

DS16F95, DS36F95

S16F95, DS36F95 EIA-485/EIA-422A Differential Bus Transceiver

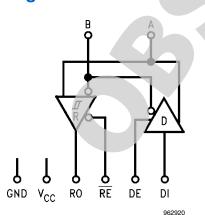
EIA-485/EIA-422A Differential Bus Transceiver

General Description

The DS16F95/DS36F95 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets both EIA-485 and EIA-422A standards.

The DS16F95/DS36F95 offers improved performance due to the use of L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by minimizing gate delay times. Thus, the DS16F95 and DS36F95 consume less power, and feature an extended temperature range as well as improved specifications.

The DS16F95/DS36F95 combines a TRI-STATE® differential line driver and a differential input line receiver, both of which operate from a single 5.0V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $V_{CC} = 0V$. These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments.


The driver is designed to accommodate loads of up to 60 mA of sink or source current and features positive and negative current limiting in addition to thermal shutdown for protection from line fault conditions.

The DS16F95/DS36F95 can be used in transmission line applications employing the DS96F172 and the DS96F174 quad differential line drivers and the DS96F173 and DS96F175 quad differential line receivers.

Features

- Meets EIA-485 and EIA-422A
- Meets SCSI-1 (5 MHZ) specifications
- Designed for multipoint transmission
- Wide positive and negative input/output bus voltage ranges
- Thermal shutdown protection
- Driver positive and negative current-limiting
- High impedance receiver input
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0V supply
- Reduced power consumption
- Pin compatible with DS3695 and SN75176A
- Military temperature range available
- Qualified for MIL-STD 883C
- Standard Military Drawings (SMD) available
- Available in DIP (J), SOIC (M), LCC (E), and Flatpak (W) packages

Logic Diagram

Function Tables

Driver					
Driver Input Enable Outputs					
DI	DE	Α	В		
Н	Н	Н	L		
L	н	L	Н		
Х	L	Z	Z		

Receiver

Differential Inputs	Enable	Output
A–B	RE	RO
V _{ID} ≥ 0.2V	L	Н
V _{ID} ≤ -0.2V	L	L
Х	Н	Z

H = High Level

L = Low Level

- X = Immaterial
- Z = High Impedance (Off)

© 2009 National Semiconductor Corporation 9629

Absolute Maximum Ratings (Note 2)

Specifications for the 883 version of this product are listed separately on the following pages.

Storage Temperature Range	–65°C to +175°C
Lead Temperature	
(Soldering, 60 sec.)	300°C
Maximum Package Power Dissipation (<i>Note 1</i>) at 25°C
'J' Package	1300 mW
'M' Package	735 mW
Supply Voltage	7.0V
Input Voltage (Bus Terminal)	+15V/-10V
Enable Input Voltage	5.5V

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})				
DS36F95	4.75	5.0	5.25	V

	Min	Тур	Max	Units
DS16F95	4.50	5.0	5.50	V
Voltage at Any Bus Terminal				
(Separately or Common Mo	de)			
(V _I or V _{CM})	-7.0		+12	V
Differential Input			±12	V
Voltage (V _{ID})				
Output Current HIGH (I _{OH})				
Driver			-60	mA
Receiver			-400	μA
Output Current LOW (I _{OL})				
Driver			60	mA
Receiver			16	mA
Operating Temperature (T _A)				
DS36F95	0	+25	+70	°C
DS16F95	-55	+25	+125	°C
Note 1: Derate //' package 8.7 mW//00	ahove	25°C		

Note 1: Derate 'J' package 8.7 mW/°C above 25°C. Derate 'M' package 5.88 mW/°C above 25°C.

Driver Electrical Characteristics (Note 3, Note 4)

Over recommended supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Co	onditions	Min	Тур	Max	Units
V _{IH}	Input Voltage HIGH			2.0			V
V _{IL}	Input Voltage LOW					0.8	V
V _{OH}	Output Voltage HIGH	I _{OH} = -55 mA	0°C to +70°C	3.0			V
V _{OL}	Output Voltage LOW	I _{OL} = 55 mA	0°C to +70°C			2.0	V
V _{IC}	Input Clamp Voltage	I _I = −18 mA				-1.3	V
IV _{OD1} I	Differential Output Voltage	I _o = 0 mA				6.0	V
IV _{OD2} I	Differential Output Voltage	$R_{L} = 100\Omega$, Figure 1		2.0	2.25		V
		$R_1 = 54\Omega$, Figure 1		1.5	2.0		
ΔIV _{OD} I	Change in Magnitude of	$R_1 = 54\Omega$ or 100Ω ,	-40°C to +125°C			±0.2	V
00	Differential Output Voltage	Figure 1	–55°C to +125°C			±0.4	
	(Note 5)						
V _{oc}	Common Mode Output Voltage (<i>Note 6</i>)					3.0	v
∆IV _{OC} I	Change in Magnitude of Common Mode Output Voltage (<i>Note 5</i>)					±0.2	v
I _o	Output Current (Note 9)	Output Disabled	V ₀ = +12V			1.0	mA
	(Includes Receiver I _I)		$V_0 = -7.0V$			-0.8	
Ін	Input Current HIGH	V ₁ = 2.4V	·			20	μA
I _{IL}	Input Current LOW	$V_{1} = 0.4V$				-50	μA
OS	Short Circuit Output Current (<i>Note 10</i>)	V _O = -7.0V				-250	
		$V_{O} = 0V$				-150	mA
		$V_{O} = V_{CC}$				150	
		$V_0 = +12V$				250	
I _{CC}	Supply Current	No Load,	DE = 2V, RE = 0.8V			28	
	(Total Package)	All Inputs Open	Outputs Enabled				mA
ссх			$DE = 0.8V, \overline{RE} = 2V$ Outputs Disabled			25	IIIA

www.national.com

DS16F95, DS36F95

Driver Switching Characteristics

 $V_{CC} = 5.0V, T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{DD}	Differential Output Delay Time	$R_L = 60\Omega$, <i>Figure 3</i>	8.0	15	20	ns
t _{TD}	Differential Output Transition Time		8.0	15	22	ns
t _{PLH}	Propagation Delay Time,	R _L = 27Ω, <i>Figure 4</i>	6.0	12	16	ns
	Low-to-High Level Output					
t _{PHL}	Propagation Delay Time,		6.0	12	16	ns
	High-to-Low Level Output					
t _{zH}	Output Enable Time to High Level	R _L = 110Ω, <i>Figure 5</i>		25	32	ns
t _{ZL}	Output Enable Time to Low Level	R _L = 110Ω, <i>Figure 6</i>		25	32	ns
t _{HZ}	Output Disable Time from High Level	R _L = 110Ω, <i>Figure 5</i>		20	25	ns
t _{LZ}	Output Disable Time from Low Level	R_L = 110Ω, <i>Figure 6</i>		20	25	ns
t _{LZL}	Output Disable Time from Low Level	Load per <i>Figure 5</i>		300		ns
	with Load Resistor to GND	Timing per <i>Figure 6</i>				
t _{SKEW}	Skew (Pulse Width Distortion)	$R_L = 60\Omega$, <i>Figure 3</i>		1.0	4.0	ns

Receiver Electrical Characteristics

Over recommended supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Cc	onditions	Min	Тур	Max	Units
V _{TH}	Differential Input High	V ₀ = 2.7V, I ₀ = -0.4	mA			0.2	V
	Threshold Voltage						ĺ
V _{TL}	Differential Input Low	V _o = 0.5V, I _o = 8.0 n	۱A	-0.2			V
	Threshold Voltage (Note 7)						
$V_{T+}-V_{T-}$	Hysteresis (<i>Note 8</i>)	V _{CM} = 0V		35	50		mV
V _{IH}	Enable Input Voltage HIGH			2.0			V
V _{IL}	Enable Input Voltage LOW					0.8	V
VIC	Enable Input Clamp Voltage	$l_{1} = -18 \text{ mA}$				-1.3	V
V _{OH}	Output Voltage HIGH	$V_{\rm ID} = 200 {\rm mV},$	0°C to +70°C	2.8			V
		I _{OH} = -400 μA,					
		Figure 2	-55°C to +125°C	2.5			
V _{OL}	Output Voltage LOW	$V_{\rm ID} = -200 \text{ mV},$ $I_{\rm OL} = 8.0 \text{ mA}$				0.45	V
		Figure 2	I _{OL} = 16 mA			0.50	
I _{oz}	High Impedance State Output	$V_0 = 0.4$ V to 2.4V				±20	μA
l _i	Line Input Current (Note 9)	Other Input = 0V	V ₁ = +12V			1.0	mA
			$V_1 = -7.0V$			0.8	
I _{IH}	Enable Input Current HIGH	V _{IH} = 2.7V	·			20	μA
I _{IL}	Enable Input Current LOW	$V_{IL} = 0.4V$				-50	μA
R _I	Input Resistance			14	18	22	kΩ
l _{os}	Short Circuit Output Current	(Note 9)		-15		-85	mA
	Supply Current	No Load,	DE = 2V, RE = 0.8V			28	
I _{CC}	(Total Package)	All Inputs Open	Outputs Enabled			20	
1			$DE = 0.8V, \overline{RE} = 2V$				mA
I _{CCX}			Outputs Disabled			25	

3

Receiver Switching Characteristics

 $V_{CC} = 5.0V, T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Symbol	rarameter			TYP	IVIAA	Units
t _{PLH}	Propagation Delay Time,	$V_{ID} = 0V \text{ to } +3.0V$	14	19	24	ns
	Low-to-High Level Output	C _L = 15 pF, <i>Figure 7</i>				
t _{PHL}	Propagation Delay Time,		14	19	24	ns
	High-to-Low Level Output					
t _{zH}	Output Enable Time to High Level	C _L = 15 pF, <i>Figure 8</i>		10	16	ns
t _{ZL}	Output Enable Time to Low Level			12	18	ns
t _{HZ}	Output Disable Time from High Level	C _L = 5.0 pF, <i>Figure 8</i>		12	20	ns
t _{LZ}	Output Disable Time from Low Level			12	18	ns
lt _{PLH} -t _{PHL} I	Pulse Width Distortion (SKEW)	Figure 7		1.0	4.0	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 3: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS16F95 and across the 0°C to $+70^{\circ}$ C range for the DS36F95. All typicals are given for V_{CC} = 5V and T_A = 25^{\circ}C.

Note 4: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.

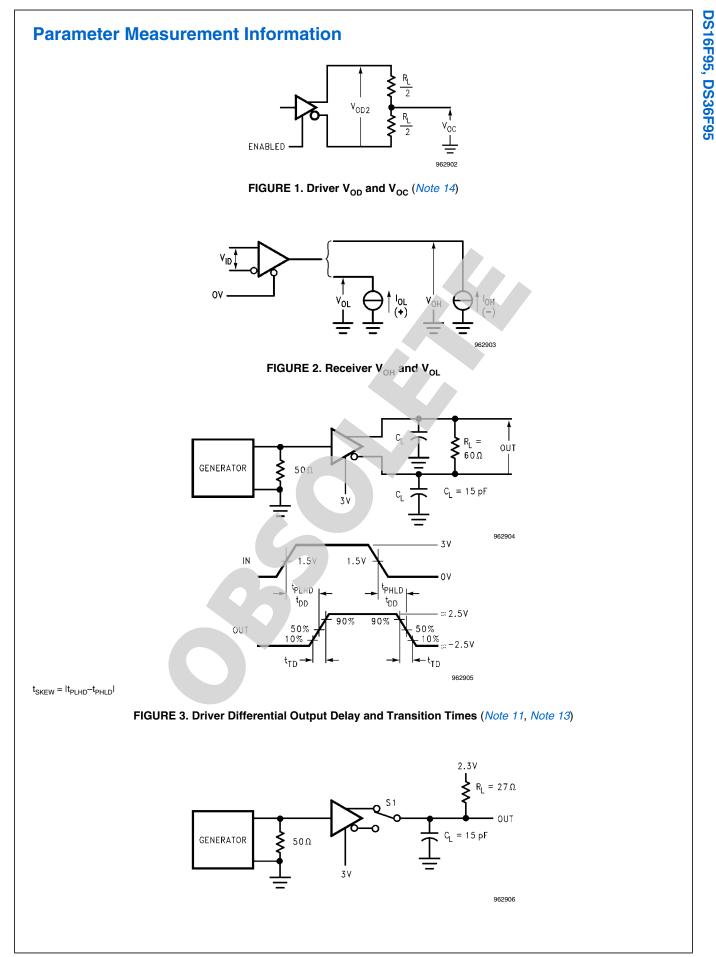
Note 5: $\Delta IV_{OD}I$ and $\Delta IV_{OC}I$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level. Note 6: In TIA/EIA-422A and TIA/EIA-485 Standards, V_{OC} , which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS} .

Note 7: The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.

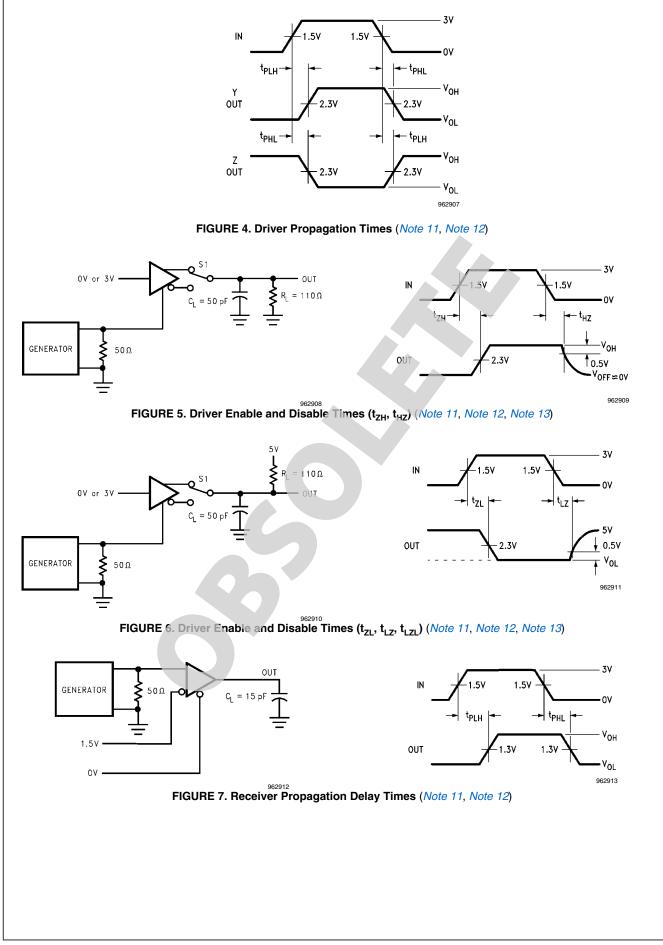
Note 8: Hysteresis is the difference between the positive-going input threshold voltage, V₁+, and the negative-going input threshold voltage, V₁-.

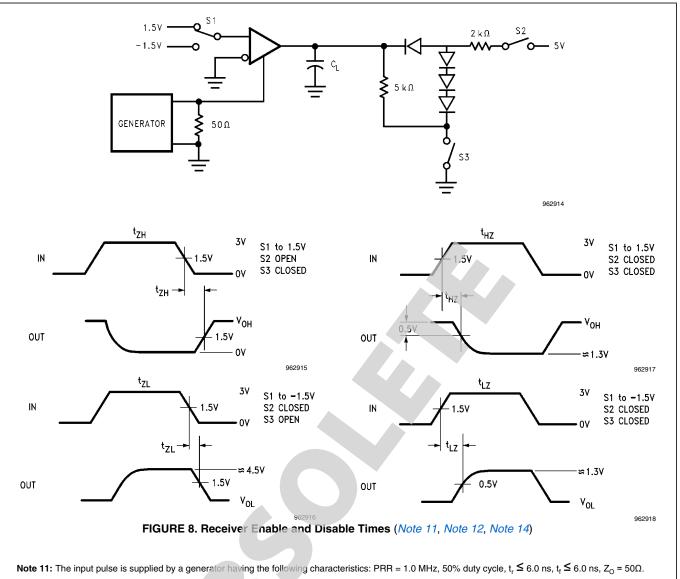
Note 9: Refer to TIA/EIA-485 Standard for exact conditions.

Note 10: Only one output at a time should be shorted.


Order Number

DS16F95J, NS Package Number J08A

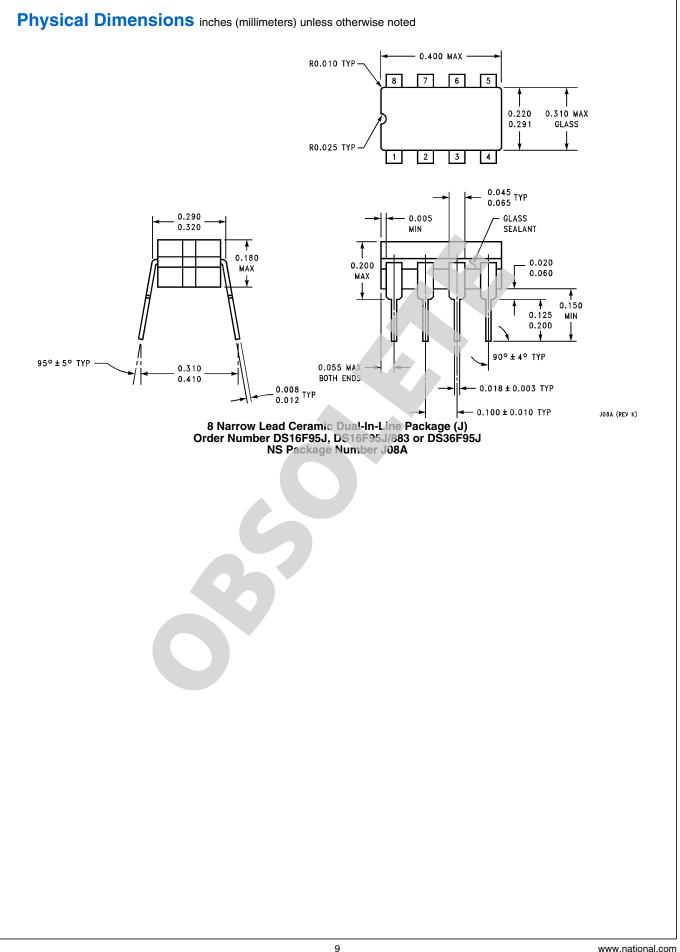

DS36F95J, NS Package Number J08A


DS36F95M, NS Package Number M08A

www.national.com

Note 12: \mathbf{C}_{L} includes probe and stray capacitance.

Note 13: DS16F95/DS36F95 Driver enable is Active-High.


Note 14: All diodes are 1N916 or equivalent.

Note 15: Testing at 20 pF assures conformance to 5 pF specification.

7

Typical Application UP TO 32 TRANSCEIVERS 962919 The line should be terminated at both ends in its characteristic impedance, typically 120 Ω . Stub lengths off the main line should be kept as short as possible. **Connection Diagram** 8-Lead Dual-In-Line Package or Small Outline Molded Package 8 RO 2 RE IN/OUT 3 6 BUS PORT DE DI GND Order Number DS16F95, DS16F95J/883, DS36F95J, DS36F95M See NS Package Number J08A, or M08A

www.national.com

DS16F95, DS36F95

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: ipn.feedback@nsc.com