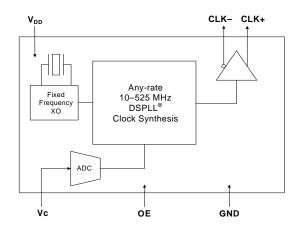


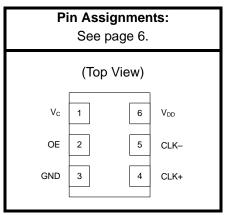
VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 525 MHz

Features

- Available with any-rate output frequencies from 10 to 525 MHz
- 3rd generation DSPLL® with superior jitter performance
- Internal fixed fundamental mode crystal frequency ensures high reliability and low aging
- Available CMOS, LVPECL, LVDS, and CML outputs
- 3.3, 2.5, and 1.8 V supply options
- Industry-standard 5 x 7 mm package and pinout
- Pb-free/RoHS-compliant
- -40 to +85 °C operating range


Applications

- SONET/SDH (OC-3/12/48) FTTx
- Networking
- SD/HD SDI/3G SDI video
- Clock recovery and jitter cleanup PLLs
- FPGA/ASIC clock generation


Description

The Si595 VCXO utilizes Silicon Laboratories' advanced DSPLL® circuitry to provide a low-jitter clock at high frequencies. The Si595 is available with any-rate output frequency from 10 to 525 MHz. Unlike traditional VCXOs, where a different crystal is required for each output frequency, the Si595 uses one fixed crystal to provide a wide range of output frequencies. This ICbased approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides supply noise rejection, simplifying the task of generating low-jitter clocks in noisy environments. The Si595 IC-based VCXO is factoryconfigurable for a wide variety of user specifications including frequency, supply voltage, output format, tuning slope, and absolute pull range (APR). Specific configurations are factory programmed at time of shipment, thereby eliminating the long lead times associated with custom oscillators.

Functional Block Diagram

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage ¹	V_{DD}	3.3 V option	2.97	3.3	3.63	
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	1
Supply Current	I _{DD}	Output enabled				
		LVPECL		120	135	
		CML	_	110	120	
		LVDS		100	110	mA
		CMOS	_	90	100	
		Tristate mode	_	60	75	1
Output Enable (OE) ²		V _{IH}	0.75 x V _{DD}	_	_	V
		V_{IL}		_	0.5]
Operating Temperature Range	T _A		-40	_	85	°C

Notes:

- 1. Selectable parameter specified by part number. See 3. "Ordering Information" on page 7 for further details.
- 2. OE pin includes an internal 17 $k\Omega$ pullup resistor to V_{DD} for output enable active high or a 17 $k\Omega$ pull-down resistor to GND for output enable active low. See 3. "Ordering Information" on page 7.

Table 2. V_C Control Voltage Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Control Voltage Tuning Slope 1,2,3	K _V	10 to 90% of V _{DD}	_	45	_	ppm/V
				95		
				125		
				185		
				380		
Control Voltage Linearity ⁴	L _{VC}	BSL	- 5	±1	+5	%
		Incremental	-10	±5	+10	70
Modulation Bandwidth	BW		9.3	10.0	10.7	kHz
V _C Input Impedance	Z _{VC}		500	_	_	kΩ
V _C Input Capacitance	C_{VC}		_	50	_	pF
Nominal Control Voltage	V _{CNOM}	@ f _O	_	V _{DD} /2	_	V
Control Voltage Tuning Range	V _C		0		V_{DD}	V

- 1. Positive slope; selectable option by part number. See 3. "Ordering Information" on page 7.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.
- **3.** K_V variation is $\pm 10\%$ of typical values.
- 4. BSL determined from deviation from best straight line fit with V_C ranging from 10 to 90% of V_{DD}. Incremental slope determined with V_C ranging from 10 to 90% of V_{DD}.

Table 3. CLK± Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Nominal Frequency ^{1,2,3}	f _O	LVDS/CML/LVPECL	10	_	525	MHz
		CMOS	10	_	160	1011 12
Temperature Stability ^{1,4}		$T_A = -40 \text{ to } +85 ^{\circ}\text{C}$	-20	_	+20	nnm
			-50	_	+50	ppm
Absolute Pull Range ^{1,4}	APR	V _{DD} = 3.3 V	±15	_	±370	ppm
Power up Time ⁵	tosc		_	_	10	ms

Notes:

- 1. See Section 3. "Ordering Information" on page 7 for further details.
- 2. Specified at time of order by part number.
- 3. Nominal output frequency set by $V_{CNOM} = V_{DD}/2$.
- 4. Selectable parameter specified by part number.
- **5.** Time from power up or tristate mode to f_O.

Table 4. CLK± Output Levels and Symmetry

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
LVPECL Output Option ¹	Vo	mid-level	V _{DD} – 1.42	_	V _{DD} – 1.25	V
	V _{OD}	swing (diff)	1.1	_	1.9	V_{PP}
	V _{SE}	swing (single-ended)	0.55	_	0.95	V_{PP}
LVDS Output Option ²	Vo	mid-level	1.125	1.20	1.275	V
	V _{OD}	swing (diff)	0.5	0.7	0.9	V _{PP}
CML Output Option ²	Vo	mid-level	_	V _{DD} – 0.75	_	V
	V _{OD}	swing (diff)	0.70	0.95	1.20	V_{PP}
CMOS Output Option ³	V _{OH}		0.8 x V _{DD}	_	V_{DD}	V
	V _{OL}		_	_	0.4	V
Rise/Fall time (20/80%)	t _{R,} t _F	LVPECL/LVDS/CML	_	_	350	ps
		CMOS with C _L = 15 pF	_	2	_	ns
Symmetry (duty cycle)	SYM		45	_	55	%

- 1. 50Ω to $V_{DD} 2.0 V$.
- **2.** $R_{term} = 100 \Omega$ (differential).
- 3. $C_L = 15$ pF. Sinking or sourcing 12 mA for $V_{DD} = 3.3$ V, 6 mA for $V_{DD} = 2.5$ V, 3 mA for $V_{DD} = 1.8$ V.

Table 5. CLK± Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ^{1,2} for F _{OUT} of 50 MHz ≤ F _{OUT}	фл	Kv = 45 ppm/V 12 kHz to 20 MHz	_	0.5	_	ps
525 MHz		Kv = 95 ppm/V 12 kHz to 20 MHz	_	0.5	_	
		Kv = 125 ppm/V 12 kHz to 20 MHz		0.5		
		Kv = 185 ppm/V 12 kHz to 20 MHz		0.5		
		Kv = 380 ppm/V 12 kHz to 20 MHz	_	0.7		

- 1. Differential Modes: LVPECL/LVDS/CML. Refer to AN256 and AN266 for further information.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.

Table 6. CLK± Output Period Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Period Jitter*	J _{PER}	RMS	_	3	_	ps
		Peak-to-Peak	_	35	_	
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.						

Table 7. CLK± Output Phase Noise (Typical)

Offset Frequency	74.25 MHz 185 ppm/V LVPECL	148.5 MHz 185 ppm/V LVPECL	155.52 MHz 95 ppm/V LVPECL	Units
100 Hz	–77	-68	– 77	
1 kHz	-101	-95	-101	
10 kHz	-121	-116	–119	
100 kHz	-134	-128	– 127	dBc/Hz
1 MHz	-149	-144	-144	
10 MHz	-151	-147	-147	
20 MHz	–150	-148	-148	

Table 8. Absolute Maximum Ratings¹

Parameter	Symbol	Rating	Units
Maximum Operating Temperature	T _{AMAX}	85	°C
Supply Voltage	V _{DD}	-0.5 to +3.8	V

Table 8. Absolute Maximum Ratings¹

Parameter	Symbol	Rating	Units
Input Voltage	V _I	-0.5 to V _{DD} + 0.3	Volts
Storage Temperature	T _S	-55 to +125	°C
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2500	Volts
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	°C
Soldering Temperature Time @ T _{PEAK} (Pb-free profile) ²	t _P	20–40	seconds

Notes:

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download from www.silabs.com/VCXO for further information, including soldering profiles.

Table 9. Environmental Compliance

The Si595 meets the following qualification test requirements.

Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883G, Method 2002.3 B
Mechanical Vibration	MIL-STD-883G, Method 2007.3 A
Solderability	MIL-STD-883G, Method 203.8
Gross & Fine Leak	MIL-STD-883G, Method 1014.7
Resistance to Solvents	MIL-STD-883G, Method 2015

2. Pin Descriptions

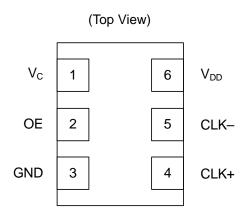
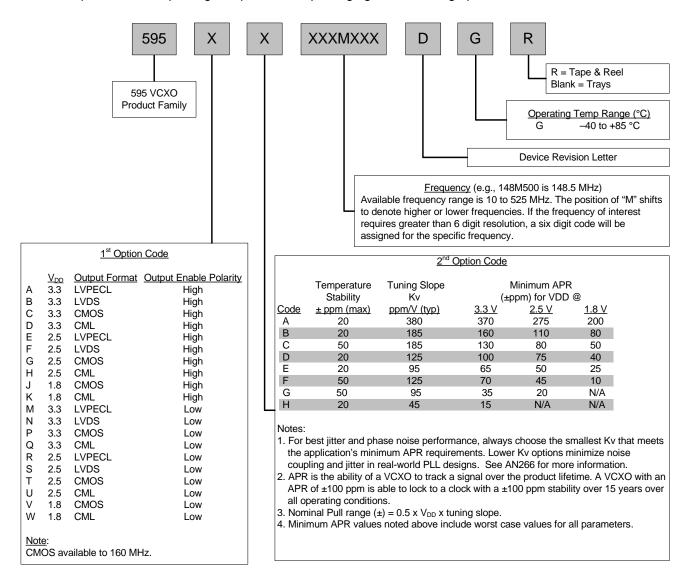


Table 10. Si595 Pin Descriptions


Pin	Name	Туре	Function		
1	V _C	Analog Input	Control Voltage		
2	OE*	Input	Output Enable		
3	GND	Ground	Electrical and Case Ground		
4	CLK+	Output	Oscillator Output		
5	CLK- (N/C for CMOS)	Output	Complementary Output (N/C for CMOS, do not make external connection)		
6	V_{DD}	Power	Power Supply Voltage		

*Note: OE pin includes a 17 k Ω resistor to V_{DD} for OE active high option or 17 k Ω to GND for OE active low option. See 3. "Ordering Information" on page 7.

3. Ordering Information

The Si595 supports a variety of options including frequency, temperature stability, tuning slope, output format, and V_{DD}. Specific device configurations are programmed into the Si595 at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Silicon Labs provides a web browser-based part number configuration utility to simplify this process. Refer to www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si595 VCXO series is supplied in an industry-standard, RoHS compliant, lead-free, 6-pad, 5 x 7 mm package. Tape and reel packaging is an ordering option.

Example Part Number: 595AE148M500DGR is a 5 x 7 mm VCXO in a 6 pad package. The nominal frequency is 148.5 MHz, with a 3.3 V supply, LVPECL output, and Output Enable active high polarity. Temperature stability is specified as ±20 ppm and the tuning slope is 95 ppm/V. The part is specified for a –40 to +85 C° ambient temperature range operation and is shipped in tape and reel format.

Figure 1. Part Number Convention

4. Outline Diagram and Suggested Pad Layout

Figure 2 illustrates the package details for the Si595. Table 11 lists the values for the dimensions shown in the illustration.

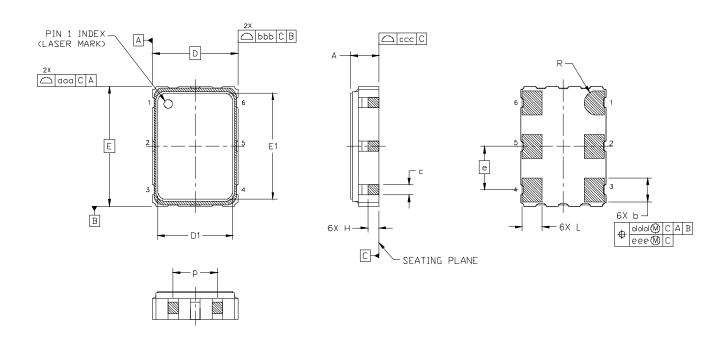


Figure 2. Si595 Outline Diagram

Table 11. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max		
А	1.50	1.65	1.80		
b	1.30	1.40	1.50		
С	0.50	0.60	0.70		
D		7.00 BSC			
D1	4.30	4.40	4.50		
е		2.54 BSC.			
Е		5.00 BSC.			
E1	6.10	6.20	6.30		
Н	0.55	0.65	0.75		
L	1.17	1.27	1.37		
р	1.80	_	2.60		
R		0.70 REF	L		
aaa		0.15			
bbb	0.15				
ccc	0.10				
ddd	0.10				
eee		0.50			

5. Si5xx Mark Specification

Figure 3 illustrates the mark specification for the Si595. Table 12 lists the line information.

Figure 3. Mark Specification

Table 12. Si5xx Top Mark Description

Line	Position	Description	
1	1–10	"SiLabs"+ Part Family Number, 595 (First 3 characters in part number)	
2	1–10	Si595: Option1+Option2+Freq(7)+Temp Si595 w/ 8-digit resolution: Option1+Option2+ConfigNum(6)+Temp	
3	Trace Code		
	Position 1	Pin 1 orientation mark (dot)	
	Position 2	Product Revision (D)	
	Position 3–6 Tiny Trace Code (4 alphanumeric characters per assembly		
	Position 7	Year (least significant year digit), to be assigned by assembly site (ex: 2009 = 9)	
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site	
	Position 10	"+" to indicate Pb-Free and RoHS-compliant	

6. 6-Pin PCB Land Pattern

Figure 4 illustrates the 6-pin PCB land pattern for the Si595. Table 13 lists the values for the dimensions shown in the illustration.

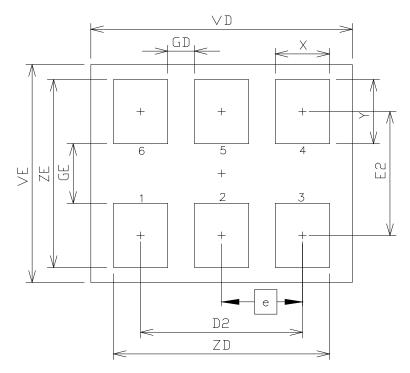


Figure 4. Si595 PCB Land Pattern

Table 13. PCB Land Pattern Dimensions (mm)

Min	Max	
5.08 REF		
2.54 BSC		
4.15 REF		
0.84	_	
2.00	_	
VD 8.20 REF		
7.30 REF		
X 1.70 TYP		
2.15 REF		
_	6.78	
_	6.30	
	5.08 2.54 4.15 0.84 2.00 8.20 7.30 1.70	

- 1. Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.
- 2. Land pattern design based on IPC-7351 guidelines.
- 3. All dimensions shown are at maximum material condition (MMC).
- 4. Controlling dimension is in millimeters (mm).

DOCUMENT CHANGE LIST:

Revision 0.1 to Revision 0.2

- Updated Table 5, "CLK± Output Phase Jitter," on page 4.
 - Updated typical phase jitter from 0.6 to 0.7 ps for kV = 380 ppm/V.

Si595

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

