Low Cost MMC Mixer 800-1000 MHZ

Features

- Input Power @ 1 dB Compression: +15 dBm
- High LO to RF Isolation: 35 dB
- LO Drive Level: +3 to +8 dBm
- DC - 200 MHz 3 dB IF Bandwidth
- Does not require DC bias
- Ultra-Miniature SOT-25 Plastic Package

Description

M/A-COM's MD54-0005 is a passive mixer that achieves the performance of a double balanced diode mixer in an ultra-miniature SOT-25 package. The MD54-0005 is ideally suited for use where high level RF signals and very wide dynamic range are required. Typical applications include frequency up/ down conversion, modulation, and demodulation in receivers and transmitters for basestation and portable systems.

The MD54-0005 employs GaAs FETs as mixing elements to achieve a very wide dynamic range in a low cost plastic pack-age. The mixer operates with LO drive levels of +3 dBm to +8 dBm . The LO port may be externally tuned for operation in various frequency bands.

M/A-COM's GaAs IC is fabricated using a mature 0.5 micron gate length GaAs MESFET process. The process features full passivation for increased performance and reliability.

Ordering Information ${ }^{1}$

Part Number	Package
MD54-0005	Bulk Packaging
MD54-0005TR	1000 piece reel
MD594-0005SMB	Designers Kit

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Function	Pin No.	Function
1	LO	4	RF
2	GND	5	IF
3	GND		

External Circuitry Parts List ${ }^{2}$

Ref. Designation	LO = 840 MHz	LO = 900 MHz
R1	820 Ohms	820 Ohms
$\mathrm{L1}$	22 nH	18 nH
C 1	3.3 pF	4 pF

2. All off-chip components are low-cost surface mount components obtainable from multiple sources.
(. 060 in x .030 in or $x .050$ in)

Electrical Specifications: RF=900 MHz (-10 dBm), LO $=840 \mathrm{MHz}(+5 \mathrm{dBm})$, $\mathrm{IF}=60 \mathrm{MHz}, \mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min	Typ	Max
Conversion Loss	-	dB	-	8.0	9.0
Isolation	LO to RF LO to IF RF to IF	dB dB dB	$\frac{25}{-}$	$\begin{aligned} & 35 \\ & 25 \\ & 20 \end{aligned}$	-
VSWR	RF Port LO Port ${ }^{3}$ IF Port	Ratio Ratio Ratio	—	$\begin{aligned} & 2.0: 1 \\ & 2.0: 1 \\ & 2.0: 1 \end{aligned}$	—
Input 1 dB Compression	RF Freq. $=900 \mathrm{MHz}$, LO $=+5 \mathrm{dBm}$	dBm	-	15	-
Two-Tone IM Ratio ${ }^{4}$	Two tones at -10 dBm each, Tone spacing 100 kHz , IF $=60 \mathrm{MHz}$	dBc	-	55	-

3. With external LO Port matching. See functional block diagram.
4. IMR vs. RF Drive can be calculated by the formula: $\operatorname{IMR}=40-1.5^{*} \mathrm{P}_{\text {IN }}$

Absolute Maximum Ratings ${ }^{5}$

Parameter	Absolute Maximum
RF Input Power 6	+27 dBm
Low Drive Power 6	+27 dBm
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. Ambient Temperature (TA) $=+25^{\circ} \mathrm{C}$.

SOT-25 Plastic Package

Spurious Table

	4x	$\begin{aligned} & 23.0 \\ & 10.6 \end{aligned}$	$\begin{aligned} & 36.5 \\ & 39.9 \end{aligned}$	$\begin{aligned} & 53.8 \\ & 56.1 \end{aligned}$	$\begin{aligned} & 63.8 \\ & 58.3 \end{aligned}$	$\begin{aligned} & 68.6 \\ & 58.8 \end{aligned}$
	3x	$\begin{aligned} & 34.1 \\ & 21.3 \end{aligned}$	$\begin{aligned} & 21.6 \\ & 21.8 \end{aligned}$	$\begin{aligned} & 53.9 \\ & 57.6 \end{aligned}$	$\begin{aligned} & 53.4 \\ & 59.3 \end{aligned}$	$\begin{aligned} & 67.3 \\ & 57.2 \end{aligned}$
	2x	$\begin{gathered} 17.7 \\ 6.6 \end{gathered}$	$\begin{aligned} & 44.0 \\ & 44.8 \end{aligned}$	$\begin{aligned} & 51.6 \\ & 55.5 \end{aligned}$	$\begin{aligned} & 65.2 \\ & 58.4 \end{aligned}$	$\begin{aligned} & 66.2 \\ & 56.3 \end{aligned}$
	1x	$\begin{gathered} 14.3 \\ 4.0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 57.0 \\ & 57.6 \end{aligned}$	$\begin{aligned} & 63.7 \\ & 56.3 \end{aligned}$	$\begin{aligned} & 67.0 \\ & 56.9 \end{aligned}$
	0x	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & 13.9 \\ & 13.4 \end{aligned}$	$\begin{aligned} & 50.2 \\ & 53.1 \end{aligned}$	$\begin{aligned} & 59.1 \\ & 56.5 \end{aligned}$	$\begin{aligned} & 67.2 \\ & 57.1 \end{aligned}$
		0x	1x	2x	$3 x$	$4 \times$
	Harmonic of RF					

The spurious table shows the spurious signals resulting from the mixing of the RF and LO input signals, assuming down conversion. Mixing products are indicated relative to the IF. The lower frequency mixing term is shown for two different RF input levels. The top number is for an RF input power of 0 dBm , the lower number is for -10 dBm .
$\left|n F_{\text {RF }}-m F_{L O}\right|, R F=0 d B m$
$\left|n F_{\text {RF }}-m F_{\text {Lo }}\right|, R F=-10 \mathrm{dBm}$
RF Frequency $=900 \mathrm{MHz}$
LO Frequency $=840 \mathrm{MHz}$

[^0]- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Recommended PCB Configuration

Layout View

Designer's Kit MD54-005SMB

The MD54-0005SMB Designer's Kit allows for immediate evaluation of M/A-COM's MD54-0005. The evaluation board consists of an MD54-0005, recommended external surface mount circuitry, and RF connectors, all mounted to a multi-layer FR-4 PCB. Other items included in the Designer's Kit are a floppy disk (with typical performance data and a DXF file of the recommended PCB layout) and any additional Application Notes. The MD54-0005SMB evaluation PCB and block diagram are illustrated below with all functional ports labeled.

Evaluation PCB \& RF Connector Losses

Port Reference	Approximate RF Loss
RF Port	$0.10 \mathrm{~dB} @ 900 \mathrm{MHz}$
LO Port	$0.10 \mathrm{~dB} @ 900 \mathrm{MHz}$
IF Port	$0.05 \mathrm{~dB} @ 60 \mathrm{MHz}$

Cross Section View

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.2 mm) yielding a 50Ω line width of $0.015^{\prime \prime}(0.38 \mathrm{~mm})$. The recommended metalization thickness is 1 oz . copper.

Mixer PCB

Typical Performance Curves ${ }^{7,8}$

Conversion Loss vs. Frequency

Two-Tone IMR vs. Frequency

VSWR vs. Frequency

Isolation vs. Frequency

7. Test Conditions for Down Converter Application: RF=900 MHz (-10 dBm), IF=60 MHz, LO=840 MHz (+5 dBm), LO Port match shown herein.
8. Test Conditions for Up Converter Application: $\mathrm{LO}=840 \mathrm{MHz}(+5 \mathrm{dBm})$, $\mathrm{IF}=60 \mathrm{MHz}(-10 \mathrm{dBm}), \mathrm{RF}=900 \mathrm{MHz}$, LO Port match shown herein.

[^0]: ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

