

Applications

- 5 GHz WLAN (IEEE802.11a/g/n)
- Access Points, PCMCIA, PC cards

Features

- 5GHz Front End Module with PA, LNA and T/R Switch
- Integrated power amplifier enable pin (VEN)
- Buffered, temperature compensated power detector
- High and Low-Linearity mode
- 3% EVM, @17dBm, 64 QAM, 54 Mbps
- 30 dB Typical Gain
- Lead Free and RoHS compliant, halogen free package
- 16 pin 3 mm x 3 mm x 0.6 mm QFN, MSL1

Ordering Information

Part Number	Package	Remark
SE5007T	16 Pin QFN	Samples
SE5007T-R	16 Pin QFN	Tape and Reel
SE5007T-EK1	Evaluation Kit	Standard

Product Description

The SE5007T is a 5GHz front end module offering high linear power for wireless LAN applications. It incorporates a power detector for control of the output power.

The SE5007T offers a high level of integration for a simplified design, providing quicker time to market and higher application board production yield. The device integrates the input match, inter-stage match, a temperature compensated, load insensitive power detector with 20dB of dynamic range, a 3.8GHz notch filter, a T/R switch and LNA.

For wireless LAN applications, the device meets the requirements of IEEE802.11a and delivers approximately 17dBm of linear output power. It also features a low linearity mode control to reduce current consumption at low power modes.

The SE5007T integrates the reference voltage generator, allowing for a true 1.8V CMOS compatible digital EN (enable) function to turn the power amplifier on and off.

Functional Block Diagram

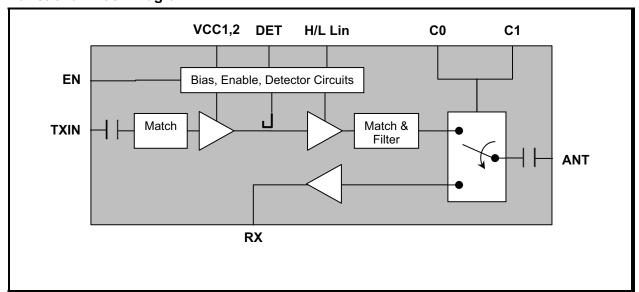


Figure 1: Functional Block Diagram

Pin Out Diagram

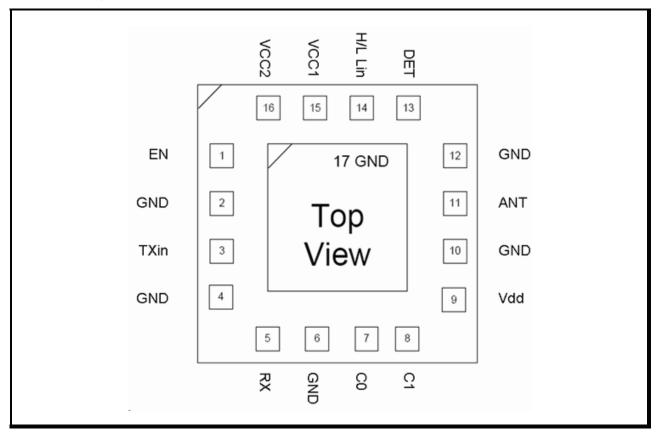


Figure 2: SE5007T Pin-Out Diagram

Pin Out Description

Pin No.	Name	Description
1	EN	PA Enable
2	GND	Ground
3	TXIN	5GHz TX RF Input Signal
4	GND	Ground
5	RX	5GHz LNA Output Signal
6	GND	Ground
7	C0	Switch Control Logic 1
8	C1	Switch Control Logic 2

Pin No.	Name	Description	
9	VDD	LNA Supply Voltage	
10	GND	Ground	
11	ANT	5GHz Antenna output	
12	GND	Ground	
13	DET	Power Detector Output	
14	H/L Lin	High-Low linearity Control	
15	VCC1	Power Stage Supply Voltage	
16	VCC2	Bias, Driver Stage Supply Voltage	

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings for a long period of time may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition		Min.	Max.	Unit
Vcc1	Supply Voltage on pin 15	3.0	4.8	V	
VDD, VCC2	Supply Voltage on pins 9,	16 (VDD, VCC2)	3.0	3.6	V
EN	DC input on Enable		-0.3	3.6	V
TXIN	RF Input Power, RFout into 50Ω match		-	12	dBm
Тѕтс	Storage Temperature Range		-40	150	°C
ESD _{HBM}	JEDEC JESD22-A114	Antenna Pin	-	1000	V
ESD HBM	all pins	All Other Pins	-	300	V

Recommended Operating Conditions

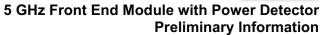
Symbol	Parameter	Min.	Max.	Unit
Vcc1	Supply Voltage on pin 15 (VCC1)	3.0	4.5	V
VDD, VCC2	Supply Voltage on pins 9, 16 (VDD, VCC2)	3.0	3.6	V
TA	Ambient Temperature	-40	85	°C

Control Logic Characteristics

Conditions: $V_{CC1} = V_{CC2} = V_{DD} = V_{PAON} = V_{EN} = 3.3 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, as measured on SiGe Semiconductor's SE5007T-EV1 evaluation board, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		P _{OUT} = 17 dBm, 54 Mbps, 64 QAM, H/L Lin = 3.3V (High Linearity Mode)	-	195	-	
	Supply Current,	P _{OUT} = 13 dBm, 54 Mbps, 64 QAM, H/L Lin = 0V (Low Linearity Mode)	-	140	-	
ICC-802.11a	Transmit Mode	P _{OUT} = 5 dBm, 54 Mbps, 64 QAM, H/L Lin = 0V (Low Linearity Mode)	-	105	-	mA
		P _{OUT} = 19 dBm, 54 Mbps, 64 QAM, H/L Lin = 3.3V, VCC1 = 4.0V		220		
	Supply Current,	V _{EN} = C0 = 0V; C1 = 3.3V		15		
	Receive Mode	V _{EN} = C0 = C1 = 0V		0.02		
loff	Supply Current	V _{EN} = 0 V, No RF, C0=C1=0 V Measured on VCC, VDD pins	-	20	50	μΑ
VENH	Logic High Voltage	-	2.8	-	Vcc	V
VENL	Logic Low Voltage	-	-0.3	-	0.3	V
lenh	Input Current Logic High Voltage	-	-	330	400	μΑ
lenl	Input Current Logic Low Voltage	-	-	<1	-	μΑ

5 GHz Front End Module with Power Detector Preliminary Information


Switch Logic Characteristics

Conditions: $V_{CC} = V_{EN} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, as measured on SiGe Semiconductor's SE5007T-EK1 evaluation board, all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ON	Low Loss Switch Control Voltage	High State = Vctl_on - Vctl_off	2.8	-	3.6	V
OFF	High Loss Switch Control Voltage	Low State = Vctl_off - Vctl_off	0	-	0.3	V
Ссть	Control Input Capacitance	-	-	-	100	pF
I _{CTL}	Control Line Current	Vctl = Vctl_on	-	2	10	uA

Switch Control Logic Table

C0	C1	EN	Hi/L Lin	ANT
ON	OFF	ON	OFF	TX Low Linearity
ON	OFF	ON	ON	TX High Linearity
OFF	OFF	OFF	D/C	Rx Bypass
OFF	ON	OFF D/C Rx I		Rx LNA ON
ON	ON	Un-supported state		

AC Electrical Characteristics

Transmit Characteristics

Conditions: $V_{CC1} = V_{CC2} = V_{DD} = V_{EN} = C0 = H/L \text{ Lin} = 3.3 \text{V}, C1 = 0 \text{V}, T_A = 25 ^{\circ}\text{C}, as measured on SiGe}$

Semiconductor's SE5007T-EV1 evaluation board, unless otherwise noted

Symbol	Parameter	Condit	ions	Min.	Тур.	Max.	Unit
fL-U	Frequency Range	-		4.90	-	5.85	GHz
		802.11a,	EVM = 3%	-	17	-	
	Output Power,	64 QAM	EVM = 2%	-	15	-	
	High Linearity Mode H/L Lin = 3.3V	VCC1 = 4.0V, 3% EVM	EVM = 3%	-	19	-	
POUT	OFDM	MCS0, HT20, ma	sk compliant	-	21	-	dBm
		MCS0, HT40, ma	sk compliant	-	20	-	
	Output Power,	802.11a, 64 QAM	, EVM = 3%	-	13	-	
	Low Linearity Mode H/L Lin = 0V	MCS0, HT20, ma	sk compliant	-	17	-	
	OFDM	MCS0, HT40, ma	sk compliant	-	16	-	
P _{1dB}	Output 1dB compression point	No modulation		-	24	ı	dBm
S ₁₁	Input Return Loss	P _{IN} = -25 dBm		-	14	-	dB
S ₂₁	Small Signal Gain,	High Linearity Mode		28	31	-	dB
321	P _{IN} = -25dBm	Low Linearity Mode		26	30	-	
ΔS ₂₁	Small Signal Gain	Gain variation ove 40MHz channel	er single	-	-	0.5	- dB
ΔΟ21	Variation	Gain Variation ov	er band	-1.5	-	1.5	UD.
S _{21_3.8}	Out of Band Gain	Gain at 3.8GHz		-	-	15	dB
2f	Harmonic	Роит = 17 dBm, C	DEDM	-	-50	-42	dBm/MHz
3f	Hamonic	FOUT - 17 UDITI, OFDIVI		-	-50	-42	GDITI/IVIT IZ
tr, tf	Rise and Fall Time	-		-	0.5	-	us
STAB	Stability	POUT = 17 dBm, 54 Mbps, 64 QAM, VSWR = 6:1, all phases		All non-h		ly related o dBc/100 kl	outputs less Hz
Rugged- ness	Tolerance to output load mismatching	Constant P _{IN} equal to P _{OUT} = 17 dBm at 50ohms, 54 Mbps, 64 QAM, VSWR = 6:1, all phases			No c	lamage	
Robust	Robustness to input power	P _{IN} = 12dBm, CW all phases	7, VSWR = 6:1,		No c	lamage	

5 GHz Front End Module with Power Detector Preliminary Information

Receive Characteristics

Conditions: Vcc = C1 = 3.3V, VEN = C0 = 0V, TA = 25 °C, as measured on SiGe Semiconductor's SE5007T-EK1 evaluation board, all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	4.9	-	5.85	GHz
RX	Insertion Loss	Bypass Mode: C0 = C1 = 0V	-	-5	-	dB
INA.	RX Gain	High Gain Mode	11	12	-	uБ
NF	Noise Figure	High Gain Mode	-	2.5	-	dB
	Input Return Loss	At the Antenna port	-	12	-	
RX _{RL}	Output Return Loss	At RX RF output	-	7	-	dB
RxIP1DB	Input P1DB	Measured at ANT Port; High Gain Mode	-	-5	-	dBm
		LNA Bypass Mode	-	10	-	
Rx_2.4int	Max 2.4Ghz interferer Amplitude	1 dB degradation of IP1DB	-	-10	-7	dBm
T _{on/off}	T/R on/off switching speed	C0, C1 (50%) to RF output (10% or 90%)	-	300	-	nSec

Power Detector Characteristics

Conditions: $V_{CC} = V_{EN} = C0 = 3.3V$, C1 = 0V, f = 5.4 GHz, $T_A = 25$ °C, as measured on SiGe Semiconductor's SE5007T-EV1 evaluation board, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
PDR	Роит detect range	-	0	-	P _{1dB}	dBm
VDET ₂₂	Detector voltage	Роит = 22 dBm	0.7	-	0.9	V
VDET ₁₆	Detector voltage	Роит = 16 dBm	0.50	-	0.60	V
VDET ₂	Detector voltage	Pout = 2 dBm	0.25	-	0.35	V
PDZout	Output Impedance	-	-	5	-	ΚΩ

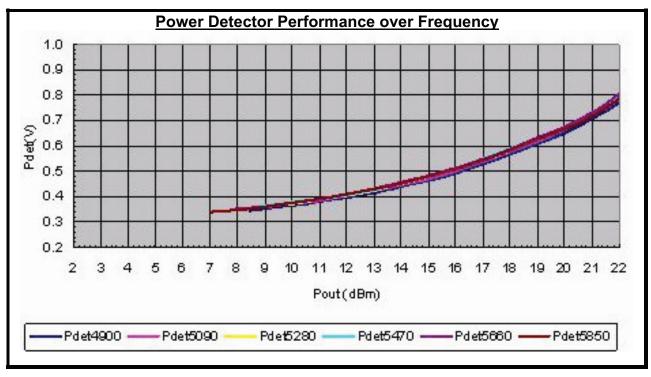


Figure 3: SE5007T Power Detector Characteristic

Package Diagram

This package is Pb free and RoHS compliant. The product is rated MSL1.

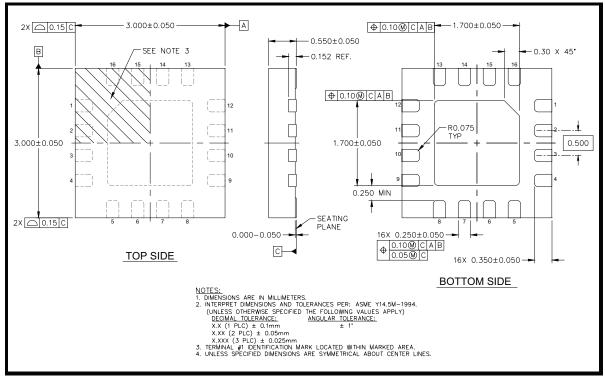
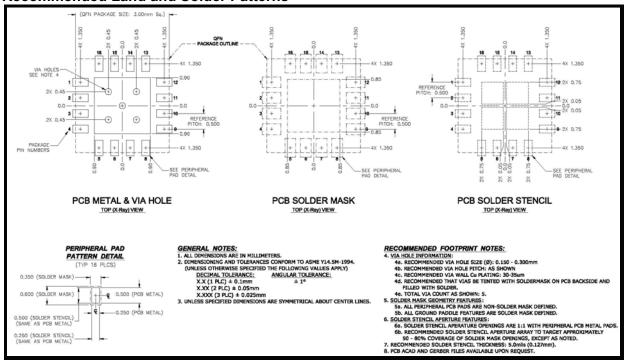
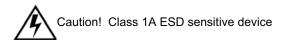


Figure 4: SE5007T Package Diagram

Recommended Land and Solder Patterns




Figure 5: SE5007T Recommended Land and Solder Pattern

Package Handling Information

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE5007T is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended by SiGe, please refer to:

- SiGe's Application Note: "Quad Flat No-Lead Module Solder Reflow & Rework Information", Document Number QAD-00045
- SiGe's Application Note: "Handling, Packing, Shipping and Use of Moisture Sensitive QFN", Document Number QAD-00044

Branding Information

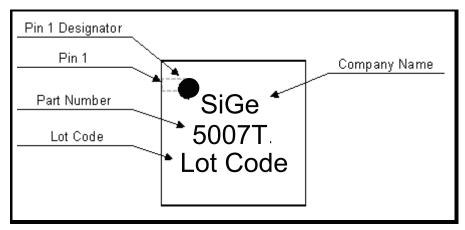


Figure 6: SE5007T Branding

Tape and Reel Information

Parameter	Value
Devices Per Reel	3000
Reel Diameter	13 inches
Tape Width	12 millimeters
pin 1 corner	
Product Code In the Number In the	Project Code Lot Number Lot Number

Figure 7: SE5007T-R Tape and Reel Information

Preliminary Information

Document Change History

Revision	Date	Notes
1.0	Jun 24, 2010	Created
1.1	Jul 2, 2010	Corrected control logic table
1.2	Jul 7, 2010	Expanded frequency range to 4.9GHz to 5.85GHz Expanded operating temperature range to -40 to +85 Changed VDD supply from 2.5V to 3.3V <u>+</u> 10%
1.3	Jul 14, 2010	Removed reference to incorrect part number.
1.4	Sep 30, 2010	Updated RX output return loss (S22) limit
1.5	Oct 05, 2010	Updated the Block Diagram
1.6	Dec 20, 2010	Corrected RX Conditions in Control Logic table
1.7	Jan 03, 2011	Update recommended storage temperature. Updated ESD rating Updated max limit on VCC2
1.8	Feb 8, 2011	Added 4V operation

This page intentionally left blank.

5 GHz Front End Module with Power Detector Preliminary Information

http://www.sige.com

Email: sales@sige.com

Customer Service Locations:

North America: 1050 Morrison Drive, Suite 100

Ottawa ON K2H 8K7 Canada

Phone: +1 613 820 9244

Fax: +1 613 820 4933

Hong Kong

Phone: +852 3428 7222 Fax: +852 3579 5450

San Diego

Phone: +1 858 668 3541 (ext. 226)

Fax: +1 858 668 3546

United Kingdom

Phone: +44 1279 464217 Fax: +44 1279 464201

Product Preview

The datasheet contains information from the product concept specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Preliminary Information

The datasheet contains information from the design target specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Production testing may not include testing of all parameters.

Information furnished is believed to be accurate and reliable and is provided on an "as is" basis. SiGe Semiconductor, Inc. assumes no responsibility or liability for the direct or indirect consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license or indemnity is granted by implication or otherwise under any patent or other intellectual property rights of SiGe Semiconductor, Inc. or third parties. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SiGe Semiconductor, Inc. products are NOT authorized for use in implantation or life support applications or systems without express written approval from SiGe Semiconductor, Inc.

Copyright 2011 SiGe Semiconductor, Inc. All Rights Reserved

