

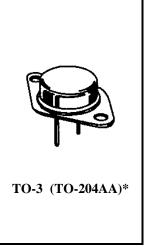
NPN HIGH POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/371

Devices Qualified Level

2N3902 2N5157

JAN **JANTX**


MAXIMUM RATINGS

MILIMICHI MITI 165					
Ratings	Symbol	2N3902	2N5157	Unit	
Collector-Emitter Voltage	V_{CEO}	400	500	Vdc	
Emitter-Base Voltage	V_{EBO}	5.0	6.0	Vdc	
Collector-Base Voltage	V_{CBO}	700		Vdc	
Base Current	I_{B}	2.0		Adc	
Collector Current	I_{C}	3.5		Adc	
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$ @ $T_C = +75^{\circ}C^{(2)}$	D	5.0		W	
$@ T_C = +75^0 C^{(2)}$	P_{T}	10	00	W	
Operating & Storage Temperature Range	$T_{i,} T_{stg}$	-65 to	+200	^{0}C	

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.25	⁰ C/W

¹⁾ Derate linearly 29 mW/ $^{\circ}$ C for T_A > +25 $^{\circ}$ C

*See Appendix A for Package Outline

ELECTRICAL CHARACTERISTICS

Characteristic	s	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Cutoff Current					
$V_{CE} = 325 \text{ Vdc}$	2N3902	I_{CEO}		250	μAdc
$V_{CE} = 400 \text{ Vdc}$	2N5157			250	
Collector-Emitter Cutoff Current		т		500	u A do
$V_{BE} = 1.5 \text{ Vdc}; V_{CE} = 700 \text{ Vdc}$		I_{CEX}		300	μAdc
Emitter-Base Cutoff Current					
$V_{EB} = 5.0 \text{ Vdc}$	2N3902	I_{EBO}		200	μAdc
$V_{EB} = 6.0 \text{ Vdc}$	2N5157			200	
ON CHARACTERISTICS ⁽³⁾					
Base-Emitter Saturation Voltage					
$I_C = 1.0 \text{ Adc}; I_B = 0.1 \text{ Adc}$		$V_{\mathrm{BE}(\mathrm{sat})}$		1.5	Vdc
$I_C = 3.5 \text{ Adc}; I_B = 0.7 \text{ Adc}$				2.0	
Collector-Emitter Saturation Voltage					
$I_C = 1.0 \text{ Adc}; I_B = 0.1 \text{ Adc}$		$V_{CE(sat)}$		0.8	Vdc
$I_C = 3.5 \text{ Adc}; I_B = 0.7 \text{ Adc}$				2.5	
6 Lake Street, Lawrence, MA 01841					120101

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

²⁾ Derate linearly 0.8 mW/ $^{\circ}$ C for $T_C > +75^{\circ}$ C

2N3902, 2N5157 JAN SERIES

ELECTRICAL	CHARA(CTERISTICS	(con't)
------------	--------	------------	---------

Characteristics	3	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ⁽³⁾ (con't)					
Forward-Current Transfer Ratio					
$I_C = 0.5 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$			25		
$I_C = 1.0 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$		$h_{ m FE}$	30	90	
$I_C = 2.5 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$			10		
$I_C = 3.5 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$			5		
Collector-Emitter Sustaining Voltage					
$I_C = 100 \text{ mAdc}$	2N3902	$V_{CEO(sus)}$		325	Vdc
	2N5157			400	
DYNAMIC CHARACTERISTICS					
Small-Signal Short-Circuit Forward Current	nt Transfer Ratio	$ h_{fe} $	2.5	25	
$I_C = 0.2 \text{ Adc}; V_{CE} = 10 \text{ Vdc}, f = 1 \text{ MHz}$	$1.2 \text{ Adc}; V_{CE} = 10 \text{ Vdc}, f = 1 \text{ MHz}$		2.3	23	
Output Capacitance		C_{obo}		250	pF
$V_{CB} = 10 \text{ Vdc}; I_E = 0, 100 \text{ kHz} \le f \le 1.0$	$E_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$			230	pr
SWITCHING CHARACTERISTICS					
Turn-On Time			0.8	He	
$V_{CC} = 125 \text{ Vdc}$; $I_C = 1.0 \text{ Adc}$; $I_{B1} = 0.1 \text{ Adc}$		OII		0.0	μs
Turn-Off Time		· · · off		1.7	110
$V_{CC} = 125 \text{ Vdc}$; $I_{C} = 1.0 \text{ Adc}$; $I_{B1} = 0.1 \text{ Adc}$	Adc; $-I_{B2} = 0.50 \text{ Adc}$	OII		1.7	μs

SAFE OPERATING AREA

DC Tests (continuous)

 $T_C = +25^{\circ}C$; $t \ge 1.0$ s (See Figure 3 of MIL-PRF-19500/371)

Test 1

 $V_{CE} = 28.6 \text{ Vdc}, I_{C} = 3.5 \text{ Adc}$

Test 2

 $V_{CE} = 70 \text{ Vdc}, I_C = 1.43 \text{ Adc}$

Test 3

 $V_{CE} = 325 \text{ Vdc}, I_C = 55 \text{ mAdc}$ 2N3902 $V_{CE} = 400 \text{ Vdc}, I_C = 35 \text{ mAdc}$ 2N5157

Switching Tests

Load condition C (unclamped inductive load)

 $T_C = 25^{\circ}$ C; duty cycle $\leq 10\%$; $R_S = 0.1 \Omega$ (See Figure 4 of MIL-PRF-19500/371)

Test 1

 $t_{P} = approximately \ 3 \ ms \ (vary \ to \ obtain \ I_{C)}; \ R_{BB1} = 20 \ \Omega; \ V_{BB1} = 10 \ Vdc; \ R_{BB2} = 3 \ k\Omega;$

 $V_{BB2}=1.5~Vdc;~V_{CC}=50~Vdc;~I_{C}=3.5~Adc;~L=60~mH;~R=3~\Omega;~R_{L}\leq14\Omega.$

Test 2

 t_P = approximately 3 ms (vary to obtain I_C); $R_{BB1} = 100 \Omega$; $V_{BB1} = 10 \text{ Vdc}$; $R_{BB2} = 3 \text{ k}\Omega$;

 $V_{BB2}=1.5~Vdc;~I_C=0.6~Adc~V_{CC}=50~Vdc;~L=200~mH;~R=8~\Omega;~R_L\leq 83\Omega.$

Switching Tests

Load condition (clamped inductive load)

 $T_C = +25^{\circ}C$; duty cycle $\leq 10\%$. (See Figure 5 of MIL-PRF-19500/371)

Test 1

 t_P = approximately 30 ms (vary to obtain I_C); $R_S = 0.1 \Omega$; $R_{BB1} = 20 \Omega$; $V_{BB1} = 10 \text{ Vdc}$; $R_{BB2} = 100 \Omega$;

 $V_{BB2}=1.5~Vdc;~V_{CC}=50~Vdc;~I_{C}=3.5~Adc;~L=60~mH;~R=3~\Omega;~R_{L}\geq0\Omega.$

(A suitable clamping circuit or diode can be used.)

Clamp Voltage = 400 +0, -5 Vdc 2N3902 Clamp Voltage = 500 +0, -5 Vdc 2N5157

(Clamped voltage must be reached)

6 Lake Street, Lawrence, MA 01841

120101 Page 2 of 2

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

^{3.)} Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.