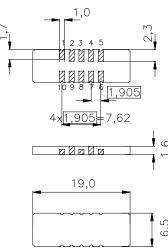


SAW Components

Data Sheet B3842

SAW Components	B3842
Low-Loss Filter	170,6 MHz

Data Sheet

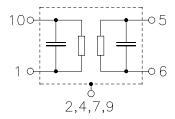

Features

- Low-loss IF filter for GSM-EDGE base station
- Temperature stable
- Balanced or unbalanced operation possible
- Ceramic SMD package

Terminals

■ Gold plated

Ceramic package DCC18



Dimensions in mm, approx. weight 0,8 g

Pin configuration

10	Input
1	Input ground
5	Output or balanced output
6	Output ground or balanced output

3, 8 Ground 2, 4, 7, 9 Case ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B3842	B39171-B3842-U210	C61157-A7-A54	F61074-V8069-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	-40 / +85	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

SAW Components B3842 170,6 MHz **Low-Loss Filter**

Data Sheet

Characteristics

T = -10 ... 85 °COperating temperature range:

Terminating source impedance:

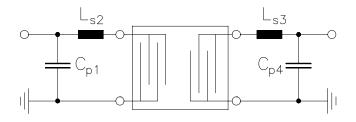
 $Z_{\rm S}$ = 50 Ω and matching network $Z_{\rm L}$ = 50 Ω or 150 Ω and matching network Terminating load impedance:

			min.	typ.	max.	
Nominal frequency		f_{N}	_	170,6	_	MHz
Minimum insertion attenuation		α_{min}	_	6,4	8,0	dB
Pass bandwidth						
	$\alpha_{rel} \leq$ 1,0 dB	B_{1dB}	_	390	_	kHz
	$\alpha_{rel} \leq 3,0 \text{ dB}$	B_{3dB}	_	500	_	kHz
Amplitude ripple (p-p)		$\Delta \alpha$				
	$f_{\rm N} \pm 90 \ \rm kHz$		_	0,2	0,5	dB
	$f_{\rm N} \pm 150~{\rm kHz}$		_	0,5	1,0	dB
Group delay ripple (p-p)		Δau				
	$f_{\rm N} \pm 90 \ \rm kHz$		_	0,2	0,4	μs
	$f_{\rm N} \pm 150 \ {\rm kHz}$		_	0,4	1,0	μs
Relative attenuation (relativ	e to α_{min})	α_{rel}				
$f_{\rm N} \pm 0.4 {\rm MHz}$			13	20	_	dB
$f_{\rm N} \pm 0.6 {\rm MHz}$			27	30	_	dB
$f_{N} \pm 0.8 \text{ MHz}$	$f_{\rm N} \pm 1,6~{\rm MHz}$		40	43	_	dB
<i>f</i> _N ± 1,6 MHz			43	50	_	dB
$f_{N} \pm 3.0 \text{ MHz} \dots$	$f_{\rm N} \pm 5.8 {\rm MHz}$		47	55	_	dB
10,0 MHz	f _N – 75,0 MHz		40	70	_	dB
f _N – 75,0 MHz			45	60	_	dB
$f_{N} - 35,0 \text{ MHz} $	• • • • • • • • • • • • • • • • • • • •		50	55	_	dB
<i>f</i> _N + 5,8 MHz)	50	55	_	dB
$f_{N} + 35,0 \text{ MHz} \dots$	• •		45	60	_	dB
f _N + 75,0 MHz	$f_{\rm N}$ + 2,0 GHz		40	60	_	dB
VSWR (Input and output)						
	$f_{\rm N}\pm 150~{ m kHz}$		_	1,7	2,0	

Data Sheet

		min.	typ.	max.	
Impulse response attenuation (relative to max.)					
5 μs		10	20	_	dB
10 μs		20	45	_	dB
30 μs		76	90	_	dB
35 μs		79	90	_	dB
40 μs 50 μs		80	90	_	dB
Impedance (of unmatched filter) at f_N					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	82 30	_	Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	93 29	_	$\Omega \parallel pF$
Temperature coefficient of frequency ²⁾	TC _f	<u> </u>	-0,036	_	ppm/K ²
Turnover temperature	T_0	_	40	_	°C

 $^{^{1)}\,\}textsc{Except}$ for a few narrowband responses between 179 and 185 MHz (typ. 47 .. 50 dB)

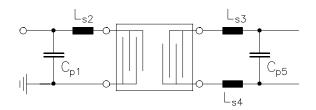

 $^{^{2)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A})=f_{\rm c}(T_0)(1+TC_{\rm f}(T_{\rm A}-T_0)^2)$

Data Sheet

Matching network to 50 $\boldsymbol{\Omega}$

(Element values depend upon PCB layout)

 $C_{p1} = 33 \text{ pF}$


 $L_{s2} = 39 \text{ nH}$

 $L_{s3} = 39 \text{ nH}$

 $C_{p4} = 33 \text{ pF}$

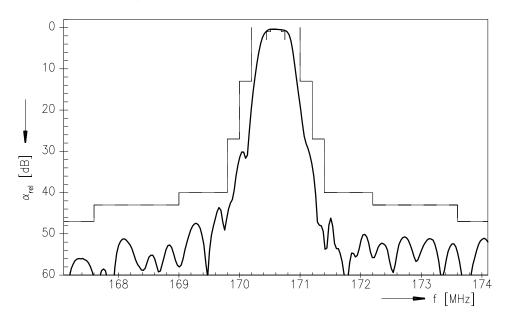
Matching network to 50 Ω single ended (source) and 150 Ω balanced (load)

(Element values depend upon PCB layout)

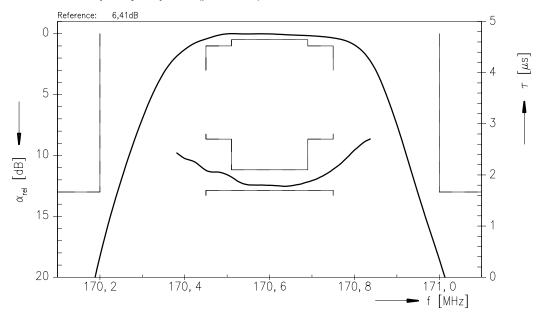
 $C_{p1} = 33 \text{ pF}$

 $L_{s2} = 39 \text{ nH}$

 $L_{s3} = 27 \text{ nH}$

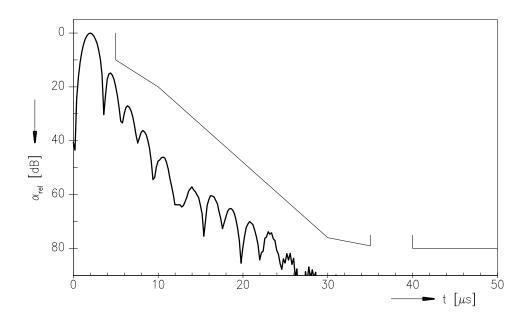

 $L_{s4} = 27 \text{ nH}$

 $C_{p5} = 22 pF$



Data Sheet

Normalized frequency response


Normalized frequency response (pass band)

Data Sheet

Normalized impuls response

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2001. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.