

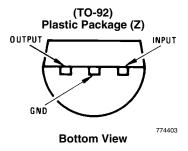
LM78LXX Series

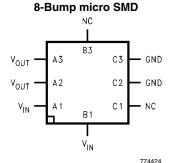
3-Terminal Positive Regulators

General Description

The LM78LXX series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. When used as a zener diode/resistor combination replacement, the LM78LXX usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM78LXX to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment.

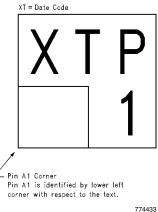

The LM78LXX is available in the plastic TO-92 (Z) package, the plastic SO-8 (M) package and a chip sized package (8-Bump micro SMD) using National's micro SMD package technology. With adequate heat sinking the regulator can deliver 100mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistors is provided to limit internal power dissi-


pation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.


Features

- LM78L05 in micro SMD package
- Output voltage tolerances of ±5% over the temperature range
- Output current of 100mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-92 and plastic SO-8 low profile packages
- No external components
- Output voltages of 5.0V, 6.2V, 8.2V, 9.0V, 12V, 15V
- See AN-1112 for micro SMD considerations

Connection Diagrams



Top View (Bump Side Down)

micro SMD Marking Orientation

Top View

TOP VICE

Ordering Information

Package	NSC Drawing	Output Voltage	Order Number	Supplied As
micro SMD	BPA08AAB	5V	LM78L05IBPX	Reel of 3000
		5V	LM78L05ITP	Reel of 250
Thin micro SMD	TPA08AAA	5V	LM78L05ITPX	Reel of 3000
		9V	LM78L09ITPX	Reel of 3000
			LM78L05ACM	Rail of 95
		5V	LM78L05ACMX	Reel of 2500
SOIC Narrow	M08A	J 5v	LM78L05AIM	Rail of 95
SOIC Narrow			LM78L05AIMX	Reel of 2500
		12V	LM78L12ACMX	Reel of 2500
		15V	LM78L15ACMX	Reel of 2500
		5V	LM78L05ACZ	Box of 1800
		6.2V	LM78L62ACZ	Box of 1800
TO-92	Z03A	9V	LM78L09ACZ	Box of 1800
		12V	LM78L12ACZ	Box of 1800
		15V	LM78L15ACZ	Box of 1800

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation (*Note 5*) Internally Limited
Input Voltage 35V
Storage Temperature -65°C to +150°C
ESD Susceptibility (*Note 2*) 1kV

Operating Junction Temperature

 SO-8, TO-92
 0°C to 125°C

 SO-8 (5V Only)
 -40°C to 125°C

 micro SMD
 -40°C to 85°C

Soldering Information

Infrared or Convection (20 sec.) 235°C Wave Soldering (10 sec.) 260°C (lead time)

LM78LXX Electrical Characteristics Limits in standard typeface are for T_J = 25°C, **Bold typeface applies** over the entire operating temperature range of the indicated package. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: I_O = 40mA, C_I = 0.33 μ F, C_O = 0.1 μ F.

LM78L05

Unless otherwise specified, $V_{IN} = 10V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _O	Output Voltage		4.8	5	5.2	
		$7V \le V_{IN} \le 20V$ $1mA \le I_O \le 40mA$ (<i>Note 3</i>)	4.75		5.25	v
		$1mA \le I_O \le 70mA$ (<i>Note 3</i>)	4.75		5.25	
ΔV_{O}	Line Regulation	7V ≤ V _{IN} ≤ 20V		18	75	
		8V ≤ V _{IN} ≤ 20V		10	54]
ΔV_{O}	Load Regulation	1mA ≤ I _O ≤ 100mA		20	60	mV
		1mA ≤ I _O ≤ 40mA		5	30	
$\overline{I_Q}$	Quiescent Current			3	5	
ΔI _Q	Quiescent Current Change	8V ≤ V _{IN} ≤ 20V			1.0	mA
		1mA ≤ I _O ≤ 40mA			0.1	
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz (<i>Note</i> 4)		40		μV
$\frac{\Delta V_{\text{IN}}}{\Delta V_{\text{OUT}}}$	Ripple Rejection	$f = 120 \text{ Hz}$ $8V \le V_{IN} \le 16V$	47	62		dB
I _{PK}	Peak Output Current			140		mA
$\frac{\Delta V_{O}}{\Delta T}$	Average Output Voltage Tempco	I _O = 5mA		-0.65		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			6.7	7	V
θ_{JA}	Thermal Resistance (8-Bump micro SMD)			230.9		°C/W

LM78L62AC

Unless otherwise specified, $V_{IN} = 12V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$\overline{V_0}$	Output Voltage		5.95	6.2	6.45	
		$8.5V \le V_{IN} \le 20V$				
		1mA ≤ I _O ≤ 40mA	5.9		6.5	V
		(Note 3)				_
		$1mA \le I_O \le 70mA$	5.9		6.5	
		(Note 3)	5.9		0.5	
ΔV_{O}	Line Regulation	$8.5V \le V_{IN} \le 20V$		65	175	
		9V ≤ V _{IN} ≤ 20V		55	125	1
ΔV_{O}	Load Regulation	1mA ≤ I _O ≤ 100mA		13	80	- mV
		1mA ≤ I _O ≤ 40mA		6	40	
I _Q	Quiescent Current			2	5.5	
ΔI_Q	Quiescent Current Change	8V ≤ V _{IN} ≤ 20V			1.5	mA
		1mA ≤ I _O ≤ 40mA			0.1	
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz		50		μV
		(Note 4)		30		μν
ΔV_{IN}	Ripple Rejection	f = 120 Hz	40	46		dB
ΔV _{OUT}		$10V \le V_{IN} \le 20V$	40	40		ub.
I _{PK}	Peak Output Current			140		mA
$\frac{\Delta V_O}{\Delta T}$	Average Output Voltage Tempco	I _O = 5mA		-0.75		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage			7.9		V
	Required to Maintain Line Regulation					

LM78L82AC

Unless otherwise specified, $V_{IN} = 14V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
/ _o	Output Voltage		7.87	8.2	8.53	
		$11V \le V_{IN} \le 23V$ $1mA \le I_O \le 40mA$ (<i>Note 3</i>)	7.8		8.6	V
		$1 \text{mA} \le I_0 \le 70 \text{mA}$ (<i>Note 3</i>)	7.8		8.6	
ΔV _O	Line Regulation	11V ≤ V _{IN} ≤ 23V		80	175	
		12V ≤ V _{IN} ≤ 23V		70	125	>/
7N ^O	Load Regulation	1mA ≤ I _O ≤ 100mA		15	80	mV
		1mA ≤ I _O ≤ 40mA		8	40	
Q	Quiescent Current			2	5.5	
Δl _Q	Quiescent Current Change	$12V \le V_{IN} \le 23V$			1.5	mA
		1mA ≤ I _O ≤ 40mA			0.1	
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz (<i>Note 4</i>)		60		μV
$\frac{\Delta V_{\text{IN}}}{\Delta V_{\text{OUT}}}$	Ripple Rejection	$f = 120 \text{ Hz}$ $12V \le V_{\text{IN}} \le 22V$	39	45		dB
РК	Peak Output Current			140		mA

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$\frac{\Delta V_{O}}{\Delta T}$	Average Output Voltage Tempco	I _O = 5mA		-0.8		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			9.9		V

LM78L09AC

Unless otherwise specified, $V_{IN} = 15V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
V _O	Output Voltage		8.64	9.0	9.36		
		$11.5V \le V_{IN} \le 24V$ $1mA \le I_O \le 40mA$	8.55		9.45	V	
		(Note 3)				v	
		$1 \text{mA} \le I_{\text{O}} \le 70 \text{mA}$ (<i>Note 3</i>)	8.55		9.45		
ΔV_{O}	Line Regulation	$11.5V \le V_{IN} \le 24V$		100	200		
		$13V \le V_{IN} \le 24V$		90	150	İ .,	
ΔV_{O}	Load Regulation	1mA ≤ I _O ≤ 100mA		20	90	mV	
		1mA ≤ I _O ≤ 40mA		10	45		
I _Q	Quiescent Current			2	5.5		
ΔI _Q	Quiescent Current Change	11.5V ≤ V _{IN} ≤ 24V			1.5	mA	
		1mA ≤ I _O ≤ 40mA			0.1		
$\overline{V_n}$	Output Noise Voltage			70		μV	
$\frac{\Delta V_{\text{IN}}}{\Delta V_{\text{OUT}}}$	Ripple Rejection	$f = 120 \text{ Hz}$ $15V \le V_{IN} \le 25V$	38	44		dB	
I _{PK}	Peak Output Current			140		mA	
$\frac{\Delta V_{O}}{\Delta T}$	Average Output Voltage Tempco	I _O = 5mA		-0.9		mV/°C	
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			10.7		V	

LM78L12AC

Unless otherwise specified, $V_{IN} = 19V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _o	Output Voltage		11.5	12	12.5	
		$14.5 \text{V} \leq \text{V}_{\text{IN}} \leq 27 \text{V}$ $1 \text{mA} \leq \text{I}_{\text{O}} \leq 40 \text{mA}$ $(Note \ 3)$	11.4		12.6	V
		$1mA \le I_O \le 70mA$ (<i>Note 3</i>)	11.4		12.6	
$\Delta V_{\rm O}$	Line Regulation	$14.5V \le V_{IN} \le 27V$		30	180	
		16V ≤ V _{IN} ≤ 27V		20	110	,,,,
ΔV_{O}	Load Regulation	1mA ≤ I _O ≤ 100mA		30	100	mV
		1mA ≤ I _O ≤ 40mA		10	50	
lα	Quiescent Current			3	5	
ΔI_Q	Quiescent Current Change	$16V \le V_{IN} \le 27V$			1	mA
		$1mA \le I_O \le 40mA$			0.1	
V _n	Output Noise Voltage			80		μV

5

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$\frac{\Delta V_{IN}}{\Delta V_{OUT}}$	Ripple Rejection	$f = 120 \text{ Hz}$ $15V \le V_{\text{IN}} \le 25$	40	54		dB
I _{PK}	Peak Output Current			140		mA
$\frac{\Delta V_{O}}{\Delta T}$	Average Output Voltage Tempco	$I_O = 5mA$		-1.0		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			13.7	14.5	V

LM78L15AC

Unless otherwise specified, $V_{IN} = 23V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _O	Output Voltage		14.4	15.0	15.6	
		$17.5V \le V_{IN} \le 30V$ $1mA \le I_O \le 40mA$ (<i>Note 3</i>)	14.25		15.75	V
		$1mA \le I_O \le 70mA$ (<i>Note 3</i>)	14.25		15.75	
ΔV_{O}	Line Regulation	17.5V ≤ V _{IN} ≤ 30V		37	250	
		20V ≤ V _{IN} ≤ 30V		25	140	\/
ΔV_{O}	Load Regulation	1mA ≤ I _O ≤ 100mA		35	150	- mV
		1mA ≤ I _O ≤ 40mA		12	75	
Iα	Quiescent Current			3	5	
ΔI _Q	Quiescent Current Change	$20V \le V_{IN} \le 30V$			1	mA
		1mA ≤ I _O ≤ 40mA			0.1	
V _n	Output Noise Voltage			90		μV
$\frac{\Delta V_{\text{IN}}}{\Delta V_{\text{OUT}}}$	Ripple Rejection	f = 120 Hz 18.5V \leq V _{IN} \leq 28.5V	37	51		dB
I _{PK}	Peak Output Current			140		mA
$\frac{\Delta V_{O}}{\Delta T}$	Average Output Voltage Tempco	I _O = 5mA		-1.3		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			16.7	17.5	V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device outside of its stated operating conditions.

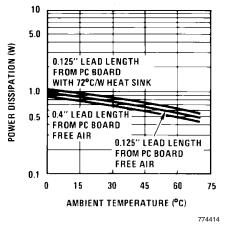
6

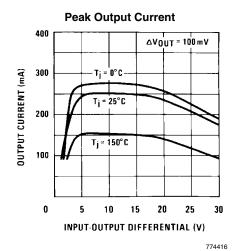
Note 2: Human body model, 1.5 k Ω in series with 100pF.

Note 3: Power dissipation ≤ 0.75 W.

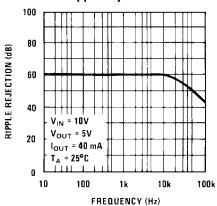
Note 4: Recommended minimum load capacitance of $0.01 \mu F$ to limit high frequency noise.

Note 5: Typical thermal resistance values for the packages are:


Z Package: θ_{JC} = 60 °C/W, = θ_{JA} = 230 °C/W

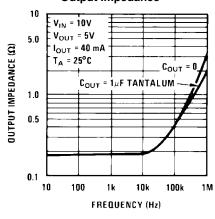

M Package: $\theta_{JA} = 180 \,^{\circ}\text{C/W}$

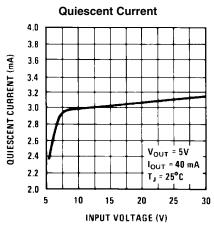
micro SMD Package: $\theta_{JA} = 230.9$ °C/W


Typical Performance Characteristics

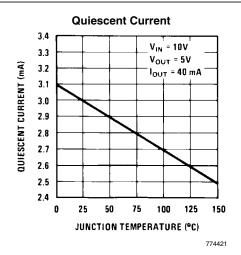
Maximum Average Power Dissipation (Z Package)

Dropout Voltage 2.5 INPUT-OUTPUT DIFFERENTIAL (V) 2.0 = 70 mA I_{OUT} = 40 mA 1.5 1.0 0.5 DROPOUT CONDITIONS Δ V_{OUT} = 2% of V_{OUT} 0 25 50 75 100 125 Ripple Rejection



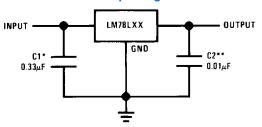

774418

Output Impedance


JUNCTION TEMPERATURE (°C)

774417

774420

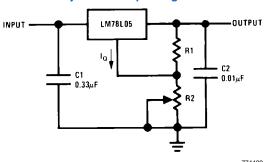


Equivalent Circuit

LM78LXX **D**3 015 ₹ R16 R10 **★** 2.5k R12 **₹ 1**01 **1**02 R6 2.84k 774407

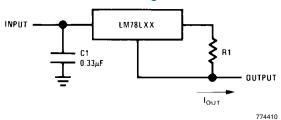
Typical Applications

Fixed Output Regulator

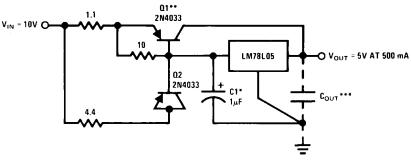


*Required if the regulator is located more than 3 from the power supply filter.

**See (Note 4) in the electrical characteristics table.


Adjustable Output Regulator

774408


 $V_{OUT} = 5V + (5V/R1 + I_Q) R2$ $5V/R1 > 3 I_Q$, load regulation (L_r) \approx [(R1 + R2)/R1] (L_r of LM78L05)

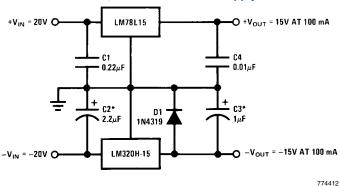
Current Regulator

 $I_{OUT} = (V_{OUT}/R1) + I_{Q}$ > $I_{Q} = 1.5$ mA over line and load changes

5V, 500mA Regulator with Short Circuit Protection

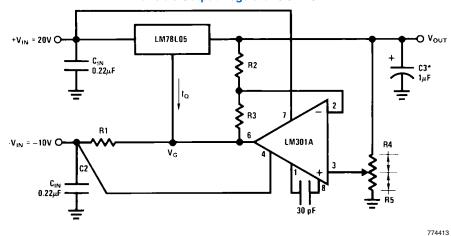
*Solid tantalum.

**Heat sink Q1.


 $\ensuremath{^{***}}\xspace$ Optional: Improves ripple rejection and transient response.

Load Regulation: 0.6% $0 \le I_L \le 250 \text{mA}$ pulsed with $t_{ON} = 50 \text{ms}$.

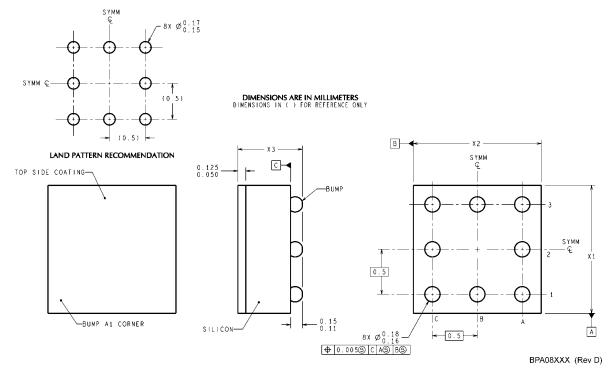
9 www.national.com


774411

±15V, 100mA Dual Power Supply

*Solid tantalum.

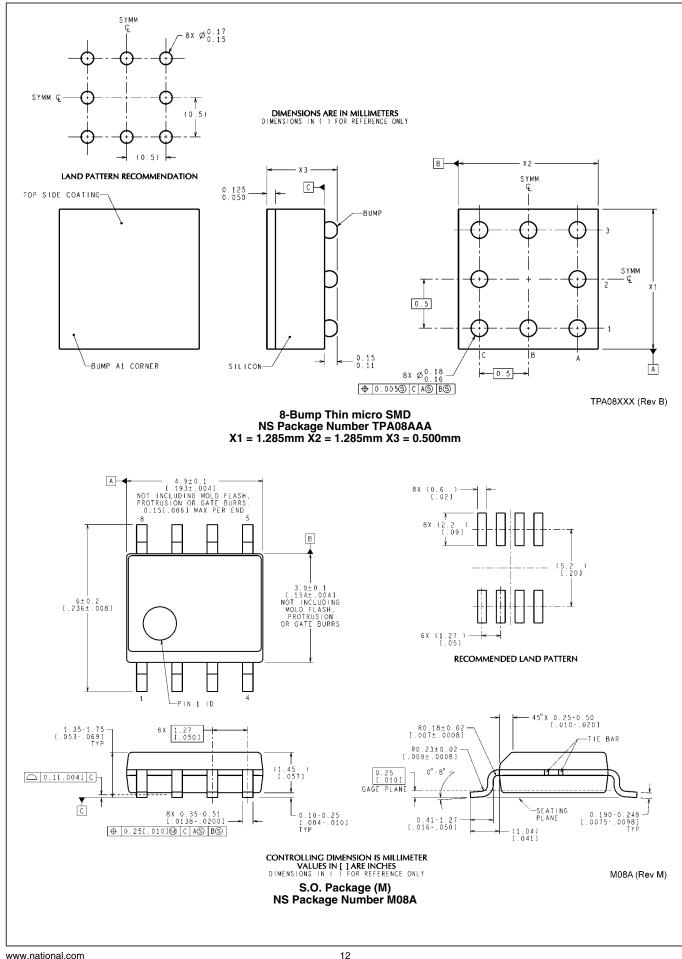
Variable Output Regulator 0.5V-18V

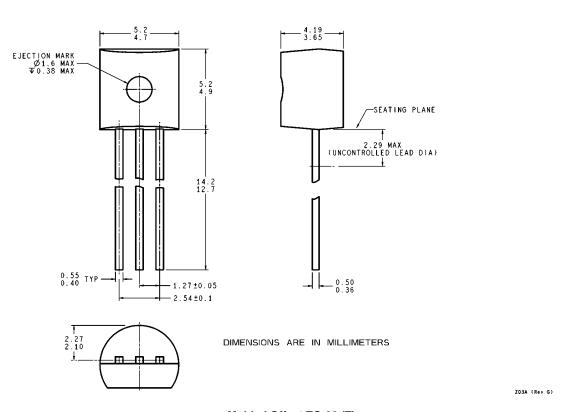


*Solid tantalum.

$$\begin{split} &V_{OUT} = V_G + 5V, \ R1 = (-V_{IN}/I_{Q \ LM78L05}) \\ &V_{OUT} = 5V \ (R2/R4) \ for \ (R2 + R3) = (R4 + R5) \end{split}$$

A 0.5V output will correspond to (R2/R4) = 0.1 (R3/R4) = 0.9


Physical Dimensions inches (millimeters) unless otherwise noted



NOTES: UNLESS OTHERWISE SPECIFIED

- 1. EPOXY COATING
- 2. 63Sn/37Pb EUTECTIC BUMP
- 3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
- 4. PIN A1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION. REMAINING PINS ARE NUMBERED COUNTERCLOCKWISE.
- $5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X_1 IS PACKAGE WIDTH, X_2 IS PACKAGE LENGTH AND X_3 IS PACKAGE HEIGHT.$
- 6. REFERENCE JEDEC REGISTRATION MO-211, VARIATION BC.

8-Bump micro SMD NS Package Number BPA08AAB X1 = 1.285mm X2 = 1.285mm X3 = 0.850mm

Molded Offset TO-92 (Z) NS Package Number Z03A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pro	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

www.national.com