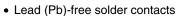
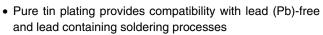
Vishay BCcomponents

Standard Metal Film Leaded Resistors




A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps.

The resistors are coated with a colored lacquer (light-blue for type SFR16S; light-green for type SFR25 and red-brown for type SFR25H) which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with IEC 60068-2-45.

FEATURES

- · Low cost
- Low noise (max. 1.5 μ V/V for R > 1 M Ω)
- Small size (SFR16S: 0204, SFR25/25H: 0207)

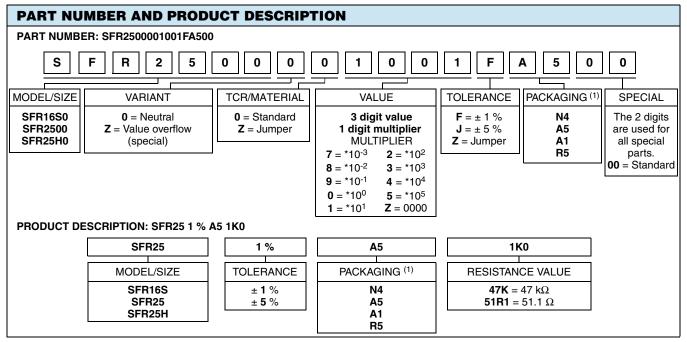
• Compliant to RoHS directive 2002/95/EC

APPLICATIONS

· General purpose resistors

TECHNICAL SPECIFICATIONS						
DECODIDATION	VALUE					
DESCRIPTION	SFR16S	SFR25	SFR25H			
	\pm 5 %; 1 Ω to 3 M Ω	± 5 %; 0.22	Ω to 10 M Ω			
Resistance Range	\pm 1 %; 4.99 Ω to 3 M Ω	± 1 %; 1 Ω	Ω to 10 MΩ			
	Jumper (0 Ω)	Jumper (0 Ω)				
Resistance Tolerance	± 1 %	, E24/E96 series; ± 5 %, E24	series			
Temperature Coefficient:						
$R < 4.7 \Omega$	≤ ± 250 ppm/K	≤ ± 100 ppm/K	≤ ± 100 ppm/K			
$4.7 \Omega \leq R \leq 100 \text{ k}\Omega$	≤ ± 100 ppm/K	≤ ± 100 ppm/K	≤ ± 100 ppm/K			
100 k Ω < R ≤ 1 M Ω	≤ ± 250 ppm/K	≤ ± 100 ppm/K	≤ ± 100 ppm/K			
$R > 1 \text{ M}\Omega$	≤ ± 250 ppm/K	≤ ± 250 ppm/K	≤ ± 250 ppm/K			
Rated Dissipation, P ₇₀	0.5 W	0.4 W	0.5 W			
Thermal Resistance, R _{th}	170 K/W	200 K/W	150 K/W			
Maximum Permissible Voltage, (U _{max.} AC/DC)	200 V	250 V	350 V			
Noise:						
R < 68 k Ω	max. 0.1 μV/V	max. 0.1 μV/V	max. 0.1 μV/V			
68 kΩ ≤ R ≤ 100 kΩ	max. 0.5 μV/V	max. 0.1 μV/V	max. 0.1 μV/V			
100 kΩ $\leq R \leq$ 1 MΩ	max. 1.5 μV/V	max. 0.1 μV/V	max. 0.1 μV/V			
$R > 1 \text{ M}\Omega$	max. 1.5 μV/V max. 1.5 μV/V		max. 1.5 μV/V			
Basic Specifications		IEC 60115-1				
Climatic Category (IEC 60068-1)		55/155/56				
Stability, ∆R max., After:						
Load (1000 h, P ₇₀):						
R Range	± (2 % R + 0.05 Ω)	± (2 % R + 0.05 Ω)	± (2 % R + 0.05 Ω)			
Long Term Damp Heat Test (56 Days):						
$R \le 1 M\Omega$	± (1 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)			
$R > 1 \text{ M}\Omega$	± (1 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)	± (2 % R + 0.1 Ω)			
Soldering (10 s, 260 °C)	± (0.25 % R + 0.05 Ω)	± (0.25 % R + 0.05 Ω)	± (0.25 % R + 0.05 Ω)			
Short Time Overload	± (0.25 % R + 0.05 Ω)	± (0.25 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)			

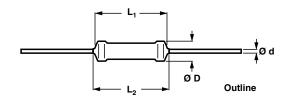
Note


• R value is measured with probe distance of 24 mm ± 1 mm using 4-terminal method

For technical questions, contact: filmresistorsleaded@vishay.com

Document Number: 28722

Revision: 06-Aug-10


Notes

(1) Please refer to table PACKAGING

- The jumper has a maximum resistance $R_{\text{max.}}$ = 30 m Ω at 3 A (SFR16S)
- The jumper has a maximum resistance $R_{\rm max.}$ = 10 m Ω at 5 A (SFR25)
- · The PART NUMBER is shown to facilitate the introduction of a unified part numbering system for ordering products

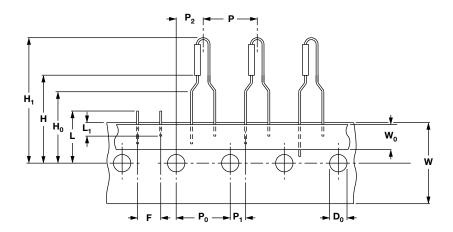
PACKAGING						
MODEL	TAPING	AMMO PACK		REEL		
MODEL		PIECES	CODE	PIECES	CODE	
CEDICO CEDOS CEDOSII	Axial, 52 mm	5000	A5	5000	R5	
SFR16S, SFR25, SFR25H		1000	A1	5000		
SFR25, SFR25H	Radial	4000	N4	-	-	

DIMENSIONS

DIMENSIONS - resistor types and relevant physical dimensions in millimeters							
TYPE	PE Ø D _{max.} L _{1 max.} L _{2 max.} Ø d						
SFR16S	1.9	3.5	4.1	0.45 ± 0.05			
SFR25	2.5	6.5	7.5	0.58 ± 0.05			
SFR25H	2.5	6.5	7.5	0.58 ± 0.05			

Document Number: 28722 Revision: 06-Aug-10

MASS PER UNIT				
ТҮРЕ	MASS (mg)			
SFR16S	102			
SFR25	205			
SFR25H	205			


OUTLINES

The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation (IEC 60294).

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC 60062, marking codes for resistors and capacitors.

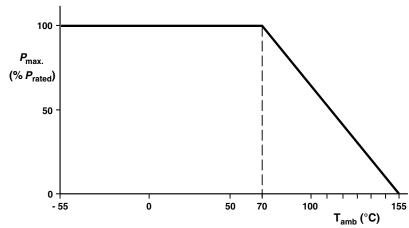
PRODUCTS WITH RADIAL LEADS (SFR25, SFR25H)

DIMENSIONS - RADIAL TAPING						
SYMBOL	PARAMETER	VALUE	TOLERANCE	UNIT		
Р	Pitch of components	12.7	± 1.0	mm		
P ₀	Feed-hole pitch	12.7	± 0.2	mm		
P ₁	Feed-hole centre to lead at topside at the tape	3.85	± 0.5	mm		
P ₂	Feed-hole center to body center	6.35	± 1.0	mm		
F	Lead-to-lead distance	4.8	+ 0.7/- 0	mm		
W	Tape width	18.0	± 0.5	mm		
W ₀	Minimum hold down tape width	5.5	-	mm		
H ₁	Component height	29	Max.	mm		
H ₀	Lead wire clinch height	16.5	± 0.5	mm		
Н	Height of component from tape center	19.5	± 1	mm		
D ₀	Feed-hole diameter	4.0	± 0.2	mm		
L	Maximum length of snipped lead	11.0	-	mm		
L ₁	Minimum lead wire (tape portion) shortest lead	2.5	-	mm		

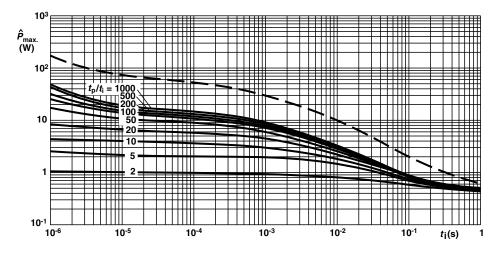
Note

• Please refer document number 28721 "Packaging" for more detail

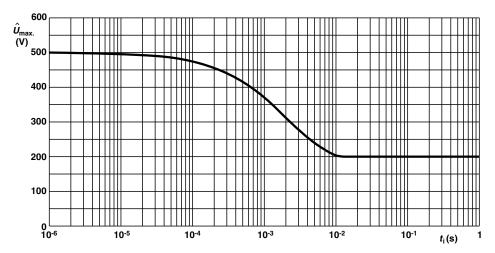
www.vishay.com 36 For technical questions, contact: filmresistorsleaded@vishay.com


Document Number: 28722 Revision: 06-Aug-10

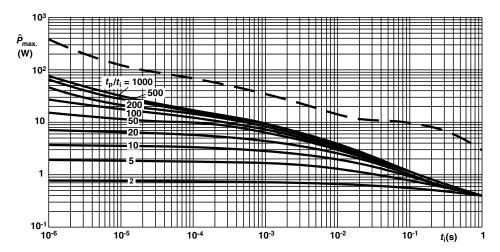
FUNCTIONAL PERFORMANCE PRODUCT CHARACTERIZATION


Standard values of nominal resistance are taken from the E96/E24 series for resistors with a tolerance of \pm 1 % or \pm 5 %. The values of the E96/E24 series are in accordance with IEC 60063.

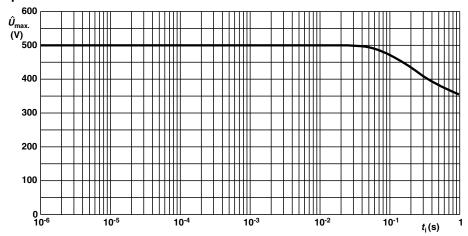
The power that the resistor can dissipate depends on the operating temperature


Maximum dissipation (P_{max} .) in percentage of rated power as a function of the ambient temperature (T_{amb}).

Derating



SFR16S Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)

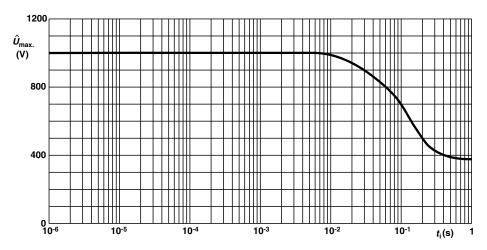


SFR16S Pulse on a regular basis; maximum permissible peak pulse voltage $(\hat{U}_{max.})$ as a function of pulse duration (t_i)

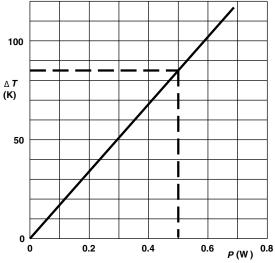
SFR25 Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)

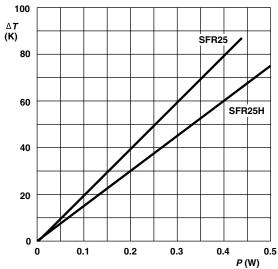
Pulse Loading Capabilities

SFR25 Pulse on a regular basis; maximum permissible peak pulse voltage ($\hat{U}_{max.}$) as a function of pulse duration (t_i)


Document Number: 28722 Revision: 06-Aug-10

Downloaded from Elcodis.com electronic components distributor


SFR25H Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{max.}$) as a function of pulse duration (t_i)


SFR25H Pulse on a regular basis; maximum permissible peak pulse voltage $(\hat{U}_{max.})$ as a function of pulse duration (t_i)

Pulse Loading Capabilities

SFR16S Hot-spot temperature rise (ΔT) as a function of dissipated power

SFR25/SFR25H Hot-spot temperature rise (ΔT) as a function of dissipated power

Note

 \bullet The maximum permissible hot-spot temperature is 155 $^{\circ}\text{C}.$

Application Information

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with IEC 60115-1 specification, category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category temperature; damp heat, steady state, test duration: 56 days).

The tests are carried out in accordance with IEC 60068-2-xx test method under standard atmospheric conditions according to IEC 60068-1, 5.3.

In the Test Procedures and Requirements table, tests and requirements are listed with reference to the relevant clauses of IEC 60115-1 and IEC 60068-2-xx test methods. A short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying. All soldering tests are performed with mildly activated flux.

TEST F	TEST PROCEDURES AND REQUIREMENTS								
IEC	IEC			DEGISTANCE	F	REQUIREMENT	S		
60115-1 CLAUSE	60068-2- TEST METHOD	TEST	PROCEDURE	RESISTANCE RANGE	SFR16S	SFR25	SFR25H		
4.16		Robustness of terminations:							
4.16.2	21 (Ua1)	Tensile all samples	Ø 0.45 mm, load 5 N; 10 s Ø 0.58 mm, load 10 N; 10 s		Number of failures < 10 x 10 ⁻⁶) x 10 ⁻⁶		
4.16.3	21 (Ub)	Bending half number of samples	Ø 0.45 mm, load 2.5 N; 4 x 90° Ø 0.58 mm, load 5 N; 4 x 90°		Number of failures < 10 x 10 ⁻⁶) x 10 ⁻⁶		
4.16.4	21 (Uc)	Torsion other half of samples	3 x 360° in opposite directions		ΔR max	No damage : ± (0.25 % <i>R</i> +	0.05 Ω)		
4.17	20 (Ta)	Solderability	2 s; 235 °C: Solder bath method; SnPb40 3 s; 245 °C: Solder bath method; SnAg3Cu0.5		Good ti	nning (≥ 95 % co no damage	overed);		
		Solderability (after aging)	8 h steam or 16 h 155 °C; leads immersed 6 mm; for 2 s at 235 °C: Solder bath (SnPb40) for 3 s at 245 °C: Solder bath (SnAgCu0.5) method		Good tinning (≥ 95 % covered); no damage		overed);		
4.18	20 (Tb)	Resistance to soldering heat	Thermal shock: 10 s; 260 °C; 3 mm from body		$\Delta R \text{ max.: } \pm (0.25 \% R + 0.05 \Omega)$		0.05 Ω)		
4.19	14 (Na)	Rapid change of temperature	30 min at - 55 °C and 30 min at + 155 °C; 5 cycles		∆R max	: ± (0.25 % R +	0.05 Ω)		
4.20	29 (Eb)	Bump	3 x 1500 bumps in 3 directions; 40 g		ΔR max	No damage :.: ± (0.25 % <i>R</i> +	0.05 Ω)		
4.22	6 (Fc)	Vibration	Frequency 10 Hz to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 h (3 x 2 h)		No damage ΔR max.: \pm (0.25 % R + 0.05 Ω)		0.05 Ω)		
4.23		Climatic sequence:			F	_{ins} min.: 1000 M	Ω		
4.23.2	2 (Ba)	Dry heat	16 h; 155 °C						
4.23.3	30 (Db)	Damp heat (accelerated) 1st cycle	24 h; 55 °C; 90 % to 100 % RH						
4.23.4	1 (Aa)	Cold	2 h; - 55 °C						
4.23.5	13 (M)	Low air pressure	2 h; 8.5 kPa; 15 °C to 35 °C						
4.23.6	30 (Db)	Damp heat (accelerated) remaining cycles	5 days; 55 °C; 95 % to 100 % RH	$R \le 1 M\Omega$ $R > 1 M\Omega$			ΔR max. ± (2 % R + 0.1 Ω)		
4.24	78 (Cab)	Damp heat (steady state)	56 days; 40 °C; 90 % to 95 % RH; loaded with 0.01 <i>P</i> ₇₀ (Steps: 0 V to 100 V)		R_{ins} min.: 1000 M Ω ΔR max.: \pm (2 % R + 0.05 Ω)		,		

Document Number: 28722 Revision: 06-Aug-10 For technical questions, contact: filmresistorsleaded@vishay.com

TEST PROCEDURES AND REQUIREMENTS							
IEC	IEC			DEGIGEANGE	REQUIREMENTS		
60115-1 CLAUSE	60068-2- TEST METHOD	TEST	PROCEDURE	RESISTANCE RANGE	SFR16S	SFR25	SFR25H
4.25.1		Endurance (at 70 °C)	1000 h; loaded with P_{70} or $U_{\rm max}$; 1.5 h ON and 0.5 h OFF		ΔR max.: ± (2 % R + 0.05 Ω)		.05 Ω)
				R < 4.7 Ω	≤ ± 250 ppm/K	≤ ± 100 ppm/K	≤ ± 100 ppm/K
4.8		Temperature	Between	<i>R</i> ≤ 100 kΩ	≤ ± 100 ppm/K	≤ ± 100 ppm/K	≤ ± 100 ppm/K
4.0		coefficient	- 55 °C and + 155 °C	<i>R</i> ≤ 1 MΩ	≤ ± 250 ppm/K	≤ ± 100 ppm/K	≤ ± 100 ppm/K
				R > 1 MΩ	≤ ± 250 ppm/K	≤ ± 250 ppm/K	\leq ± 250 ppm/K
4.7		Voltage proof on insulation	$U_{\rm RMS} = 400$ V (SFR16S) or $U_{\rm RMS} = 600$ V (SFR25 and SFR25H); during 1 min; V-block method		No breakdown		
		Noise	IEC 60195	R < 68 kΩ	max. 0.1 μV/V	max. 0.1 μV/V	max. 0.1 μV/V
4.12				<i>R</i> ≤ 100 kΩ	max. 0.5 μV/V	max. 0.1 μV/V	max. 0.1 μV/V
4.12		Noise	120 00 193	<i>R</i> ≤ 1 MΩ	max. 1.5 μV/V	max. 0.1 μV/V	max. 0.1 μV/V
				R > 1 MΩ	max. 1.5 μV/V	max. 1.5 μV/V	max. 1.5 μV/V
4.6.1.1		Insulation resistance	U _{max.} DC = 500 V during 1 min; V-block method		R_{ins} min.: 1000 M Ω		
4.13		Short time overload	Room temperature; $P = 6.25 \times P_n$ (SFR25, SFR25H) or $6.25 \times 0.25 \text{ W (SFR16S)}$; (voltage not more than $2 \times \text{limiting voltage}$); 10 cycles; 5 s ON and 45 s OFF		$\Delta R \text{ max.:}$		ΔR max.: ± (1 % R + 0.05 Ω)

HISTORICAL 12NC INFORMATION

- The resistors had a 12-digit numeric code starting with 23.
- The subsequent 6 digits for 1 % or 7 digits for 5 % indicated the resistor type and packaging.
- The remaining digits indicated the resistance value:
 - The first 3 digits for 1 % or 2 digits for 5 % indicated the resistance value.
 - The last digit indicated the resistance decade.

Resistance Decade for ± 5 % Tolerance

RESISTANCE DECADE	LAST DIGIT
0.10 Ω to 0.91 Ω	7
1 Ω to 9.1 Ω	8
10 Ω ο 91 Ω	9
100 Ω to 910 Ω	1
1 kΩ to 9.1 kΩ	2
10 kΩ to 91 kΩ	3
100 k Ω to 910 k Ω	4
1 M Ω to 9.1 M Ω	5
= 10 MΩ	6

Resistance Decade for ± 1 % Tolerance

RESISTANCE DECADE	LAST DIGIT
1 Ω to 9.76 Ω	8
10 Ω to 97.6 Ω	9
100 Ω to 976 Ω	1
1 k Ω to 9.76 k Ω	2
10 k Ω to 97.6 k Ω	3
100 k Ω to 976 k Ω	4
1 MΩ to 9.76 MΩ	5
= 10 MΩ	6

12NC Example

The 12NC of a SFR25 resistor, value 5600 Ω ± 5 %, taped on a bandolier of 5000 units in ammopack was: 2322 181 43562.

www.vishay.com

For technical questions, contact: filmresistorsleaded@vishay.com

Document Number: 28722

Revision: 06-Aug-10

HISTORICAL 12NC - Resistor type and packaging							
		23					
TYPE	TOL.		BANDOLIER ON REEL				
		RADIAL TAPED	STRAIGH	IT LEADS	STRAIGHT LEADS		
		4000 units	1000 units	5000 units	5000 units		
	± 5 %	-	22 187 73	22 187 53	06 187 23		
SFR16S	± 1 %	-	-	06 187 3	06 187 1		
	Jumper	-	-	06 187 90013	22 187 90346		
	± 5 %	06 184 03	22 181 53	22 181 43	22 181 63		
SFR25	± 1 %	-	-	22 188 2	06 181 8		
	Jumper	-	22 181 90018	22 181 90019	06 181 90011		
SFR25H	± 5 %	06 186 03	22 186 16	22 186 76	06 186 63		
SFNZSN	± 1 %	-	-	22 186 3	06 186 8		

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

r: 91000 www.vishay.com