10%	±100
PV12T503A01	0.5(70°C)	4	50k ohm ±10%	±100
PV12T104A01	0.5(70°C)	4	100k ohm ±10%	±100
PV12T204A01	0.5(70°C)	4	200k ohm ±10%	±100
PV12T504A01	0.5(70°C)	4	500k ohm ±10%	±100
PV12T105A01	0.5(70°C)	4	1M ohm ±10%	±100
PV12T205A01	0.5(70°C)	4	2M ohm ±10%	±100


Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Flow/Soldering Iron

■ Construction



■ Standard Mounting Holes

PV12P

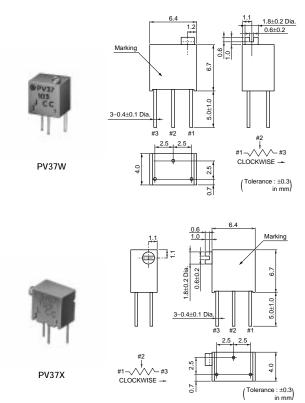
PV12T

(Tolerance: ±0.1 in mm) (Tolerance: ±0.1 in mm)

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	Δ TR : $\pm 2\%$ IR : 100M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±3% ΔV.S.S.: ±2%
Low Temperature Exposure	ΔTR : ±3% ΔV.S.S.: ±1.5%
High Temperature Exposure	ΔTR : ±3% ΔV.S.S.: ±1.5%
Rotational Life	ΔTR : ±3% (200 cycles)

 ΔTR : Total Resistance Change ΔV.S.S.: Voltage Setting Stability : Insulation Resistance


PV37 Series

■ Features

- 1. Smaller volume (about one-third) than 25-turns potentiometer
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. Both top and side adjustment directions
- 6. Complies with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.

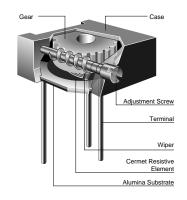
■ Applications

- 1. Measuring instruments
- 2. OA equipment
- 3. Medical equipment
- 4. Power supply
- 5. Base station for cellular phone

Top Adjustment

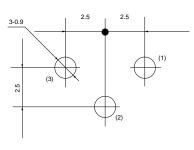
Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV37W100C01	0.25(85°C)	12	10ohm ±10%	±150
PV37W200C01	0.25(85°C)	12	20ohm ±10%	±150
PV37W500C01	0.25(85°C)	12	50ohm ±10%	±150
PV37W101C01	0.25(85°C)	12	100ohm ±10%	±150
PV37W201C01	0.25(85°C)	12	200ohm ±10%	±150
PV37W501C01	0.25(85°C)	12	500ohm ±10%	±150
PV37W102C01	0.25(85°C)	12	1k ohm ±10%	±150
PV37W202C01	0.25(85°C)	12	2k ohm ±10%	±150
PV37W502C01	0.25(85°C)	12	5k ohm ±10%	±150
PV37W103C01	0.25(85°C)	12	10k ohm ±10%	±150
PV37W203C01	0.25(85°C)	12	20k ohm ±10%	±150
PV37W503C01	0.25(85°C)	12	50k ohm ±10%	±150
PV37W104C01	0.25(85°C)	12	100k ohm ±10%	±150
PV37W204C01	0.25(85°C)	12	200k ohm ±10%	±150
PV37W504C01	0.25(85°C)	12	500k ohm ±10%	±150
PV37W105C01	0.25(85°C)	12	1M ohm ±10%	±150
PV37W205C01	0.25(85°C)	12	2M ohm ±10%	±150

Operating Temperature Range: -55 to 125 °C Soldering Method: Flow/Soldering Iron



Side Adjustment

Part Number	Power Rating Number of Turns (W) (Effective Rotation An		Total Resistance Value	TCR (ppm/°C)
PV37X100C01	0.25(85°C)	12	10ohm ±10%	±150
PV37X200C01	0.25(85°C)	12	20ohm ±10%	±150
PV37X500C01	0.25(85°C)	12	50ohm ±10%	±150
PV37X101C01	0.25(85°C)	12	100ohm ±10%	±150
PV37X201C01	0.25(85°C)	12	200ohm ±10%	±150
PV37X501C01	0.25(85°C)	12	500ohm ±10%	±150
PV37X102C01	0.25(85°C)	12	1k ohm ±10%	±150
PV37X202C01	0.25(85°C)	12	2k ohm ±10%	±150
PV37X502C01	0.25(85°C)	12	5k ohm ±10%	±150
PV37X103C01	0.25(85°C)	12	10k ohm ±10%	±150
PV37X203C01	0.25(85°C)	12	20k ohm ±10%	±150
PV37X503C01	0.25(85°C)	12	50k ohm ±10%	±150
PV37X104C01	0.25(85°C)	12	100k ohm ±10%	±150
PV37X204C01	0.25(85°C)	12	200k ohm ±10%	±150
PV37X504C01	0.25(85°C)	12	500k ohm ±10%	±150
PV37X105C01	0.25(85°C)	12	1M ohm ±10%	±150
PV37X205C01	0.25(85°C)	12	2M ohm ±10%	±150


Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Flow/Soldering Iron

■ Construction

■ Standard Mounting Holes

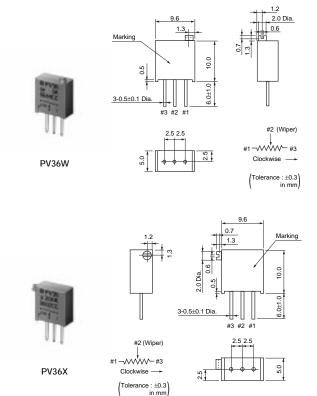
PV37W/PV37X

Tolerance: ±0.1

■ Characteristics

Temperature Cycle	ΔTR : ±1% ΔV.S.S.: ±1%
Humidity	ΔTR : $\pm 2\%$ IR : 100M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±2% ΔV.S.S.: ±1%
Low Temperature Exposure	ΔTR : ±1% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
Rotational Life	ΔTR : R≦100 ohm ··· ±3% R>100 ohm ··· ±2% (200 cycles)

ΔTR : Total Resistance Change $\Delta \text{V.S.S.:}$ Voltage Setting Stability IR : Insulation Resistance : Standard Total Resistance


PV36 Series

■ Features

- 1. High resolution 25-turns enables precision adjustment easily.
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. Both top and side adjustment directions.
- 6. Complies with RoHS directive by new Cd free cermet resistive material. Pb free terminals with Sn plating.

■ Applications

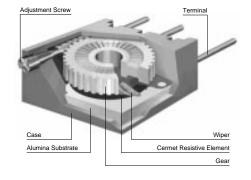
- 1. Measuring instruments
- 2. OA equipment
- 3. Medical equipment
- 4. Power supply
- 5. Base station for cellular phone

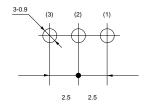
Ton Adjustment

Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV36W100C01	0.5(70°C)	25	10ohm ±10%	±150
PV36W200C01	0.5(70°C)	25	20ohm ±10%	±150
PV36W500C01	0.5(70°C)	25	50ohm ±10%	±150
PV36W101C01	0.5(70°C)	25	100ohm ±10%	±150
PV36W201C01	0.5(70°C)	25	200ohm ±10%	±100
PV36W501C01	0.5(70°C)	25	500ohm ±10%	±100
PV36W102C01	0.5(70°C)	25	1k ohm ±10%	±100
PV36W202C01	0.5(70°C)	25	2k ohm ±10%	±100
PV36W502C01	0.5(70°C)	25	5k ohm ±10%	±100
PV36W103C01	0.5(70°C)	25	10k ohm ±10%	±100
PV36W203C01	0.5(70°C)	25	20k ohm ±10%	±100
PV36W503C01	0.5(70°C)	25	50k ohm ±10%	±100
PV36W104C01	0.5(70°C)	25	100k ohm ±10%	±100
PV36W204C01	0.5(70°C)	25	200k ohm ±10%	±100
PV36W504C01	0.5(70°C)	25	500k ohm ±10%	±100
PV36W105C01	0.5(70°C)	25	1M ohm ±10%	±100
PV36W205C01	0.5(70°C)	25	2M ohm ±10%	±100

Operating Temperature Range: -55 to 125 °C Soldering Method: Flow/Soldering Iron

Side Adjustment


Part Number	Power Rating (W)	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV36X100C01	0.5(70°C)	25	10ohm ±10%	±150
PV36X200C01	0.5(70°C)	25	20ohm ±10%	±150
PV36X500C01	0.5(70°C)	25	50ohm ±10%	±150
PV36X101C01	0.5(70°C)	25	100ohm ±10%	±150
PV36X201C01	0.5(70°C)	25	200ohm ±10%	±100
PV36X501C01	0.5(70°C)	25	500ohm ±10%	±100
PV36X102C01	0.5(70°C)	25	1k ohm ±10%	±100
PV36X202C01	0.5(70°C)	25	2k ohm ±10%	±100
PV36X502C01	0.5(70°C)	25	5k ohm ±10%	±100
PV36X103C01	0.5(70°C)	25	10k ohm ±10%	±100
PV36X203C01	0.5(70°C)	25	20k ohm ±10%	±100
PV36X503C01	0.5(70°C)	25	50k ohm ±10%	±100
PV36X104C01	0.5(70°C)	25	100k ohm ±10%	±100
PV36X204C01	0.5(70°C)	25	200k ohm ±10%	±100
PV36X504C01	0.5(70°C)	25	500k ohm ±10%	±100
PV36X105C01	0.5(70°C)	25	1M ohm ±10%	±100
PV36X205C01	0.5(70°C)	25	2M ohm ±10%	±100


Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$ Soldering Method: Flow/Soldering Iron

■ Construction

■ Standard Mounting Holes

PV36W/X

(Tolerance: ±0.1 in mm)

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	ΔTR : $\pm 2\%$ IR : 100M ohm min.
Vibration (20G)	ΔTR :±1% ΔV.S.S.:±1%
Shock (100G)	ΔTR :±1% ΔV.S.S.:±1%
Temperature Load Life	ΔTR :±3% ΔV.S.S.:±1%
Low Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR :±3% ΔV.S.S.:±1%
Rotational Life	ΔTR : R≦1k ohm, R≧500k ohm ··· ±5% 1k ohm <r<500k (200="" cycles)<="" ohm="" td="" ±3%="" ···=""></r<500k>

: Total Resistance Change $\Delta \text{V.S.S.:}$ Voltage Setting Stability IR : Insulation Resistance : Standard Total Resistance

PV12/PV37/PV36 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

■ Notice (Rating)

- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

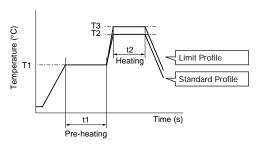
■ Notice (Soldering and Mounting)

- 1. Soldering
- Soldering condition
 Refer to the temperature profile.
 If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (2) To minimize mechanical stress when adjusting, the trimmer potentiometer should be mounted onto PCB without gap.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.

2. Mounting

- (1) Use PCB hole to meet the pin of the trimmer potentiometer. If the trimmer potentiometer installs into insufficient PCB hole, the trimmer potentiometer may be damaged by mechanical stress.
- (2) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
- 3. Cleaning

Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.


7

PV12/PV37/PV36 Series Notice

■ Soldering Profile

Flow Soldering Profile

Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu), Eutectic solder (63Sn/37Pb)

Series	Standard Profile			Limit Profile							
	Pre-heating		Hea	Heating Cycle		Pre-heating		Heating		Cycle	
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	of Flow	Temp. (T1)	Time (t1)	Temp. (T3)	Time (t2)	of Flow	
	°C	sec.	°C	sec.	Time	°C	sec.	°C	sec.	Time	
PV12 PV37 PV36	150	60 to 120	250	5 max.	1	150	60 to 120	260	3 max.	1	

Soldering Iron

	Standard Condition					
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron		
	°C	sec.	w	Time		
PV12 PV37 PV36	350±10	3 max.	30 max.	1		

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdriver for manual adjustment **ENGINEER INC.: DA-40** (Murata P/N: KMDR180)

We can supply the screwdrivers above. If you place order, please specify the Murata P/N.

- 2. Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.
- Notice (Other)
- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- 3. When adjusting with an adjustment tool, the applied force to the adjustment screw should not exceed 4.9N (Ref. 500gf). If excessive force is applied, the trimmer potentiometer may not function due to damage.
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.

SMD Open Type (PVZ2/A2/Z3)/SMD Sealed Type (PVM4A_C01 Series) Specifications and Test Methods

The tests and measurements should be conducted under the condition of 15 to 35°C of temperature, 25 to 75% of relative humidity and 86 to 106 kpa of atmospheric pressure unless otherwise specified. If questionable results occur that have been measured in accordance with the above mentioned conditions, the tests and measurements should be conducted under the condition of 25±2°C of temperature, 45 to 55% of relative humidity and 86 to 106 kpa of atmospheric pressure.

No.	Item	Test Methods				
1	Residual Resistance	Position the contact arm at the extreme counterclockwise limit of mechanical travel and measure the resistance between the contact arm and the corresponding end terminal. Then, position the contact arm at the extreme clockwise limit of mechanical travel and measure the resistance between the contact arm and the corresponding end terminal. During this test, take suitable precautions to ensure that the rated current of the resistance element is not exceeded.				
2	Contact Resistance	Contact resistance variation should be measured with the measuring circuit shown below, or its equivalent. The operating wiper should be rotated in both directions through 90% of the actual effective-electrical travel for a total of 6 cycles. The rate of rotation of the operating wiper should be such that the wiper completes 1 count in determining whether or not a contact resistance variation is observed at least twice in the same location. The test current should follow the value given in Table 2 unless otherwise limited by the power rating. PVZ/PVA2 Standard Total Resistance R (ohm) 100≤R<10k 20mA max. 10k≤R<100k 1mA max. 100k≤R<100k 1mA max. PVM4A□□□C01 Standard Total Test Standard Tes				
		Resistance R (ohm) Current (ohm) Resistance R (ohm) Current (current (ohm)) R≤100 20mA 50k≤R<200k				
		Table 2: Test current for CRV				
3	Humidity Exposure	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 40±2°C and 90 - 95% without loading for 500±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 5±1/6 hours.				
4	High Temperature Exposure	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 70±2°C without loading for 500±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 1.5±1/6 hours.				
5	Humidity Load Life	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 40±2°C and 90 - 95% with loading the 1/2 rated voltage between #1 and #2 terminals, intermittently 1.5 hours ON and 0.5 hours OFF for 1000±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 5±1/6 hours.				
6	Load Life	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 70±2°C (50±2°C for PVZ) with loading the 1/2 rated voltage between #1 and #2 terminals, intermittently 1.5 hours ON and 0.5 hours OFF for 1000±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 1 to 2 hours.				
7	Temperature Cycle	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be subjected to Table 3, Table 4 temperature for 5 cycles. The resistance value should be measured after keeping the potentiometer in a room for 1 to 2 hours. Sequence 1 2 3 4 Temp. (°C) -25±3 +25±2 +85±3 +25±2 Time (min.) 30±3 10 max. 30±3				
8	Temperature Coefficient of Resistance	Table 3: PVZ Table 4: PVA2/PVM4A \square C01 The trimmer potentiometer should be subjected to each of the following temperatures (see Table 5, Table 6) for to 40 minutes. The resistance value should be measured in the chamber. $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times 10^6 \text{ (ppm/°C)}$ $T_1 : Reference temperature in degrees celsius R_1 : Resistance at reference temperature in ohm R_2 : Resistance at test temperature in ohm R_2 : Resistance at test temperature in ohm R_3 : Resistance at test temperature in ohm R_4 : Resistance at test temperature in ohm R_5 : Resistance at test temperature in ohm R_7 : $				
9	Rotational Life	Note*: Norm temp. The wiper should be rotated over 90% of the effective rotational angle without loading at a speed of 10 cycles per minute, for 10 cycles continuously. The resistance value should be measured after keeping the potentiometer in a room for 10±5 minutes.				

SMD Sealed Type (PVG3/M4A_D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods

The following describes trimmer potentiometer testing conducted by Murata Manufacturing Co., Ltd. in accordance with MIL-R-22097 (Military specification for variable resistors, non-wirewound) and MIL-STD-202 (Test methods for electronic and electrical component parts).

No.	Item			Test	Methods		
		against a stop. The position	oning of the come device. Us	ontact arm and te e the test voltage	rminal sho specified	ould be the in Table	and #3) with the contact arm positioned ne same for subsequent total resistance 1 for total resistance measurements.
1	Total Resistance	Nominal (ohm) 10≦R≦100	Maximum Te Voltage (V)	st			
		100 <r≦1k 1k<r≦10k 10k<r≦100k 100k<r< td=""><td>3.0 10.0 30.0 100.0</td><td></td><td></td><td></td><td></td></r<></r≦100k </r≦10k </r≦1k 	3.0 10.0 30.0 100.0				
		Table 1: Total resistar	nce test voltag	е			
2	Residual Resistance	between the contact arm wise limit of mechanical to	and the correst ravel and mea	sponding end tern sure the resistand	ninal. The ce betwee	n, positic n the co	al travel and measure the resistance on the contact arm at the extreme clock- ntact arm and the corresponding end ter- urrent of the resistance element is not
		adjustment rotor (screw) angle (number of turns) for contact resistance variation where the contact arm madjustment rotor (screw):	should be rota or a total of 6 on is observed oves from the should be suc	ted in both directicycles. Only the late at least twice in termination, on our that the adjustm	ons through st 3 cycle the same off, the re ent rotor (gh 90% on the second se	t shown in Figure 1, or its equivalent. The of the actual effective-electrical rotational count in determining whether or not a exclusive of the roll-on or roll-off points e element. The rate of rotation of the completes 1 cycle for 5 seconds minimum in Table 2 unless otherwise limited by
3	Contact Resistance	Standard Total Resista R (ohm)	nce Test (Current			#1 Rx #3 Oscilloscope
3	Variation	R≦100		mA	Constant Cui	rrent Source	#2
		100 <r<500 500≦R<1k</r<500 		mA nA	(Test current		able 2) Resistance AC
		1k≦R<2k		mA			
		2k≦R<50k		mA			mmer Potentiometer scope bandwidth :100Hz to 50kHz
		50k≦R<200k 200k≦R<1M		0μΑ 0μΑ		Figu	re 1: CRV measuring circuit
		1M≦R<2M)μΑ			
		2M≦R	30)μΑ			
		Table 2: Test cu	urrent for CRV				
4	Temperature Coefficient of Resistance	The trimmer potentiometer should be subjected to each of the following temperatures (see Table 3) for 30 utes. Temperature coefficient of resistance should be applied to the following formula. $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times 10^6 \text{ (ppm/°C)}$ $T_1 : \text{Reference temperature in degrees celsius}$ $T_2 : \text{Test temperature in degrees celsius}$ $R_1 : \text{Resistance at reference temperature ohm}$,	
		R2 : Resistance Sequence	1* 2	3	4*	5	6
			+25 -15	Min. operating	+25	+65	Max. operating
		Note*: Reference tempera		Temperature	120	100	Temperature
		Table 3: Test temperatures					
		adequate DC test potentia	al should be a	pplied between te	rminal #1	and tern	ical rotational angle (number of turns). An ninal #3. The voltage between terminal #1 uld be measured and applied to the
5	Voltage Setting	Voltage setting stability=	$\left(\frac{e'}{E} - \frac{e}{E}\right) \times 10^{\circ}$	00 (%)			
	Stability	e : Before test (The voltage between e' : After test				#1 0	0 #3
		(The voltage between	terminal #1 a	nd terminal #2)			Figure 2
							Continued on the following page.

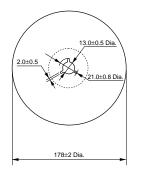
SMD Sealed Type (PVG3/M4A D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods

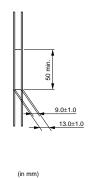
Continued from the preceding page No. Test Methods The trimmer potentiometer should be subjected to Table 4 temperature for 5 cycles. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1-2 hours. Temperature Cycle 6 Temp. (°C) PV□□ series -55±3 +25±2 +125±3 +25±2 5 max. Time (min.) 30 5 max. 30 Table 4: One cycle of temperature cycle. 1) PV12. PV32. PVM4A DD01 series The trimmer potentiometer should be placed in a chamber at a temperature of 40±2°C and a humidity of 90-95% without loading for 250±8 hours (500±12 hours for PVM4A DD01 series). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours. 2) PVG3, PVG5, PV36, PV37 series The trimmer potentiometer should be subjected to the programmed humidity environment for 10cycle (see Figure 3). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1.5±1/2 hours. INITIAL CONDITIONIN IN A DRY OVEN ←24 HOURS= RATE OF CHANGE OF TEMPERATURE IS UNSPECIFIED HOWEVER, SPECIMENS SHOULD NOT BE SUBJECTED HUMIDITY TO RADIANT HEAT FROM CHAMBER-CONDITIONING UNCONTROLLED (DEGREES CELSIUS) Humidity SPECIFIED IN 3.6 CIRCUI ATION OF CONDITIONING AIR LIRCULATION OF CONDITIONING AIR SHOUL BE AT A MINIMUM CUBIC RATE PER MINUTE EQUIVALENT TO 5 TIMES THE VOLUME OF THE CHAMBER AS SPECIFIED IN 3.2 TEMPERATURE VOLTAGE APPLIED AS SPECIFIED IN 3.5 UNI ESS OTHERWISE SPECIFIED TEMPERATURE TO FRANCE IS STEPS 7a AND 7b PERFORMED DURING ANY 5 OF THE FIRST 9 CYCLES. HUMIDITY UNCONTROLLED DURING STEPS 7a AND 7b TEMPERATURE TOLERANCE IS, -±2°C AT ALL POINTS WITHIN THE CHAMBER EXCEPT THE IMMEDIATE VICINITY OF THE SPECIMENS AND THE CHAMBER SURFACES STEP 7a ONLY PRIOR TO FIRST CYCLE
UNLESS OTHERWISE
SPECIFIED l STEP 5 -STEP STEP 6 STEP ONE CYCLE 24 HOURS. REPEAT AS SPECIFIED IN 3.3 9 10 11 12 13 14 15 16 17 Figure 3 1) PV series The trimmer potentiometer should be vibrated throughout the frequency range at the 20G level. A complete frequen-Vibration 8 cy range, 10Hz to 2000Hz and back, should be made within 15 minutes for a total of 4 sweeps in each of the three axis directions for a total of 12 sweeps. The trimmer potentiometer should be shocked at the 100G level and should be subjected to 4 shocks in each of the three axis directions for a total of 12 shocks. Shock 2) PVM4A DD01 series The trimmer potentiometer should be shocked at the 100G level and should be subjected to 3 shocks in each of the six axis directions for a total of 18 shocks. Full rated continuous working voltage not exceeding the maximum rated voltage should be applied intermittently between terminal #1 and terminal #3 of the trimmer potentiometer, 1.5 hours on and 0.5 hours off, for a total of 10 Temperature Road Life 1000 \pm 12 hours, at a temperature of 70 \pm 2°C (85 \pm 2°C for PV37 series). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1 to 2 hours. The trimmer potentiometer should be placed in a chamber at a temperature of 125±3°C 250±8 hours without load-11 **High Temperature Exposure** ing. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1 to 2 hours. The trimmer potentiometer should be placed in a chamber at a temperature of -55±3°C for 1 hours without loading. Low Temperature Exposure Full rated continuous working voltage not exceeding the maximum rated voltage should be applied for 45 minutes. 12 (Except for PVM4ADDD01) The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for approximately 24 hours. The trimmer potentiometer should be placed in a chamber at a temperature of -25±3°C (-55±3°C for PVM4A Low Temperature Operation D01 series) 48±4 hours without loading. The trimmer potentiometer should be removed from the chamber, and main-(Only for PVM4A DD01) tained at a temperature of 25±5°C for 1-2 hours.

SMD Sealed Type (PVG3/M4A_D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods

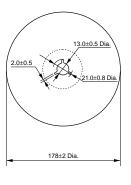
Continued from the preceding page.

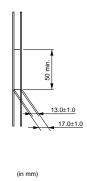
No.	Item	Test Methods		
14	Rotational Life	1)PV series Full rated continuous working voltage not exceeding the maximum rated voltage should be applied with the circuit shown in the figure. The adjustment rotor (screw) should be continuously cycled through not less than 90% of effective-electrical rotational angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 minutes maximum for total of 200 cycles. End Terminal Resistor 1 End Terminal End Terminal Properties and Terminal Pro		
		Figure 4 2) PVG3. PVG5 series		
		The adjustment rotor (screw) should be continuously cycled though not less than 90% of effective-electrical rotational angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 minutes maximum for a total of 50 (100 for PVG5) cycles, without loading.		
		3) PVM4A DD01 series The wiper should be rotated over 90% of the effective rotational angle without loading at a speed of 10 cycles per minute, for 100 cycles continuously.		

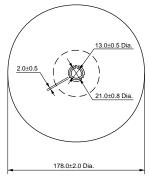

Packaging

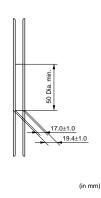

■ Minimum Quantity

Dank Namakan	Minimum Qu	Minimum Quantity (pcs.)				
Part Number	ø180mm reel	Bulk				
PVZ2A	3000	1000				
PVZ2R	3000	1000				
PVA2	3000	1000				
PVZ3A/H	2000	1000				
PVZ3G	2500	1000				
PVZ3K	1500	1000				
PVG3A/G	1000	500				
PVM4	500	500				
PVG5A	250	100				
PVG5H	500	100				
PV32	_	100				
PV12	_	50				
PV36	_	100				
PV37 —		100				

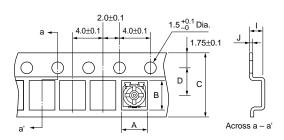

■ Dimensions of Reel


PVZ2A/PVA2/PVZ3A/PVZ3G/PVZ3H




PVZ2R/PVZ3K/PVM4/PVG3/PVG5H

PVG5A

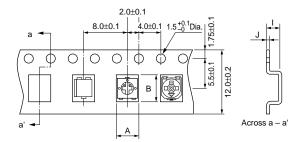


Packaging

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

■ Dimensions of Plastic Tape

PVZ2 / PVA2 / PVZ3


Tape feeding direction

Part Number	Α	В	С	D	1	J
PVZ2A		3.1±0.1	8.0±0.2	3.5±0.1	1.1±0.1	0.2±0.1
PVZ2R	2.4±0.2	5.1±0.2	12.0±0.2	5.5±0.1	1.0±0.1	0.3±0.1
PVA2		3.1±0.1			1.1±0.1	
PVZ3A/H		28102	8.0±0.2	3.5±0.1	1.95±0.1	0.2±0.1
PVZ3G	3.3±0.2	3.8±0.2			1.3±0.1	
PVZ3K		5.8±0.2	12.0±0.2	5.5±0.1	2.3±0.1	0.3±0.1

[•] The side containing terminals #1 and #3 faces the plastic tape pilot holes.

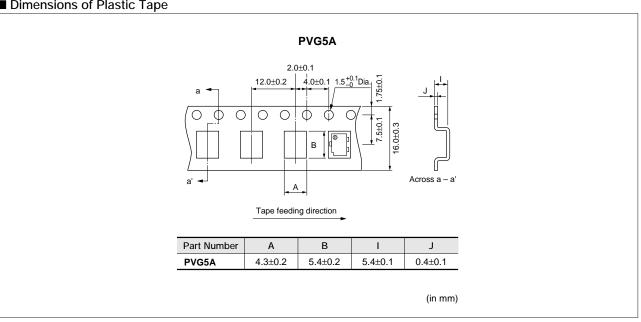
(in mm)

PVG3A / PVG3G / PVM4 / PVG5H

Tape feeding direction

Part Number	Α	В	I	J	
PVG3A	4.0±0.1	4.0±0.1	24104	0.010.4	
PVG3G	4.0±0.1	4.9±0.1	2.1±0.1	0.3±0.1	
PVM4	4.5±0.2	5.5±0.2	2.15±0.1	0.3±0.1	
PVG5H	5.4±0.2	5.8±0.2	4.0±0.1	0.4±0.1	

[•] The side containing terminals #1 and #3 faces the plastic tape pilot holes (except PVG3).


(in mm)

Packaging

Continued from the preceding page.

■ Dimensions of Plastic Tape

Recommended Adjustment Tools/Qualified Standards

■ Recommended Adjustment Tools

Trimmer Potentiometer Series	Manufacturers	Model Number	MURATA Model Number	Blade
PVZ2/PVA2	MURATA MFG.	KMDR190	KMDR190	+ Cross
PVZ3G	VESSEL MFG.	No.9000+1.7×30	KMDR080	+ Cross
PVZ3A/PVZ3H/PVG3	TORAY INDUSTRIES, INC.	SA-2225	KMDR070	- Minus (round edge)
PVM4	VESSEL MFG.	No.9000-2.6×30	KMDR120	- Minus
DVOE	VESSEL MFG.	No.9000-1.3×30	KMDR130	- Minus
PVG5	ENGINEER INC.	DA-54		- Minus
others	VESSEL MFG.	No.9000-1.8×30	KMDR110	– Minus

■ For Automatic Adjustment

Trimmer Potentiometer Series	Manufacturers	Model Number	MURATA Model Number	Blade
PVZ3 PVG3	TORAY INDUSTRIES, INC	JB-2225	KMBT070	– Minus (round edge)

■ Qualified Standards

The products listed here have been produced by the ISO9001 and ISO/TS16949 certified factory.

MURATA FACTORY	Qualified Date	Standard	Qualified Number
Wuxi Murata Electronics Co.,Ltd.	May 12, 1999	UNDERWRITERS LABORATORIES INC.	A7924

^{*} No ODCs (Ozone Depleting Chemicals) are used on all Murata's trimmer potentiometers.

R50E.pdf

sales representatives or product engineers before ordering.

This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

⚠Note:

1. Export Control

<For customers outside Japan>

No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For customers in Japan>

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - Aircraft equipment
- ② Aerospace equipment④ Power plant equipment
- ③ Undersea equipment⑤ Medical equipment
- Transportation equipment (vehicles, trains, ships, etc.)
 Disaster prevention / crime prevention equipment
- Traffic signal equipment Data-processing equipment
- Application of similar complexity and/or reliability requirements to the applications listed above
- 3. Product specifications in this catalog are as of September 2010. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and 🗘 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/

Head Office

1-10-1, Higashi Kotari, Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111

International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp