NC7SZ04 TinyLogic™ UHS Invertei

Power down high impedance inputs/output Overvoltage tolerant inputs facilitate 5V to 3V

■ Space saving SOT23 or SC70 5-lead package

■ High Output Drive; ±24 mA at 3V V_{CC}

■ Broad V_{CC} Operating Range; 1.8V to 5.5V

■ Ultra High Speed; t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}

■ Matches the performance of LCX when operated at

- translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

dent of V_{CC} operating voltage.

FAIRCHILD

NC7SZ04

SEMICONDUCTOR

General Description

TinyLogic[™] UHS Inverter

The NC7SZ04 is a single inverter from Fairchild's Ultra

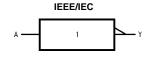
High Speed Series of TinyLogic™. The device is fabricated

with advanced CMOS technology to achieve ultra high

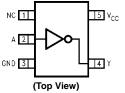
speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range.

The device is specified to operate over the 1.8 V to 5.5 V

V_{CC} range. The inputs and output are high impedance

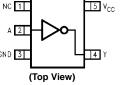

when V_{CC} is 0V. Inputs tolerate voltages up to 6V indepen-

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ04M5	MA05B	7Z04	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7SZ04M5X	MA05B	7Z04	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SZ04P5	MAA05A	Z04	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7SZ04P5X	MAA05A	Z04	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel


Features

 $3.3V V_{CC}$

Logic Symbol



Connection Diagram

Pin Descriptions

Pin Names	Description
A	Input
Y	Output
NC	No Connect

Function Table

Y =	= A
Input	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS012163 www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

	-
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23–5	200 mW
SOT70–5	150 mW

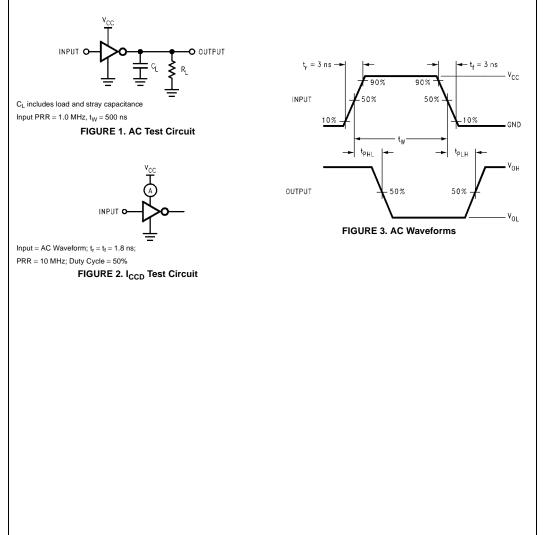
Conditions (Note 2)	-
Supply Voltage Operating (V_{CC})	1.8V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t _r , t _f)	
$V_{CC} = 1.8V, 2.5V \pm 0.2V$	0 ns/V to 20 ns/V
$V_{CC} = 3.3 V \pm 0.3 V$	0 ns/V to 10 ns/V
$V_{CC} = 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	
SOT23–5	300°C/W
SC70–5	425°C/W
Note 1: Absolute maximum ratings are DC values to	

Recommended Operating

Note 1 Adsolute intextinuin ratings are DV values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

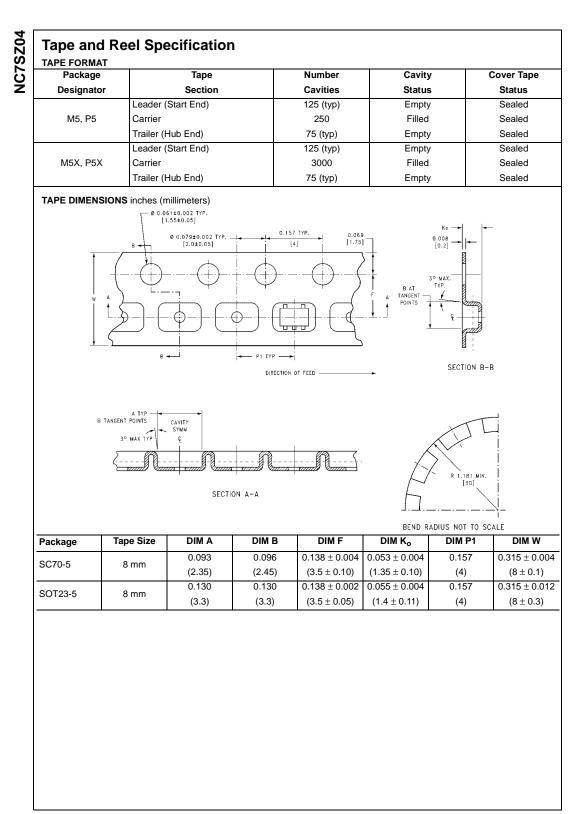
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

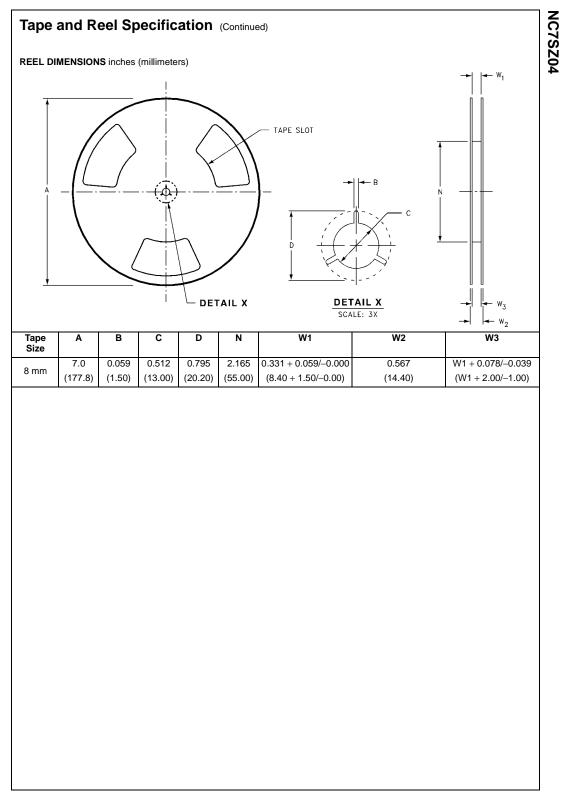

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions		
Symbol		(V)	Min	Тур	Max	Min	Max	Units		nations
VIH	HIGH Level Input Voltage	1.8	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input Voltage	1.8			0.25 V _{CC}		0.25 V _{CC}	v	1	
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{ОН}	HIGH Level Output Voltage	1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		v	$V_{IN} = V_{IL}$	I _{OH} = −100 μA
		3.0	2.9	3.0		2.9			VIN - VIL	10H = -100 mA
		4.5	4.4	4.5		4.4				
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		v		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3		, i		$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	v	V _{IN} =V _{IH}	I _{OI} = 100 μA
		3.0		0.0	0.1		0.1	v	VIN-VIH	10L = 100 mA
		4.5		0.0	0.1		0.1			
		2.3		0.10	0.3		0.3			I _{OL} =8 mA
		3.0		0.15	0.4		0.4	v		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55	v		$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μΑ	$0 \le V_{IN} \le 5.5 V$	
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OI}	_{JT} = 5.5V
I _{CC}	Quiescent Supply Current	1.8 to 5.5			2.0		20	μΑ	V _{IN} = 5.5\	/, GND

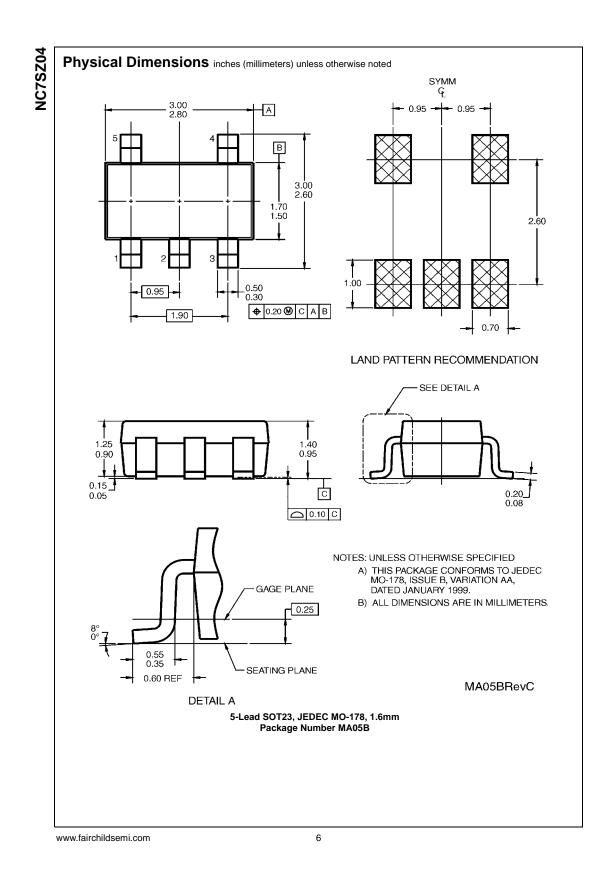
www.fairchildsemi.com

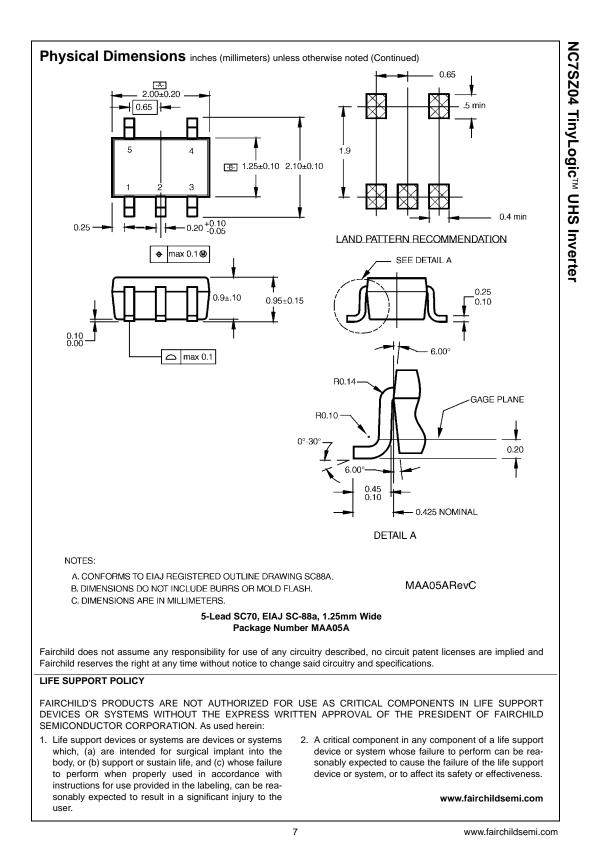
Symbol	Parameter	V _{CC}	T _A = +25°C			T _A = -40°	C to +85°C	Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max	Units	Conultions	Fig. NO.
t _{PLH}	Propagation Delay	1.8	2.0	4.4	9.5	2.0	10			
t _{PHL}		2.5 ± 0.2	0.8	2.9	6.5	0.8	7.0	ns	$C_L = 15 \text{ pF}$	Figures
		3.3 ± 0.3	0.5	2.1	4.5	0.5	4.7		$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5	0.5	1.8	3.9	0.5	4.1			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.5	2.9	5.0	1.5	5.2	ns	$C_L = 50 \text{ pF}$	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.4	4.3	0.8	4.5		$R_L = 500\Omega$	
C _{IN}	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation Capacitance	3.3		20				pF	(Note 3)	Figure 2
		5.0		26				PΕ		Figure 2


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (CPD) (V_{CC}) (f_{IN}) + (I_{CC} static)

AC Loading and Waveforms


3


www.fairchildsemi.com



www.fairchildsemi.com

4

Downloaded from Elcodis.com electronic components distributor