Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ**PD178023,178024**

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD178023, 178024 are 8-bit single-chip CMOS microcontrollers containing hardware for digital tuning systems.

These microcontrollers employ a 78K/0 series architecture CPU and allow easy access to internal memories at high speed and easy control of peripheral hardware units. The high-speed 78K/0 series instructions are ideal for system control.

As peripheral hardware, a prescaler, PLL frequency synthesizer, and frequency counter for digital tuning systems are provided, as well as many I/O ports, timers, A/D converter, serial interface, and a power-ON clear circuit.

In addition, three serial interfaces, I²C bus (IIC0), three-wire (SIO3), and UART are provided.

Moreover, a flash memory model, the μ PD178F124, that operates in the same supply voltage range as the mask ROM models, and various development tools are also available.

For the detailed functional description, refer to the following User's Manuals:

μPD178024 Subseries User's Manual : U13915E 78K/0 Series User's Manual - Instruction : U12326E

FEATURES

High-capacity ROM and RAM

Item	Program Memory (ROM)	Data Memory
Part Number		Internal high-speed RAM
μPD178023	24K bytes	1024 bytes
μPD178024	32K bytes	

Instruction cycle:

0.45/0.89/1.78/3.56/7.11 μs (with crystal resonator of fx = 4.5 MHz)

- Many internal hardware units
 General-purpose I/O ports, A/D converter, serial interface (I²C bus and UART mode), timers, frequency counter, power-ON clear circuit
- Hardware for PLL frequency synthesizer
 Dual modulus prescaler, programmable divider, phase comparator, charge pump
- Vectored interrupt sources: 17
- Supply voltage

:VDD = 4.5 to 5.5 V (during PLL and CPU operations)

:VDD = 3.5 to 5.5 V (during CPU operation)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATION FIELD

Car stereos

ORDERING INFORMATION

Part Number	Package
μPD178023GF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20)
μPD178023GC-×××-8BT	80-pin plastic QFP (14 $ imes$ 14)
μPD178024GF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20)
μPD178024GC-×××-8BT	80-pin plastic QFP (14 $ imes$ 14)

Remark xxx indicates ROM code suffix, which is Exx when the I^2C bus is used.

 \star

DEVELOPMENT OF 8-BIT DTS SERIES

Limits functions of μ PD178018A subseries

FUNCTIONAL OUTLINE

Item		μPD178023	μPD178024				
Internal memory	ROM	24 Kbytes 32 Kbytes (Mask ROM) (Mask ROM)					
	High-speed RAM	1024 bytes	•				
General-pur	bose register	8 bits \times 32 registers (8 bits \times 8 registers \times	4 banks)				
Minimum ins	truction execution time	0.45 μs/0.89 μs/1.78 μs/3.56 μs/7.11 μs (ν	with crystal resonator of $fx = 4.5$ MHz)				
Instruction s	et	 16-bit operation Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjustment, etc. 					
I/O port		Total : 62 pins • CMOS I/O : 53 pins • CMOS input : 6 pins • N-ch open-drain output : 3 pins					
A/D converter		8-bit resolution \times 6 channels (V _{DD} = 3.5 to 5.5 V)					
Serial interface		I ² C bus mode ^{Note} : 1 channel 3-wire mode : 1 channel UART mode : 1 channel					
Timer		 Basic timer (timer carry FF (10 Hz)): 1 channel 8-bit timer/event counter : 2 channels Watchdog timer : 1 channel 					
Buzzer outp	ut	1 channel (1 kHz, 1.5 kHz, 3 kHz, 4 kHz)					
Vectored interrupt	Maskable	Internal : 11 External: 5					
source	Non-maskable	Internal: 1					
	Software	1					
PLL frequency synthesizer	Division mode	2 types • Direct division mode (VCOL pin) • Pulse swallow mode (VCOL and VCOH	pins)				
	Reference frequency	Seven types selectable in software (1, 3, 9	9, 10, 12.5, 25, 50 kHz)				
	Charge pump	Error out output: 2 pins					
	Phase comparator	Unlock detectable in software					

Note When the I²C bus mode is used (including when the mode is implemented in software without using the peripheral hardware), consult NEC when ordering a mask.

(2/2)

Item	μPD178023	μPD178024				
Frequency counter	Frequency measurement • AMIFC pin: For 450-kHz counting • FMIFC pin: For 450-kHz/10.7-MHz counting					
Reset	 Reset by RESET pin Internal reset by watchdog timer Reset by power-ON clear circuit Detection of less than 4.5 V^{Note} (Reset does not occur, however.) Detection of less than 3.5 V^{Note} (during CPU operation) Detection of less than 2.3 V^{Note} (in STOP mode) 					
Supply voltage	 V_{DD} = 4.5 to 5.5 V (during CPU, PLL operation) V_{DD} = 3.5 to 5.5 V (during CPU operation) 					
Package	 80-pin plastic QFP (14 × 20) 80-pin plastic QFP (14 × 14) 					

Note These voltages are the maximum values. In practice, the chip may be reset at voltages lower than these.

PIN CONFIGURATION (Top View)

 80-pin plastic QFP (14 × 20) μPD178023GF-xxx-3B9, 178024GF-xxx-3B9

Cautions 1. Directly connect the IC (Internally Connected) to GND.

- 2. Keep the voltage at VDDPORT and VDDPLL at the same voltage as VDD.
- 3. Keep the voltage at GNDPORT and GNDPLL at the same voltage as GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via 0.1- μ F capacitor.

Cautions 1. Directly connect the IC (Internally Connected) to GND.

- 2. Keep the voltage at VDDPORT and VDDPLL at the same voltage as VDD.
- 3. Keep the voltage at GNDPORT and GNDPLL at the same voltage as GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via 0.1- μ F capacitor.

PIN NAME

AMIFC	: AM intermediate frequency counter input	P130-P132	: Port 13
ANI0-ANI5	: A/D converter input	REGCPU	: Regulator for CPU power supply
BEEP0	: Buzzer output	REGOSC	: Regulator for oscillator
EO0, EO1	: Error out output	RESET	: Reset input
FMIFC	: FM intermediate frequency counter input	RXD0	: Serial (UART0) data input
GND	: Ground	SCK3	: Serial (SIO3) clock input/output
GNDPLL	: PLL ground	SCL0	: Serial (IIC0) clock input/output
GNDPORT	: Port ground	SDA0	: Serial (IIC0) data input/output
IC	: Internally connected	SI3	: Serial (SIO3) data input
INTP0-INTP4	I: Interrupt input	SO3	: Serial (SIO3) data output
P00-P06	: Port 0	TI50, TI51	: 8-bit timer clock input
P10-P15	: Port 1	TO50, TO51	: 8-bit timer output
P30-P37	: Port 3	TXD0	: Serial (UART0) data output
P40-P47	: Port 4	VCOL, VCOH	H: Local oscillation input
P50-P57	: Port 5	Vdd	: Power supply
P60-P67	: Port 6	VddPLL	: PLL power supply
P70-P77	: Port 7		: Port power supply
P120-P125	: Port 12	X1, X2	: Crystal resonator

BLOCK DIAGRAM

Remark The internal ROM and RAM capacities differ depending on the product.

CONTENTS

1.	PIN FUNCTION LIST	11
	1.1 Port Pins	11
	1.2 Pins Other Than Port Pins	12
	1.3 I/O Circuits of Pins and Recommended Connections of Unused Pins	13
2.	MEMORY SPACE	16
	2.1 Memory Size Select Register (IMS)	17
	2.2 Internal Extension RAM Size Select Register (IXS)	18
3	FEATURES OF PERIPHERAL HARDWARE FUNCTIONS	19
0.	31 Ports	19
	3.2 Clock Generation Circuit	20
	3.3 Timers	20
	3.4 Buzzer Output Control Circuit	22
	3.5 A/D Converter	23
	3.6 Serial Interface	24
	3.7 PLL Frequency Synthesizer	26
	3.8 Frequency Counter	27
4		28
7.		20
5.	STANDBY FUNCTION	31
6.	RESET FUNCTION	31
7.	INSTRUCTION SET	32
8.	ELECTRICAL SPECIFICATIONS	35
9.	PACKAGE DRAWING	44
10	PECOMMENDED SOLDEDING CONDITIONS	16
10		40
AP	PENDIX A. DEVELOPMENT TOOLS	47
		40

1. PIN FUNCTION LIST

1.1 Port Pins

Pin Name	I/O	Function	At Reset	Shared by:
P00-P04	I/O	Port 0.	Input	INTP0-INTP4
P05. P06	-	7-bit I/O port.		
P10-P15	Input	Port 1	Input	
	mput	6-bit input port.	input	ANIO ANIO
P30-P32	I/O	Port 3.	Input	
P33	-	8-bit I/O port.		TI50
P34	-	Can be set in input or output mode in 1-bit units.		TI51
P35	-			_
P36				BEEP0
P37				_
P40-47	1/0	Port 4. 8-bit I/O port. Can be set in input or output mode in 1-bit units. Internal pull-up resistors can be specified in software. Interrupt function by key input is provided.	Input	_
P50-P57	I/O	Port 5. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P60-P67	I/O	Port 6. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P70	I/O	Port 7.	Input	SI3
P71		8-bit I/O port.		SO3
P72		Can be set in input of output mode in 1-bit drifts.		SCK3
P73				
P74				RXD0
P75				TXD0
P76				SDA0
P77				SCL0
P120-P125	I/O	Port 12. 6-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P130	Output	Port 13.	Low-level	ТО50
P131	7	3-bit output port.	output	TO51
P132]			—

Pin Name	I/O	Function	At Reset	Shared by:	
INTP0-INTP4	Input	External maskable interrupt input who (rising edge, falling edge, or both risin can be specified.	Input	P00-P04	
SI3	Input	Serial data input to serial interface.		Input	P70
SO3	Output	Serial data output from serial interface	Э.	Input	P71
SDA0	I/O	Serial data input/output to/from serial interface.	N-ch open drain I/O	Input	P76
SCK3	I/O	Serial clock input/output to/from serial	interface.	Input	P72
SCL0			N-ch open drain I/O		P77
RXD0	Input	Serial data input to asynchronous seri	ial interface (UART0).	Input	P74
TXD0	Output	Serial data output from asynchronous	serial interface (UART0).		P75
TI50	Input	External count clock input to 8-bit time	er (TM50).	Input	P33
TI51		External count clock input to 8-bit time	er (TM51).		P34
TO50	Output	8-bit timer (TM50) output.		Low-level	P130
TO51		8-bit timer (TM51) output.		output	P131
BEEP0	Output	Buzzer output.		Input	P36
ANI0-ANI5	Input	Analog input to A/D converter.	Input	P10-P15	
EO0, EO1	Output	Error out output from charge pump of synthesizer.	-	_	
VCOL	Input	Inputs local oscillation frequency of PLL	-	-	
VCOH		Inputs local oscillation frequency of Pl			
AMIFC	Input	Input to AM intermediate frequency co	Input	-	
FMIFC		Input to FM or AM intermediate freque			
RESET	Input	System reset input.		-	_
X1	Input	Connection of crystal resonator for sy	stem clock oscillation.	-	-
X2	-			-	-
REGOSC	-	Regulator for oscillator. Connect this capacitor.	pin to GND via 0.1-μF	-	_
REGCPU	-	Regulator for CPU power supply. Cor via 0.1-μF capacitor.	-	_	
Vdd	_	Positive power supply.	_	-	
GND	_	Ground.		_	-
	_	Port power supply.		_	-
GNDPORT	_	Port ground.		_	-
	-	PLL positive power supply.		_	-
GNDPLL ^{Note}	-	PLL ground.		_	_
IC	-	Internally connected. Directly connec	-	-	

1.2 Pins Other Than Port Pins

Note Connect a capacitor of about 1000 pF between the VDDPLL and GNDPLL pins.

 \star

1.3 I/O Circuits of Pins and Recommended Connections of Unused Pins

Table 1-1 shows the types of the I/O circuits of the respective pins and the recommended connections of the pins when they are not used. For the configuration of the I/O circuit of each pin, refer to Figure 1-1.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
P00/INTP0-P04/INTP4	8	I/O	Set these pins in general-purpose input mode in software, and connect
P05, P06			each of them to VDD, VDDPORT, GND, or GNDPORT via resistor.
P10/ANI0-P15/ANI5	25	Input	Connect each of them to VDD, VDDPORT, GND, or GNDPORT via resistor.
P30-P32	5	I/O	Set these pins in general-purpose input mode in software, and output
P33/TI50	5-K		low-level signal. Leave unconnected.
P34/TI51			
P35	5		
P36/BEEP0			
P37			
P40-P47	5-A		Set these pins in general-purpose input mode in software, and connect each of them to GND or GNDPORT via resistor.
P50-P57	5		Set these pins in general-purpose input mode in software, and connect each of them to V_{DD} , V_{DD} PORT, GND, or GNDPORT via resistor.
P60-P67	5		Set these pins in general-purpose input mode in software, and output low-level signal. Leave unconnected.
P70/SI3	5-K		Set these pins in general-purpose input mode in software, and connect each
P71/SO3	5		of them to VDD, VDDPORT, GND, or GNDPORT via resistor.
P72/SCK3	5-K		
P73	5		
P74/RXD0	5-K		
P75/TXD0	5		
P76/SDA0	13-R		
P77/SCL0	-		
P120-P125	5		
P130/TO50	19	Output	Set these pins to low-level output in software and leave unconnected.
P131/TO51			
P132			
EO0, EO1	DTS-EO1	Output	Leave unconnected.
VCOL, VCOH	DTS-AMP	Input	Disable PLL in software and select pull-down.
AMIFC, FMIFC			Set these pins in general-purpose input port mode in software and connect each of them to V_{DD} , V_{DD} PORT, GND, or GNDPORT via resistor.
REGOSC, REGCPU	-	-	Connect these pins to GND via $0.1-\mu F$ capacitor.
RESET	2	Input	-
VDDPLL	-	-	Connect this pin to VDD.
GNDPLL			Directly connect these pins to GND or GNDPORT.
IC			

Table 1-1. I/O Circuit Type of Each Pin

Figure 1-1. I/O Circuits of Respective Pins (1/2)

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.

Figure 1-1. I/O Circuits of Respective Pins (2/2)

Note This switch is selectable in software only for the VCOL and VCOH pins.

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.

2. MEMORY SPACE

Figure 2-1 shows the memory map of the μ PD178023, 178024.

Figure 2-1. Memory Map

Note The internal ROM and internal high-speed RAM capacities differ depending on the model (refer to the table below).

Target Model Name	Internal ROM End Address nnnnH	Internal High-Speed RAM First Address mmmmH
μPD178023	5FFFH	FB00H
μPD178024	7FFFH	FB00H

2.1 Memory Size Select Register (IMS)

The memory size select register (IMS) sets the internal memory capacity. Set the μ PD178023, μ PD178024 to C6H, C8H respectively. Use an 8-bit memory manipulation instruction to set the IMS. This register is set to CFH at reset.

Caution Be sure to set the IMS to C6H or C8H as the program initial setting. The IMS set value changes to CFH when reset. Therefore, set C6H or C8H again after reset.

Figure 2-2. Format of Memory Size Select Register (IMS)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	FFF0H	CFH	R/W

RAM2	RAM1	RAM0	Selects Internal High-speed RAM Capacity
1	1	0	1024 bytes
Others			Setting prohibited

RAM3	RAM2	RAM1	RAM0	Selects Internal ROM Capacity
0	1	1	0	24K bytes
1	0	0	0	32K bytes
Others	;			Setting prohibited

Table 2-1 indicates the setting of IMS.

Table 2-1. Set Value of Memory Size Select Register (IMS)

Targeted Model	Set Value of IMS
μPD178023	C6H
μPD178024	C8H

2.2 Internal Extension RAM Size Select Register (IXS)

The internal extension RAM size select register (IXS) sets the internal extension RAM capacity.

Use the $\mu \text{PD178023},\,\mu \text{PD178024}$ with the initial value (0CH).

Use an 8-bit memory manipulation instruction to set the IXS.

This register is set to 0CH at reset.

Caution Do not assign a value other than that the initial value.

Figure 2-3. Format of Internal Extension RAM Size Select Register (IXS)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	FFF4H	0CH	R/W

IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Selects Internal Extension RAM Capacity
0	1	1	0	0	0 byte
Others					Setting prohibited

Table 2-2 indicates the setting of IXS.

Table 2-2. Set Value of Internal Extension RAM Size Select Register

Targeted Model	Set Value of IXS
μPD178023, 178024	0CH

3. FEATURES OF PERIPHERAL HARDWARE FUNCTIONS

3.1 Ports

The following three types of ports are available:

- CMOS input (port 1) : 6 pins
- CMOS I/O (ports 0, 3 7, and 12) : 53 pins
- N-ch open-drain output (port 13) : 3 pins

Total : 62 pins

Table	3-1.	Port	Functions
-------	------	------	------------------

Name	Pin Name	Function
Port 0	P00-P06	I/O port. Can be set in input or output mode in 1-bit units.
Port 1	P10-P15	Input-only port
Port 3	P30-P37	I/O port. Can be set in input or output mode in 1-bit units.
Port 4	P40-P47	I/O port. Can be set in input or output mode in 1-bit units.
Port 5	P50-P57	I/O port. Can be set in input or output mode in 1-bit units.
Port 6	P60-P67	I/O port. Can be set in input or output mode in 1-bit units.
Port 7	P70-P77	I/O port. Can be set in input or output mode in 1-bit units.
Port 12	P120-P125	I/O port. Can be set in input or output mode in 1-bit units.
Port 13	P130-P132	N-ch open-drain output port

3.2 Clock Generation Circuit

The instruction execution time can be changed as follows:

• 0.45 μs/0.89 μs/1.78 μs/3.56 μs/7.11 μs (system clock: 4.5-MHz crystal resonator)

3.3 Timers

Four timer channels are provided.

- Basic timer : 1 channel
- 8-bit timer/event counter : 2 channels
- Watchdog timer : 1 channel

Figure 3-2. Block Diagram of Basic Timer

Figure 3-3. Block Diagram of 8-Bit Timer/Event Counter 50

Figure 3-4. Block Diagram of 8-Bit Timer/Event Counter 51

Figure 3-5. Block Diagram of Watchdog Timer

3.4 Buzzer Output Control Circuit

The buzzer output frequency is selected as follows.

• BEEP0 ... 1 kHz/1.5 kHz/3 kHz/4 kHz

3.5 A/D Converter

An A/D converter with a resolution of 8 bits \times 6 channels is provided.

Figure 3-7. Block Diagram of A/D Converter

3.6 Serial Interface

The μ PD178023 and 178024 have three serial interface channels.

- Serial interface IIC0
- Serial interface SIO3
- Serial interface UART0

Figure 3-8. Block Diagram of Serial Interface IIC0

Internal bus

Figure 3-9. Block Diagram of Serial Interface SIO3

3.7 PLL Frequency Synthesizer

Figure 3-11. Block Diagram of PLL Frequency Synthesizer

Note External circuit.

3.8 Frequency Counter

Figure 3-12. Block Diagram of Frequency Counter

4. INTERRUPT FUNCTION

The μ PD178023 and 178024 have the following three types and 17 sources of interrupts:

- Non-maskable : 1^{Note}
- Maskable : 16^{Note}
- Software : 1

Note Two types of watchdog interrupt sources (INTWDT), non-maskable and maskable, are available, and either of them can be selected.

1	Default		Interrupt Source	Internal/	Vector	Basic	
Interrupt Type	Priority ^{Note 1}	Name	Trigger	External	Address	Type ^{Note 2}	
Non-maskable	-	INTWDT	Overflow of watchdog timer (when watchdog timer mode 1 is selected)	Internal	0004H	(A)	
Maskable	0	INTWDT	Overflow of watchdog timer (when interval timer mode is selected)			(B)	
	1	INTP0	Pin input edge detection	External	0006H	(C)	
	2	INTP1			0008H		
	3	INTP2			000AH		
	4	INTP3			000CH		
	5	INTP4			000EH		
	6	INTKY	Detection of key input of port 4	Internal	0010H	(B)	
	7	INTIIC0	End of transfer by serial interface IIC0		0012H		
	8	INTBTM0	Generation of basic timer match signal		0014H		
	9	INTAD3	End of conversion by A/D converter		0016H		
	10	-	_	-	0018H ^{Note 3}	-	
	11	INTCSI3	End of transfer by serial interface SIO3	Internal	001AH	(B)	
	12	INTTM50	Generation of coincidence signal of 8-bit timer/event counter 50		001CH		
	13	INTTM51	Generation of coincidence signal of 8-bit timer/event counter 51		001EH		
	14	INTSER0	Reception error of serial interface UART0		0020H		
	15	INTSR0	End of reception by serial interface UART0	1	0022H		
	16	INTST0	End of transmission by serial interface UART0		0024H		
Software	_	BRK	Execution of BRK instruction	_	003EH	(D)	

Table 4-1. Interrupt Sources

Notes 1. If two or more maskable interrupts occur at the same time, they are acknowledged or kept pending according to their default priorities. The default priority 0 is the highest, while 16 is the lowest.

- 2. (A) to (D) under the heading Basic Configuration Type corresponds to (A) to (D) in Figure 4-1.
- **3.** There are no interrupt sources corresponding to vector addresses 0018H.

Figure 4-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

Figure 4-1. Basic Configuration of Interrupt Function (2/2)

(D) Software interrupt

Remark IF : Interrupt request flag

- IE : Interrupt enable flag
- ISP: In-service priority flag
- MK : Interrupt mask flag
- PR : Priority specification flag

5. STANDBY FUNCTION

There are the following two standby functions to reduce the system power consumption.

- HALT mode : The CPU operating clock is stopped.
 The average consumption current can be reduced by intermittent operation in combination with
 the normal operating mode.
- STOP mode : The system clock oscillation is stopped. All operations by the system clock are stopped and current consumption can be considerably reduced.

Figure 5-1. Standby Function

6. RESET FUNCTION

There are the following three reset methods.

- External reset input by RESET pin
- Internal reset by watchdog timer runaway time detection
- Internal reset by Power-On Clear (POC).

7. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B,C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]													
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand First Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
First Operand								
A.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
sfr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
saddr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
PSW.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
[HL].bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
CY	MOV1	MOV1	MOV1	MOV1	MOV1			SET1
	AND1	AND1	AND1	AND1	AND1			CLR1
	OR1	OR1	OR1	OR1	OR1			NOT1
	XOR1	XOR1	XOR1	XOR1	XOR1			

(4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand First Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions		Rating	Unit
Supply voltage	Vdd				-0.3 to +6.0	V
					-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	VDDPLL			-0.3 to V _{DD} + 0.3 ^{Note 1}	V	
Input voltage	Vi			-0.3 to VDD + 0.3	V	
Output voltage	Vo	Excluding P130	to P132	-0.3 to VDD + 0.3	V	
Output breakdown voltage	VBDS	P130-P132	N-ch open drain		16	V
Analog input voltage	Van	P10-P15	Analog input pin		-0.3 to VDD + 0.3	V
High-level output	Іон	1 pin		-8	mA	
current		Total of P00-P00 and P120-P125	6, P30-P37, P54-P57, I	P60-P67,	-15	mA
		Total of P40-P4	7, P50-P53, and P70-P	77	-15	mA
Low-level output	IOL ^{Note 2}	1 pin		Peak value	16	mA
current				r.m.s	8	mA
		Total of P00-P00	6, P30-P37, P40-P47,	Peak value	30	mA
		P50-P57, P60-P	P50-P57, P60-P67, P70-P77, r.m.s		15	mA
		P120-P125, and	P130-P132			
Operating temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-55 to +125	°C

Notes 1. Keep the voltage at VDDPORT and VDDPLL same as that at the VDD pin.

- 2. Calculate the r.m.s as follows: $[r.m.s] = [Peak value] x \sqrt{Duty}$
- Caution If the rated value of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings, therefore, are the values exceeding which the product may be physically damaged. Be sure to use the product with these ratings never being exceeded.
- **Remark** Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Recommended Supp	y Voltage Ranges	$(T_A = -40 \text{ to } +85^{\circ}\text{C})$
-------------------------	------------------	---

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd1	When CPU and PLL are operating	4.5	5.0	5.5	V
	Vdd2	When CPU is operating and PLL is stopped	3.5	5.0	5.5	V
Data retention voltage	Vddr	When crystal oscillation stops	2.3		5.5	V
Output breakdown voltage	VBDS	P130-P132 (N-ch open drain)			15	V

DC Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V) (1/2)

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIH1	P10-P15, P30-P32, P35-P3 P60-P67, P71, P73, P120-F	7, P40-P47, P50-P57, 2125	0.7 Vdd		Vdd	V
	VIH2	P00-P06, P33, P34, P70, P	72, P74-P75, RESET	0.8 Vdd		Vdd	V
	Vінз	P76, P77 (N-ch open-drain I/O)	$4.5 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	0.7 Vdd		Vdd	V
Low-level input voltage	VIL1	P10-P15, P30-P32, P35-P3 P60-P67, P71, P73, P120-F	10-P15, P30-P32, P35-P37, P40-P47, P50-P57, 60-P67, P71, P73, P120-P125				V
	VIL2	P00-P06, P33, P34, P70, P	0		0.2 Vdd	V	
	VIL3	P76, P77 (N-ch open-drain I/O)	$4.5 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	0		0.3 Vdd	V
High-level output Vон1 voltage		P00-P06, P30-P37, P40-P47, P50-P57,	4.5 V ≤ Vdd ≤ 5.5 V, Іон = −1 mA	Vdd - 1.0			V
		P60-P67, P70-P77, P120-P125	3.5 V ≤ Vdd < 4.5 V, Іон = −100 µА	Vdd - 0.5			V
	Vон2	EO0, EO1	Vdd = 4.5 to 5.5 V, Іон = -3 mA	Vdd - 1.0			V
Low-level output voltage	Vol1	P00-P06, P30-P37, P40-47, P50-57, P60-P67,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{Iol} = 1 \text{ mA}$			1.0	V
		P70-P75, P120-P125	$3.5 \text{ V} \leq \text{Vdd} < 4.5 \text{ V},$ Iol = 100 μ A			0.5	V
	Vol2	EO0, EO1	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ $I_{OL} = 3 \text{ mA}$			1.0	V
	Vol3	P76, P77 (N-ch open-drain I/O)	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Iol = 3 mA			0.4	V
			$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Iol = 6 mA			0.6	V
High-level input leakage current	Існ	P00-P06, P10-P15, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P120-P125, RESET	Vin = Vdd			3	μΑ

Remark Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
Low-level input leakage current	ILIL	P00-P06, P10-P15, P30-P37, P40-P47, P50-P57, P60-P67, P70-P77, P120-P125, RESET	Vin = 0 V			-3	μΑ
Output off	ILOH1	P130-P132	Vout = 15 V			-3	μA
leakage current	ILOL1	P130-P132	Vout = 0 V			3	μA
	ILOH2	P76, P77 (at N-ch open drain I/O)	Vout = Vdd			-3	μΑ
	ILOL2	P76, P77 (at N-ch open drain I/O)	Vout = 0 V			3	μΑ
	Ісонз	EO0, EO1	Vout = Vdd			-3	μA
	ILOL3	EO0, EO1	Vout = 0 V			3	μΑ
Supply current ^{Note}	IDD1	When CPU is operating and Sine wave input to X1 pin At $fx = 4.5 \text{ MHz}$ VIN = VDD	When CPU is operating and PLL is stopped. Sine wave input to X1 pin At fx = 4.5 MHz $V_{IN} = V_{DD}$				mA
	IDD2	In HALT mode with PLL sto Sine wave input to X1 pin At $fx = 4.5$ MHz VIN = VDD		0.2	0.8	mA	
Data retention	VDDR1	When crystal resonator is o	scillating	3.5		5.5	V
voltage	VDDR2	When crystal oscillation is stopped	Power-failure detection function	2.2			V
	VDDR3		Data memory retained	2.0			V
Data retention current	IDDR1	When crystal oscillation is stopped	$T_{A} = 25^{\circ}C,$ $V_{DD} = 5 V$		2.0	4.0	μΑ
	IDDR2				2.0	20	μA

DC Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V) (2/2)

Note Excluding AVDD current and VDDPLL current.

Remarks 1. fx: System clock oscillation frequency

2. Unless otherwise specified, the characteristics of a multiplexed pin are the same as those of the corresponding port pin.

+

*

Reference Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*	Supply current	Idd3	When CPU and PLL are operating.		5		mA
			Sine wave input to VCOH pin				
			At fin = 160 MHz				
			VIN = 0.15 VP-P				

AC Characteristics

(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсү	fx = 4.5 MHz	0.44		7.11	μs
TI50, TI51 input frequency	fti5				2	MHz
TI50, TI51 input high-/low-level widths	t⊤iн₅ t⊤i∟s		200			ns
Interrupt input high-/low-level widths	tinth tintl	INTP0-INTP4	1			μs
RESET pin low-level width	trsl		10			μs

(2) Serial interface (TA = -40 to $+85^{\circ}$ C, VDD = 3.5 to 5.5 V)

(a) Serial interface (IIC0)

I²C bus mode

	Parameter	Symbol	Standar	d Mode	High-spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock	frequency	fськ	0	100	0	400	kHz
Bus free tin conditions)	ne (between stop and start	tвиғ	4.7	-	1.3	-	μs
Hold time ^{No}	te 1	thd : STA	4.0	-	0.6	-	μs
SCL0 clock low-level width		t∟ow	4.7	-	1.3	-	μs
SCL0 clock high-level width		tніgн	4.0	-	0.6	-	μs
Start/restart condition setup time		tsu : sta	4.7	-	0.6	-	μs
Data hold	CBUS compatible master	t hd : dat	5.0	-	-	-	μs
time	I ² C bus		O ^{Note 2}	-	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup	time	tsu : dat	250	-	100 ^{Note 4}	-	ns
SDA0 and S	SCL0 signal rise time	tR	_	1000	20+0.1Cb ^{Note 5}	300	ns
SDA0 and S	SCL0 signal fall time	t⊧	-	300	20+0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu : sto	4.0	_	0.6	_	μs
Pulse width	of spike restrained by input filter	tsp	_	-	0	50	ns
Each bus li	ne capacitative load	Cb	-	400	-	400	pF

Notes 1. The first clock pulse is generated at the start condition after this period.

- 2. The device needs to internally supply a hold time of at least 300 ns for the SDA0 signal to fill the undefined area at the falling edge of the SCL0 (VIHmin. of the SCL0 signal).
- 3. Unless the device extends the low hold time (tLow) of the SCL0 signal, it is necessary to fill only the maximum data hold time (tHD : DAT).
- 4. The high-speed mode I²C bus can be used in the standard mode I²C bus system. In this case, satisfy the following conditions:
 - When the device does not extend the low hold time of the SCL0 signal $t_{SU\,:\,DAT} \geq 250~ns$
 - When the device extends the low hold time of the SCL0 signal Send the next data bit to the SDA line before releasing the SCL0 line (t_{Rmax}. + t_{SU:DAT} = 1000 + 250 = 1250 ns : in the standard mode I²C bus specification)
- 5. Cb: Total capacitance of one bus line (unit: pF)

(b) Serial interface (SIO3)

(i) 3-wire serial I/O mode (SCK3 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tkcy1		800			ns
SCK3 high/low-level width	tкнı,		tксү1/2 — 50			ns
	tĸ∟1					
SI3 setup time (to SCK3 [↑])	tsik1		100			ns
SI3 hold time (from SCK3↑)	tksi1		400			ns
$\overline{\text{SCK3}} \downarrow \rightarrow \text{SO3}$ output delay time	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of $\overline{SCK3}$ and SO3 output line.

(ii) 3-wire serial I/O mode (SCK3 ... external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	t ксү2		800			ns
SCK3 high/low-level width	tкн2,		400			ns
	tĸ∟2					
SI3 setup time (to SCK3↑)	tsik2		100			ns
SI3 hold time (from SCK3↑)	tksi2		400			ns
$\overline{\text{SCK3}} \downarrow \rightarrow \text{SO3}$ output delay time	tkso2	C = 100 pF ^{Note}			300	ns
SCK3 at rising or falling edge time	tr2, tr2				1000	ns

Note C is the load capacitance of SO3 output line.

(d) Serial interface (UART0: Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					38400	bps

AC Timing Test Point (Excluding X1 Input)

TI Timing

Interrupt Input Timing

RESET Input Timing

Serial Transfer Timing

I²C bus mode:

3-wire serial I/O mode:

Remark m = 1, 2 n = 2 *

A/D Converter Characteristics ($T_A = -40$ to +85°C, $V_{DD} = 3.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total conversion		V _{DD} = 4.5 to 5.5			±1.0	%
error ^{Note}					±1.4	%
Conversion time	t CONV		21.3		64.0	μs
Analog input voltage	Vian		0		Vdd	V

Note Excluding quantization error (±1/2LSB)

PLL Characteristics (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Operating frequency	fin1	VCOL pin, MF mode, sine wave input, V_{IN} = 0.15 V_{P-P}	0.5		3.0	MHz
	fin2	VCOL pin, HF mode, sine wave input, V_IN = 0.15 VP-P	10		40	MHz
	finз	VCOH pin, VHF mode, sine wave input, V_IN = 0.15 $V_{\text{P-P}}$	60		130	MHz
	fin4	VCOH pin, VHF mode, sine wave input, V_{IN} = 0.3 $V_{\text{P-P}}$	40		160	MHz

IFC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fin5	AMIFC pin, AMIF count mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	0.4		0.5	MHz
	fin6	FMIFC pin, FMIF count mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	10		11	MHz
	fin7	FMIFC pin, AMIF count mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	0.4		0.5	MHz

9. PACKAGE DRAWING

80-PIN PLASTIC QFP (14x20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	0.8
Н	$0.37\substack{+0.08\\-0.07}$
I	0.15
J	0.8 (T.P.)
К	1.8±0.2
L	0.8±0.2
М	$0.17\substack{+0.08 \\ -0.07}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
	P80GF-80-3B9-5

R

80-PIN PLASTIC QFP (14x14)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
К	1.60±0.20
L	0.80±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
Ν	0.10
Р	1.40±0.10
Q	0.125±0.075
R	$3^{\circ+7^{\circ}}_{-3^{\circ}}$
S	1.70 MAX.
	P80GC-65-8BT-1

10. RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions.

For details of the recommended soldering conditions, refer to information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, consult NEC.

Table 10-1. Soldering Conditions for Surface-Mount Type

 μ PD178023GF-XXX-3B9: 80-pin plastic QFP (14 × 20) μ PD178024GF-XXX-3B9: 80-pin plastic QFP (14 × 20)

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec max. (210°C min.), Number of times: 3 max.	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec max. (200°C min.), Number of times: 3 max.	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec max., Number of times: 1, Preheating temperature: 120°C max., (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec max (per device side)	-

Caution Do not use two or more soldering methods in combination (except partial heating).

 μ PD178023GC-XXX-8BT: 80-pin plastic QFP (14 × 14) μ PD178024GC-XXX-8BT: 80-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec max. (210°C min.), Number of times: 2 max.	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 sec max. (200°C min.), Number of times: 2 max.	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec max., Number of times: 1, Preheating temperature: 120°C max., (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec max (per device side)	_

Caution Do not use two or more soldering methods in combination (except partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for development of systems using the μ PD178023, 178024 subseries.

(1) Language processor software

RA78K0 ^{Notes 1, 2, 3}	Assembler package common to 78K/0 series
CC78K0 ^{Notes 1, 2, 3}	C compiler package common to 78K/0 series
DF178124 ^{Notes 1, 2, 3}	Device file for μ PD178024 subseries
CC78K0-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0 series

(2) Flash memory writing tools

Fashpro III (Part number: FL-PR3 ^{Note 4} , PG-FP3)	Dedicated flash writer
FA-80GF ^{Note 4}	Flash memory writing adapter
FA-80GC-8BT ^{Note 4}	

(3) Debugging tools

• When in-circuit emulator IE-78K0-NS is used

IE-78K0-NS	In-circuit emulator common to 78K/0 series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board for enhancing and expanding the IE-78K0-NS function
IE-70000-98-IF-C	Interface adapter necessary when a PC-9800 series (except notebook-type PC) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable necessary when a notebook-type PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when a IBM PC/AT TM compatible machine is used (ISA bus supported)
IE-70000-PCI-IF	Interface adapter necessary when a PC with a PCI bus is used as host machine
IE-178134-NS-EM1	Emulation board for emulating the μ PD178024 subseries
NP-80GF ^{Note 4}	Emulation probe for 80-pin plastic QFP (GF-3B9 type)
EV-9200G-80	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GF-3B9 type)
NP-80GC ^{Note 4}	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GC-8BT type)
SM78K0 ^{Notes 1, 2}	System simulator common to 78K/0 series
ID78K0-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0 series
DF178124 ^{Notes 1, 2, 3}	Device file for μ PD178024 subseries

Notes 1. PC-9800 series (Japanese WindowsTM) based

- 2. IBM PC/AT compatible machine (Japanese/English Windows) based
- HP9000 series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™], Solaris[™]) based, NEWS[™] (NEW-OS[™]) based
- 4. Products of Naito Densei Machida Mfg. Co., Ltd. (Tel: 044-822-3813).

Remark Use the RA78K0, CC78K0, and SM78K0 in combination with the DF178124.

• When in-circuit emulator IE-78001-R-A is used

IE-78001-R-A	In-circuit emulator common to 78K/0 series
IE-70000-98-IF-C	Interface adapter necessary when a PC-9800 series (except notebook-type PC) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter when a IBM PC/AT compatible machine is used (ISA bus supported)
IE-70000-PCI-IF	Interface adapter necessary when a PC with a PCI bus is used as host machine
IE-78000-R-SV3	Interface adapter and cable necessary when an EWS is used as host machine
IE-178134-NS-EM1	Emulation board for emulating the μ PD178024 subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-178134-NS-EM1 on IE-78001-R-A.
EP-78130GF-R	Emulation probe for 80-pin plastic QFP (GF-3B9 type)
EV-9200G-80	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GF-3B9 type)
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GC-8BT type)
SM78K0 ^{Notes 1, 2}	System simulator common to 78K/0 series
ID78K0 ^{Notes 1, 2}	Integrated debugger common to 78K/0 series
DF178124 ^{Notes 1, 2, 3}	Device file for μ PD178024 subseries

Real-time OS

RX78K0 ^{Notes 1, 2, 3}	Real-time OS for 78K/0 series
MX78K0 ^{Notes 1, 2, 3}	OS for 78K/0 series

Notes 1. PC-9800 series (Japanese Windows) based

- 2. IBM PC/AT compatible machine (Japanese/English windows) based
- 3. HP9000 series 700 (HP-UX) based, SPARCstation (SunOS, Solaris) based, NEWS (NEW-OS) based

Remark Use SM78K0 in combination with the DF178124.

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Documents

Title	Document No.		
	Japanese	English	
μPD178023, 178024 Data Sheet	U14126J This document		
μPD178F124 Data Sheet	U14933J	U14933E	
μPD178024 Subseries User's Manual	U13915J	U13915E	
78K/0 Series User's Manual—Instruction	U12326J	U12326E	
78K/0 Series Application Note	U12704J	U12704E	

Development Tool Documents (User's Manual)

Title		Document No.	
		Japanese	English
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly Language	U11789J	U11789E
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
IE-78001-R-A In-circuit Emulator		U14142J	To be prepared
IE-78K0-NS In-circuit Emulator		U13731J	U13731E
IE-178134-NS-EM1 Emulation Board		To be prepared	To be prepared
EP-78230 Emulation Probe		EEU-985	EEU-1515
EP-78130 Emulation Probe		_	EEU-1470
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later Windows Based	Operation	U14910J	To be prepared
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	-
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
ID78K0-NS Integrated Debugger Ver. 2.00 or Later Windows Based	Operation	U14379J	U14379E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 or Later Windows Based	Operation	U14910J	To be prepared

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc.

*

 \star

*

_

Related Documents for Embedded Software (User's Manual)

Title		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Fundamental	U11537J	U11537E
	Installation	U11536J	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257J	U12257E

Other Documents

Title	Document No.	
THE	Japanese	English
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Guides on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Device Quality/Reliability Handbook	C12769J	—
Microcomputer Product Series Guide	U11416J	_

Caution The contents of the above documents are subject to change without notice. Ensure that the latest versions are used in design work, etc.

[MEMO]

[MEMO]

[MEMO]

- NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corporation.

Windows is a either registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of August, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).