

December 1994

LM831 Low Voltage Audio Power Amplifier

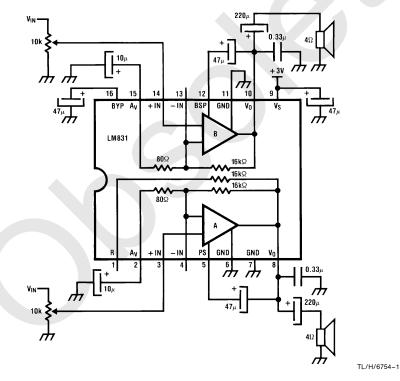
General Description

The LM831 is a dual audio power amplifier optimized for very low voltage operation. The LM831 has two independent amplifiers, giving stereo or higher power bridge (BTL) operation from two- or three-cell power supplies.

The LM831 uses a patented compensation technique to reduce high-frequency radiation for optimum performance in AM radio applications. This compensation also results in lower distortion and less wide-band noise.

The input is direct-coupled to the LM831, eliminating the usual coupling capacitor. Voltage gain is adjustable with a single resistor.

Features


- Low voltage operation, 1.8V to 6.0V
- High power, 440 mW, 8Ω, BTL, 3V
- Low AM radiation
- Low noise
- Low THD

Applications

- Portable tape recorders
- Portable radios
- Headphone stereo
- Portable speakers

Typical Application

Dual Amplifier with Minimum Parts

 $A_V = 46 \text{ dB,BW} = 250 \text{ Hz to } 35 \text{ kHz}$

 $\text{P}_{\mbox{OUT}}=$ 220 mW/Ch,R $_{\mbox{\scriptsize L}}=4\Omega$

©1995 National Semiconductor Corporation TL/H/675

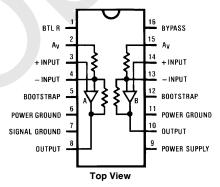
RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{cc} & \text{1.4W (N Package)} \\ \text{Operating Temperature (Note 1), T}_{\text{opr}} & -40^{\circ}\text{C to} + 85^{\circ}\text{C} \end{array}$

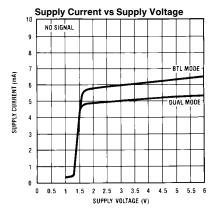
Electrical Characteristics

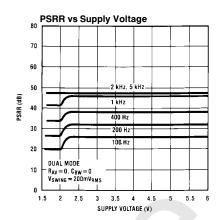

Unless otherwise specified, $T_A=25^{\circ}C$, $V_S=3V$, f=1~kHz, test circuit is dual or BTL amplifier with minimum parts.

Symbol	Parameter	Conditions	Тур	Tested Limit	Unit (Limit)
V _S	Operating Voltage		3 3	1.8 6	V(Min) V(Max)
IQ	Supply Current	$V_{\text{IN}} = 0$, Dual Mode $V_{\text{IN}} = 0$, BTL Mode	5 6	10 15	mA (Max) mA (Max)
Vos	Output DC Offset	V _{IN} = 0, BTL Mode	10	50	mV (Max)
R _{IN}	Input Resistance		25	15 35	k (Min) k (Max)
A _V	Voltage Gain	$V_{\rm IN}=2.25~{\rm mV_{rms}}, {\rm f}=1~{\rm kHz},$ Dual Mode	46	44 48	dB (Min) dB (Max)
PSRR	Supply Rejection	$V_S = 3V + 200 \text{ mV}_{rms} @ f = 1 \text{ kHz}$	46	30	dB (Min)
P _{OD}	Power Out	$V_S=3V, R_L=4\Omega,$ 10% THD, Dual Mode	220	150	mW (Min)
P _{ODL}	Power Out Low, V _S	$V_{S}=$ 1.8V, $R_{L}=4\Omega$, 10% THD, Dual Mode	45	10	mW (Min)
P _{OB}	Power Out	$V_S = 3V, R_L = 8\Omega,$ 10% THD, BTL Mode	440	300	mW (Min)
P _{OBL}	Power Out Low, V _S	$V_{S}=$ 1.8V, $R_{L}=8\Omega$, 10% THD, BTL Mode	90	20	mW (Min)
Sep	Channel Separation	Referenced to V _O = 200 mV _{rms}	52	40	dB (Min)
I _B	Input Bias Current		1	2	μΑ (Max)
E _{n0}	Output Noise	Wide Band (250 ~ 35 kHz)	250	500	μV (Max)
THD	Distortion	$V_S = 3V$, $P_O = 50$ mW, $f = 1$ kHz, Dual	0.25	1	% (Max)

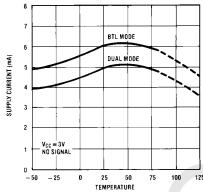
Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 98°C/W junction to ambient for the M package or 90°C/W junction to ambient for the N package.

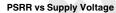
Connection Diagram

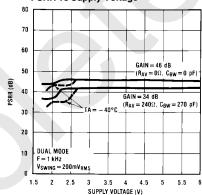

Dual-In-Line Package

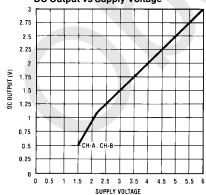


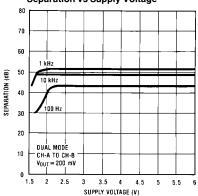
TL/H/6754-2

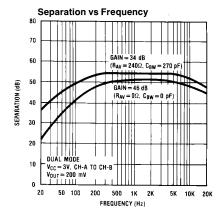

Order Number LM831M or N See NS Package Number M16B or N16E

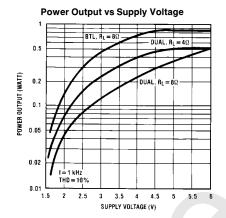

Typical Performance Characteristics



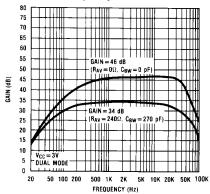

Supply Current vs Temperature



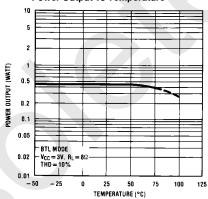

DC Output vs Supply Voltage

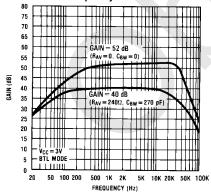


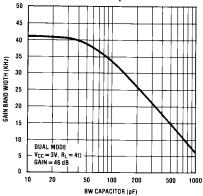
Separation vs Supply Voltage

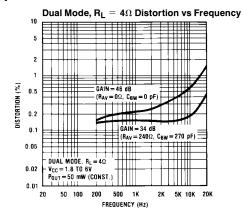


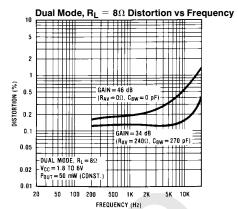
Typical Performance Characteristics (Continued)



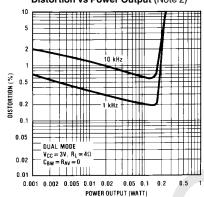

Gain vs Frequency


Power Output vs Temperature

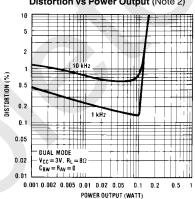

Gain vs Frequency

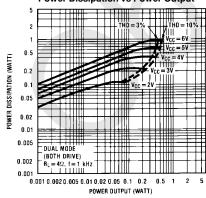


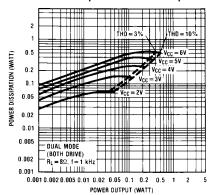
Bandwidth vs BW Capacitance

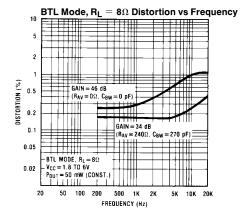


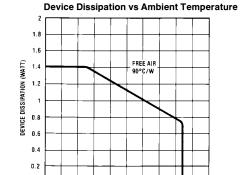
Typical Performance Characteristics (Continued)



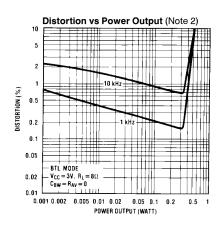

Distortion vs Power Output (Note 2)

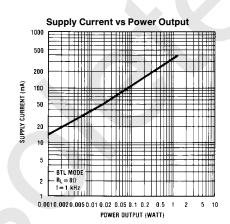

Distortion vs Power Output (Note 2)

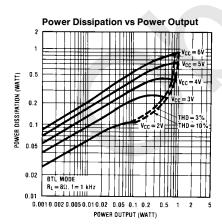

Power Dissipation vs Power Output



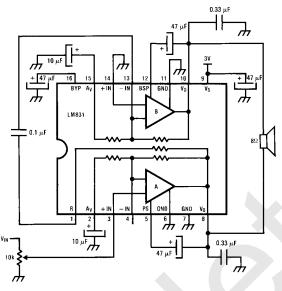
Power Dissipation vs Power Output




Typical Performance Characteristics (Continued)


90 100

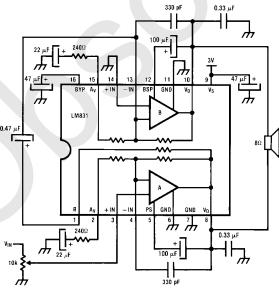
10


30 40 50 60

Note 2: 1 kHz curve is measured with 400 Hz-30 kHz Filter.

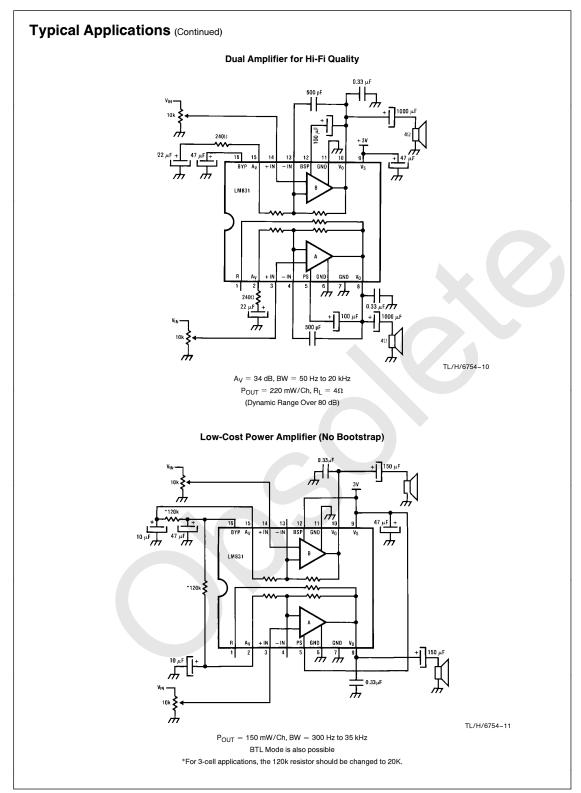
Typical Applications

BTL Amplifier with Minimum Parts



 $A_V=52$ dB, BW = 250 Hz to 25 kHz $P_{OUT}=440$ mW, $R_L=8\Omega$

TL/H/6754-8


TL/H/6754-9

BTL Amplifier for Hi-Fi Quality

 $A_V=40$ dB, BW =20 Hz to 20 kHz $$P_{\mbox{OUT}}=440$ mW, $R_L=8\Omega$

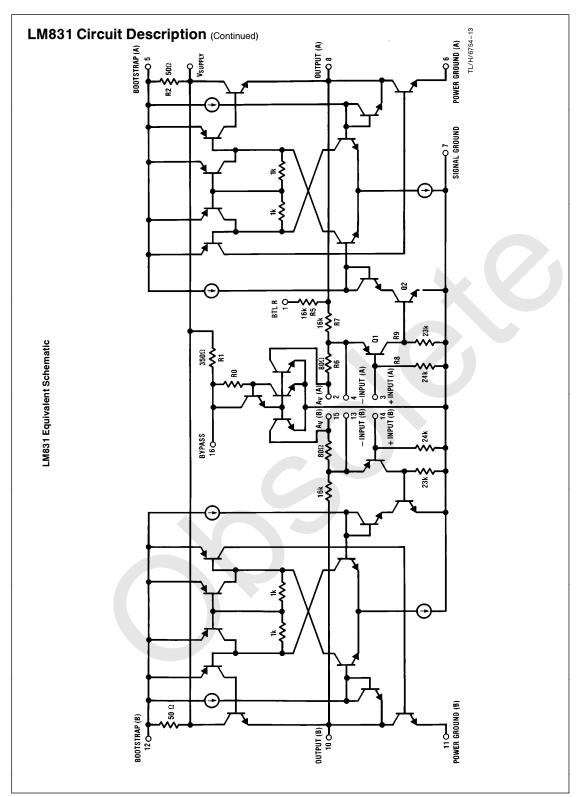
(Dynamic Range Over 80 dB)

LM831 Circuit Description Refer to the external component diagram and equivalent schematic.

The power supply is applied to Pin 9 and is filtered by resistor $\rm R_1$ and capacitor $\rm C_{BY}$ on Pin 16. This filtered voltage at Pin 16 is used to bias all of the LM831 circuits except the power output stage. Resistor $\rm R_0$ generates a biasing current that sets the output DC voltage for optimum output power for any given supply voltage.

Feedback is provided to the input transistor \textbf{Q}_1 emitter by \textbf{R}_6 and $\textbf{R}_7.$

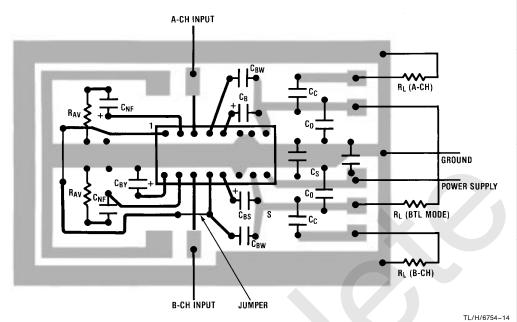
The capacitor $C_{\mbox{\scriptsize NF}}$ on Pin 2 provides unity DC gain for maximum DC accuracy.

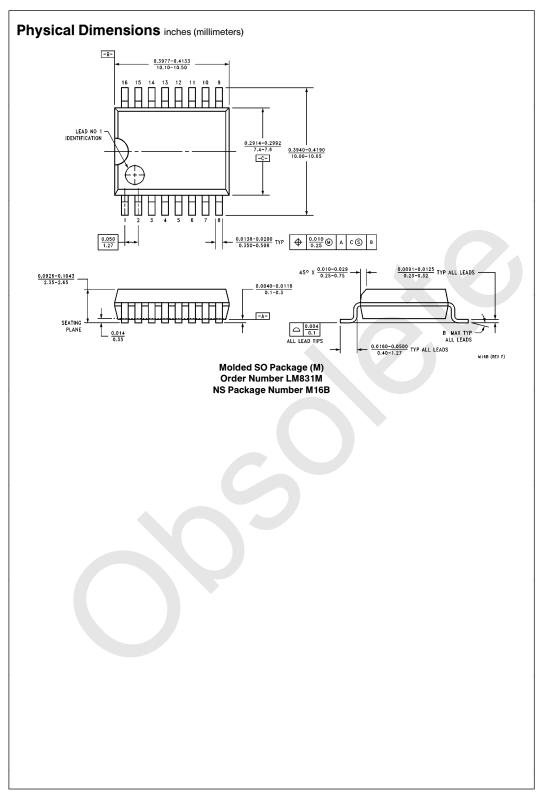

 ${\rm Q}_2$ provides voltage gain and the rest of the devices buffer the output load from ${\rm Q}_2$'s collector.

Bootstrapping of Pin 5 by $C_{\mbox{\footnotesize{BS}}}$ allows maximum output swing and improved supply rejection.

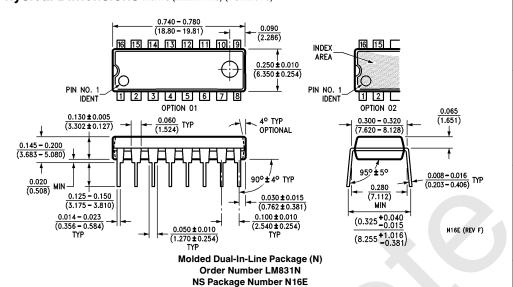
 $\ensuremath{\mathsf{R}}_5$ is provided for bridge (BTL) operation.

External Component Diagram




Component	Comments	Min	Max
CO	Required to stabilize output stage.	0.33 μF	1 μF
C _c	Output coupling capacitors for Dual Mode. Sets a low-frequency pole in the frequency response. $f_L = \frac{1}{2\pi C_c R_L}$	100 μF	10,000 μΙ
C _{BS}	Bootstrap capacitors. Sets a low-frequency pole in the power BW. Recommended value is $C_{BS} = \frac{1}{10^{\bullet}2\pi^{\bullet}f_{L}^{\bullet}R_{L}}$	22 μF or (short Pins 4 & 12 to 9)	470 μF
C _S	Supply bypass. Larger values improve low-battery performance by reducing supply ripple.	47 μF	10,000 μΙ
C _{BY}	Filters the supply for improved low-voltage operation. Also sets turn-on delay.	47 μF	470 μF
C _{NF}	Sets a low-frequency response. Also affects turn-on delay. $f_L = \frac{1}{2\pi^\bulletC_{NF}^\bullet(R_{AV} + 80)}$ In BTL Mode, C_{NF} on Pin 15 can be reduced without affecting the	10 μF	100 μF
C _{BTL}	frequency response. However, the turn-on "POP" will be worsened. Used only in the Bridge Mode. Connects the output of the first amplifier to the inverting input of the other through an internal resistor. Sets a low-frequency pole in one-half the frequency response. $ f_{L} = \frac{1}{2\pi^{\bullet}C_{BTL}^{\bullet}16k} $	0.1 μF	1 μF
C _{BW}	Improves clipping waveform and sets the high-frequency bandwidth. Works with an internal 16k resistor. (This equation applies for $R_{AV}\neq 0.$ For 46 dB application, see BW–CBW curve.) $f_H=\frac{1}{2\pi^{\bullet}C_{BW}^{\bullet}16k}$	See table below	
R _{AV}	Used to reduce the gain and improve the distortion and signal to noise. If See table below this is desired, C _{BW} must also be used.		e below

Typical A _V	R _{AV}	C _{BW}		
Typical Ay		Min	Max	
46 dB	Short	Open	4700 pF	
40 dB	82	100 pF	4700 pF	
34 dB	240	270 pF	4700 pF	
28 dB	560	500 pF	4700 pF	


Printed Circuit Layout for LM831N (Foil Side View) Refer to External Component Diagram

Note: Power ground pattern should be as wide as possible. Supply bypass capacitor should be as close to the IC as possible. Output compensation capacitors should also be close to the IC.

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications