Panasonic ideas for life

FEATURES

1. Flat compact size
$14.0(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 5.0(\mathrm{H}) .551(\mathrm{~L}) \times$ $354(\mathrm{~W}) \times .197(\mathrm{H})$
2. Nominal operating power:

High sensitivity of 140 mW (2 Form C single side stable type)

Leading the market, our 5 mm 2-pole surface mount relays comply with JIS C0806

By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved (4 Form C single side stable type is 280 mW).
3. Suitable for SMD automatic insertion (SA type)
With a height of 5.6 mm .220 inch , the relays meet JIS C 0806 specifications
4. High density mounting possible High-efficiency magnetic circuits ensure low magnetic flux leakage. Because characteristics are little changed by proximity mounting, highdensity mounting is possible.
5. The use of gold-clad twin crossbar contacts ensures high contact reliability.
6. DIL terminal array enables use of IC sockets.
7. Low thermal electromotive force

As well as low power consumption of 140 mW , use of a structure with separate coil and contact sections has reduced thermal electromotive force to the low level of approximately $5 \mu \mathrm{~V}$. Surface mount types achieve approximately $2 \mu \mathrm{~V}$.
8. Latching types also available
9. Self-clinching terminal also available
10. A range of surface-mount types also available
SA: Low-profile surface-mount terminal type
SL: High connection reliability surfacemount terminal type
SS: Space saving surface-mount terminal type
11. M.B.B. contact types available

TYPICAL APPLICATIONS

1. Communications
2. Measurement equipment
3. OA equipment
4. Industrial machines

ORDERING INFORMATION

Contact arrangement

2: 2 Form C
4: 4 Form C

Terminal shape

Nil: Standard PC board termina
H: Self-clinching terminal
SA: SA type
SL: SL type
SS: SS type
Operating function
Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
MBB function
Nil: Standard (B.B.M.) type
2M: 2M.B.B. type
Nominal coil voltage (DC)*
1.5 (SMD only), 3, 4.5, 5, 6, 9, 12, 24, 48V

Packing style

Nil: Tube packing
X: Tape and reel (picked from 1/2/3/4/5-pin side)
Z: Tape and reel packing (picked from the 6/7/8/9/10-pin side)
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay

TYPES

■ Standard PC board terminal and self-clinching terminal

1. Standard (B.B.M.) type

1) Standard PC board terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
2 Form C	3V DC	TQ2-3V	TQ2-L-3V	TQ2-L2-3V
	4.5 V DC	TQ2-4.5V	TQ2-L-4.5V	TQ2-L2-4.5V
	5 V DC	TQ2-5V	TQ2-L-5V	TQ2-L2-5V
	6V DC	TQ2-6V	TQ2-L-6V	TQ2-L2-6V
	9V DC	TQ2-9V	TQ2-L-9V	TQ2-L2-9V
	12 V DC	TQ2-12V	TQ2-L-12V	TQ2-L2-12V
	24V DC	TQ2-24V	TQ2-L-24V	TQ2-L2-24V
	48 V DC	TQ2-48V	-	-
4 Form C	3V DC	TQ4-3V	TQ4-L-3V	TQ4-L2-3V
	4.5 V DC	TQ4-4.5V	TQ4-L-4.5V	TQ4-L2-4.5V
	5V DC	TQ4-5V	TQ4-L-5V	TQ4-L2-5V
	6 V DC	TQ4-6V	TQ4-L-6V	TQ4-L2-6V
	9V DC	TQ4-9V	TQ4-L-9V	TQ4-L2-9V
	12 V DC	TQ4-12V	TQ4-L-12V	TQ4-L2-12V
	24V DC	TQ4-24V	TQ4-L-24V	TQ4-L2-24V
	48V DC	TQ4-48V	-	-

Standard packing (2 Form C): Tube: 50 pcs.; Case: 1,000 pcs.
Standard packing (4 Form C): Tube: 25 pcs.; Case: 500 pcs.
2) Self-clinching terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
2 Form C	3V DC	TQ2H-3V	TQ2H-L-3V	TQ2H-L2-3V
	4.5 V DC	TQ2H-4.5V	TQ2H-L-4.5V	TQ2H-L2-4.5V
	5 V DC	TQ2H-5V	TQ2H-L-5V	TQ2H-L2-5V
	6V DC	TQ2H-6V	TQ2H-L-6V	TQ2H-L2-6V
	9 V DC	TQ2H-9V	TQ2H-L-9V	TQ2H-L2-9V
	12 V DC	TQ2H-12V	TQ2H-L-12V	TQ2H-L2-12V
	24 V DC	TQ2H-24V	TQ2H-L-24V	TQ2H-L2-24V
	48 V DC	TQ2H-48V	-	-
4 Form C	3 V DC	TQ4H-3V	TQ4H-L-3V	TQ4H-L2-3V
	4.5 V DC	TQ4H-4.5V	TQ4H-L-4.5V	TQ4H-L2-4.5V
	5 V DC	TQ4H-5V	TQ4H-L-5V	TQ4H-L2-5V
	6 V DC	TQ4H-6V	TQ4H-L-6V	TQ4H-L2-6V
	9 V DC	TQ4H-9V	TQ4H-L-9V	TQ4H-L2-9V
	12 V DC	TQ4H-12V	TQ4H-L-12V	TQ4H-L2-12V
	24 V DC	TQ4H-24V	TQ4H-L-24V	TQ4H-L2-24V
	48 V DC	TQ4H-48V	-	-

Note: Types ("-3" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load.

2. M.B.B. type

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3V DC	TQ2-2M-3V
	4.5 V DC	TQ2-2M-4.5V
	5 V DC	TQ2-2M-5V
	6V DC	TQ2-2M-6V
	9V DC	TQ2-2M-9V
	12 V DC	TQ2-2M-12V
	24V DC	TQ2-2M-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2）Self－clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No．
2 Form C	3V DC	TQ2H－2M－3V
	4.5 V DC	TQ2H－2M－4．5V
	5V DC	TQ2H－2M－5V
	6V DC	TQ2H－2M－6V
	9V DC	TQ2H－2M－9V
	12 V DC	TQ2H－2M－12V
	24V DC	TQ2H－2M－24V

Standard packing：Tube： 50 pcs．；Case：1，000 pcs．
Notes：1．Latching types are available by request．Please consult us for details．
2．UL／CSA approved（UL file No．：E 43149，CSA file No．：LR26550）
3．Types（＂－1＂to the end of part No．）designed to withstand strong vibration caused，for example，by the use of terminal cutters，can also be ordered． However，please contact us if you need parts for use in low level load and low thermal power．

Surface－mount terminal

1）Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No．	Part No．	Part No．
2c	1.5 V DC	TQ2SD－1．5V	TQ2SD－L－1．5V	TQ2SD－L2－1．5V
	3 V DC	TQ2S】－3V	TQ2SD－L－3V	TQ2SD－L2－3V
	4.5 V DC	TQ2S］－4．5V	TQ2SD－L－4．5V	TQ2SD－L2－4．5V
	5 V DC	TQ2S］－5V	TQ2SD－L－5V	TQ2S】－L2－5V
	6V DC	TQ2SD－6V	TQ2SD－L－6V	TQ2SD－L2－6V
	9V DC	TQ2S】－9V	TQ2SD－L－9V	TQ2S ${ }^{\text {－L2－9V }}$
	12 V DC	TQ2SD－12V	TQ2SD－L－12V	TQ2SD－L2－12V
	24 V DC	TQ2SD－24V	TQ2SD－L－24V	TQ2SD－L2－24V
	48 V DC	TQ2SD－48V	－	－

■．For each surface－mounted terminal identification，input the following letter．SA type：$\underline{A}, \operatorname{SL}$ type：$\underline{\underline{L}}, \mathrm{SS}$ type：$\underline{\mathbf{S}}$
Standard packing：Tube： 50 pcs．；Case：1，000 pcs．

2）Tape and reel packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No．	Part No．	Part No．
2 Form C	1.5 V DC	TQ2S】－1．5V－Z	TQ2S】－L－1．5V－Z	TQ2SD－L2－1．5V－Z
	3V DC	TQ2S［－3V－Z	TQ2SD－L－3V－Z	TQ2SD－L2－3V－Z
	4.5 V DC	TQ2S】－4．5V－Z	TQ2S】－L－4．5V－Z	TQ2SD－L2－4．5V－Z
	5 V DC	TQ2S］－5V－Z	TQ2SD－L－5V－Z	TQ2SD－L2－5V－Z
	6V DC	TQ2S］－6V－Z	TQ2SD－L－6V－Z	TQ2SD－L2－6V－Z
	9V DC	TQ2SD－9V－Z	TQ2SD－L－9V－Z	TQ2SD－L2－9V－Z
	12 V DC	TQ2S］－12V－Z	TQ2S】－L－12V－Z	TQ2SD－L2－12V－Z
	24V DC	TQ2S］－24V－Z	TQ2S】－L－24V－Z	TQ2SD－L2－24V－Z
	48 V DC	TQ2SD－48V－Z	－	－

ㅁ：For each surface－mounted terminal identification，input the following letter．SA type：$\underline{A}, S L$ type：$\underline{\underline{L}}, \mathrm{SS}$ type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case：1，000 pcs．
Note：Tape and reel packing symbol＂－Z＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／2／3／4－pin side）is also available．

RATING

－Standard PC board terminal and self－clinching terminal
1．Coil data
［Standard（B．B．M．）type］
1）Single side stable（2 Form C）

Nominal coil voltage	Pick－up voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Drop－out voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	Nominal operating current $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max．applied voltage （at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ）
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage＊ （Initial）	$10 \% \mathrm{~V}$ or more of nominal voltage＊ （Initial）	46.7 mA	64.3Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			31.1 mA	144.6Ω		
5 V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1，028 Ω		
24 V DC			8.3 mA	2，880	200mW	
48 V DC			6.25 mA	7，680	300 mW	120\％V of nominal voltage

2) 1 coil latching (2 Form C)						
Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	33.3 mA	90Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			22.2 mA	202.5Ω		
5 V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 ${ }^{\text {a }}$		
24 V DC			6.3 mA	3,840	150mW	

3) 2 coil latching (2 Form C)

Nominal coil voltage	Set voltage $\text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating ent $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil } \\ {[\pm 10 \%](\mathrm{a}} \end{array}$	stance $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nomina	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200 mW	200mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	44.4 mA	101.2Ω	101.2Ω			
5 V DC			40 mA	40 mA	125Ω	125Ω			
6 V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.7 mA	16.7 mA	720Ω	720Ω			
24 V DC			12.5 mA	12.5 mA	1,920	1,920	300 mW	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

4) Single side stable (4 Form C)

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	32Ω	280 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			62.2 mA	72.3Ω		
5V DC			56.2 mA	89Ω		
6V DC			46.5 mA	129Ω		
9V DC			31.1 mA	289Ω		
12 V DC			23.3 mA	514Ω		
24V DC			11.7 mA	2,056		
48 V DC			8.3 mA	5,760	400mW	$120 \% \mathrm{~V}$ of nominal voltage

5) 1 coil latching (4 Form C)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.6 mA	45Ω	200mW	$150 \% \mathrm{~V}$ ofnominal voltage
4.5 V DC			44.4 mA	101.2Ω		
5 V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24V DC			8.3 mA	2,880 ${ }^{\text {a }}$		

6) 2 coil latching (4 Form C)

Nominal coil voltage	Set voltage(at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	133mA	133mA	22.5Ω	22.5Ω	400mW	400mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			88.9 mA	88.9 mA	50.6Ω	50.6Ω			
5 V DC			80 mA	80 mA	62.5Ω	62.5Ω			
6V DC			66.6 mA	66.6 mA	90Ω	90Ω			
9 V DC			44.4 mA	44.4 mA	202.5Ω	202.5 Ω			
12 V DC			33.3 mA	33.3 mA	360Ω	360Ω			
24 V DC			16.7 mA	16.7 mA	1,440 2	1,440 Ω			

[^0][M.B.B. type]

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	45Ω	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	101Ω		
5 V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 ${ }^{\text {a }}$		

*Pulse drive (JIS C 5442-1986)
2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		2 Form C, 2 Form D (M.B.B.)	4 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Ag+Au clad	
Rating	Nominal switching capacity		$1 \mathrm{~A} 30 \mathrm{VDC}, 0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC}^{* 1}$ (resistive load)	
	Max. switching power		30 W (DC), $62.5 \mathrm{~V} \mathrm{~A} \mathrm{(AC)*1} \mathrm{(resistive} \mathrm{load)}$	
	Max. switching voltage		$110 \mathrm{~V} \mathrm{DC} ,125 \mathrm{~V} \mathrm{AC}^{*}$	
	Max. switching current		1 A	
	Min. switching capacity (Reference value)*2		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC	
	Nominal operating power	Single side stable	Standard (B.B.M) type: 140 mW (3 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC) M.B.B. type: 200 mW	280 mW (3 to 24 V DC), 400 mW (48 V DC)
		1 coil latching	100 mW (3 to 12 V DC), 150 mW (24 V DC)	200 mW
		2 coil latching	200 mW (3 to 12 V DC), 300 mW (24 V DC)	400 mW
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	Standard (B.B.M) type: 750 Vrms for 1min. (Detection current: 10 mA), M.B.B. type: 300 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	1,000 Vrms for 1min. (Detection current: 10 mA)	
		Between contact sets	1,000 Vrms for 1min. (Detection current: 10 mA)	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	$\mathrm{Min} .980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 5 mm	
Expected life	Mechanical (at 180 cpm)		Standard (B.B.M) type: Min. 10^{8}, M.B.B. type: Min. 10^{7}	
	Electrical (at 20 cpm)		Standard (B.B.M) type: Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) M.B.B. type: Min. 10^{5} (1 A $30 \vee$ DC resistive)	
Conditions	Conditions for operation, transport and storage*3		Standard (B.B.M) type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85\% R.H. (Not freezing and condensing at low temperature) M.B.B. type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 cpm	
Unit weight			Approx. 1.5 g .053 oz	Approx. 3 g . 106 oz .

Notes:
*1 AC is standard (B.B.M) type only.
*2 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10 mA max. level])
*3 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

Surface-mount terminal

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5 V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257Ω		
9 V DC			15.5 mA	579Ω		
12V DC			11.7 mA	1,028		
24V DC			8.3 mA	2,880	200mW	
48 V DC			6.3 mA	7,680	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	46.9 mA	32Ω	70 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			23.3 mA	128.6Ω		
4.5 V DC			15.6 mA	289.3Ω		
5 V DC			14 mA	357Ω		
6 V DC			11.7 mA	514Ω		
9 V DC			7.8 mA	1,157		
12V DC			5.8 mA	$2,057 \Omega$		
24V DC			4.2 mA	5,760	100mW	

3) 2 coil latching

Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nomina (at 20	perating ent 68야)	$\begin{gathered} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{gathered}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	93.8 mA	93.8 mA	16Ω	16Ω	140mW	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	46.7 mA	64.3Ω	64.3Ω			
4.5 V DC			31 mA	31 mA	145Ω	145Ω			
5 V DC			28.1 mA	28.1 mA	178Ω	178Ω			
6V DC			23.3 mA	23.3 mA	257Ω	257Ω			
9V DC			15.5 mA	15.5 mA	579Ω	579Ω			
12 V DC			11.7 mA	11.7 mA	1,028 ${ }^{\text {a }}$	1,028			
24 V DC			8.3 mA	8.3 mA	2,880	2,880	200mW	200 mW	

[^1]| Characteristics | Item | | Specifications |
| :---: | :---: | :---: | :---: |
| Contact | Arrangement | | 2 Form C |
| | Initial contact resistance, max. | | Max. $75 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A) |
| | Contact material | | AgNi type+Au clad |
| Rating | Nominal switching capacity | | 2 A 30 V DC, 0.5 A 125 V AC (resistive load) |
| | Max. switching power | | 60 W (DC), $62.5 \mathrm{VA}(\mathrm{AC})$ (resistive load) |
| | Max. switching voltage | | 220 V DC, 125 V AC |
| | Max. switching current | | 2 A |
| | Min. switching capacity (Reference value) ${ }^{\star_{1}}$ | | $10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC |
| | Nominal operating power | Single side stable | 140 mW (1.5 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC) |
| | | 1 coil latching | 70 mW (1.5 to 12 V DC), 100 mW (24 V DC) |
| | | 2 coil latching | 140 mW (1.5 to 12 V DC), 200 mW (24 V DC) |
| Electrical characteristics | Insulation resistance (Initial) | | Min. 1,000M Ω (at 500 V DC)
 Measurement at same location as "Initial breakdown voltage" section. |
| | Breakdown voltage (Initial) | Between open contacts | 1,000 Vrms for 1 min . (Detection current: 10 mA) |
| | | Between contact and coil | 1,500 Vrms for 1 min . (Detection current: 10 mA) |
| | | Between contact sets | 1,500 Vrms for 1 min . (Detection current: 10 mA) |
| | Surge breakdown voltage (Initial) | Between open contacts | $1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68) |
| | | Between contacts and coil | 2,500 V ($2 \times 10 \mu \mathrm{~s}$) (Bellcore) |
| | Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) | | Max. $50^{\circ} \mathrm{C}$
 (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.) |
| | Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) | | Max. 4 ms [Max. 4 ms (Nominal coil voltage applied to the coil, excluding contact bounce time.) |
| | Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) | | Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode) |
| Mechanical characteristics | Shock resistance | Functional | Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.) |
| | | Destructive | Min. 1,000 m/s² (Half-wave pulse of sine wave: 6 ms .) |
| | Vibration resistance | Functional | 10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.) |
| | | Destructive | 10 to 55 Hz at double amplitude of 5 mm |
| Expected life | Mechanical | | Min. 10^{8} (at 180 cpm) |
| | Electrical | | Min. 10^{5} (2 A 30 V DC resistive), Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) (at 20 cpm) |
| Conditions | Conditions for operation, transport and storage*2 | | Ambient temperature: $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \text {, Max. }-40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(2 \mathrm{~A}) \mathrm{Max} . ~-40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}(2 \mathrm{~A}) \text {; }$
 Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) |
| | Max. operating speed (at rated load) | | 20 cpm |
| Unit weight | | | Approx. $2 \mathrm{~g} \mathrm{}$.071 oz |
| Notes: | | | |
| *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10mA max. level]) | | | |

REFERENCE DATA

\square Standard PC board terminal and self-clinching terminal

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample: TQ2-12V, 10 pcs .

4.-(1) Electrical life (DC load)

Tested sample: TQ2-12V, 6 pcs.
Condition: 1 A 30 V DC resistive load, 20 cpm
Change of pick-up and drop-out voltage

7.-(1) High-frequency characteristics (Isolation)

9.-(1) Influence of adjacent mounting

\longrightarrow Inter-relay distance $\boldsymbol{\ell}, \mathrm{mm}$ inch

Change of contact resistance

5. Coil temperature rise (2C) Tested sample: TQ2-12V
Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

7.-(2) High-frequency characteristics (Insertion loss)

4.-(2) Electrical life (AC load)

Tested sample: TQ2-12V, 6 pcs
Condition: 0.5 A 125 V AC resistive load, 20 cpm
Change of pick-up and drop-out voltage

6. Ambient temperature characteristics

Tested sample: TQ2-12V, 5 pcs.

8. Malfunctional shock (single side stable) Tested sample: TQ2-12V, 6 pcs.

9.-(2) Influence of adjacent mounting
10. Contact reliability (1 mA 5 V DC resistive load) Tested sample: TQ2-12V Condition: Detection level 10 W
11. Actual load test (35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

12. 0.1 A 53 V DC resistive load test Change of pick-up and drop-out voltage

Change of contact resistance

13. Distribution of M.B.B. time

Tested sample: TQ2-2M-5V, 85 pcs .

■ Surface-mount terminal

1. Maximum switching capacity

2. Life curve

3. Mechanical life (mounting by IRS method) Tested sample: TQ2SA-12V, 10 pcs.

4.-(1) Electrical life (2 A 30 V DC resistive load)

Tested sample: TQ2SA-12V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage
(mounting by IRS method)

Change of contact resistance (mounting by IRS method)								
		-						
90								
$\stackrel{\text { Cig }}{ }{ }^{\text {a }}$								
-								
${ }_{\text {cicio }}$								
\bigcirc								
$\stackrel{\square}{ \pm} 50$								
								Max.
								Min.
20								
10								
	IRS	12	34	56	67	8	9	10

7. Ambient temperature characteristics Tested sample: TQ2SA-12V, 5 pcs.

8. Malfunctional shock (single side stable) Tested sample: TQ2SA-12V, 6 pcs

Change of contact resistance (mounting by IRS method)

5. Coil temperature rise

Tested sample: TQ2SA-12V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

8.-(1) High-frequency characteristics (Isolation)

10.-(1) Influence of adjacent mounting Tested sample: TQ2SA-12V, 5 pcs.

4.-(2) Electrical life (0.5 A 125 V AC resistive load)

Tested sample: TQ2SA-12V, 6 pcs
Operating speed: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

6. Operate/release time

Tested sample: TQ2SA-12V, 6 pcs.

8.-(2) High-frequency characteristics (Insertion loss)

10.-(2) Influence of adjacent mounting Tested sample: TQ2SA-12V, 6 pcs.

11. Pulse dialing test
(35 mA 48 V DC wire spring relay load) Tested sample: TQ2SA-12V, 6 pcs.
Circuit

Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

DIMENSIONS (mm inch)
Download CAD Data from our Web site.

1. Standard PC board terminal and Self-clinching terminal

1) 2 Form C

External dimensions
Standard PC board terminal

General tolerance: $\pm 0.3 \pm .012$
(Deenergized condition)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)		
Single side stable	1-coil latching	2-coil latching
(Deenergized condition)	(Reset condition)	(Reset condition)

External dimensions
Standard PC board terminal

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

2. Surface-mount terminal
 CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)	Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)
SA type		
SL type		
SS type		

Schematic (Top view)

(Deenergized condition)

(Reset condition)

(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type
mm inch

(ii) SL, SS type

(2) Dimensions of plastic reel
mm inch

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

[^0]: *Pulse drive (JIS C 5442-1986)

[^1]: *Pulse drive (JIS C 5442-1986)

