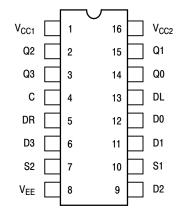
Four-Bit Universal Shift Register

Description

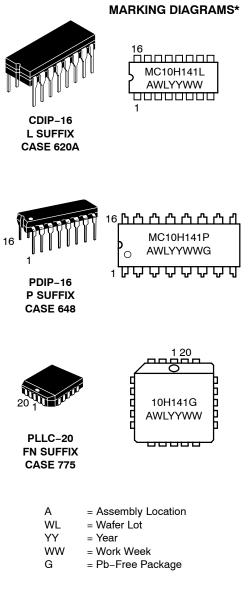

The MC10H141 is a four-bit universal shift register. This device is a functional/pinout duplication of the standard MECL 10K[™] part with 100% improvement in propagation delay and operation frequency and no increase in power supply current.

Features

- Shift frequency, 250 MHz Min
- Power Dissipation, 425 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K Compatible
- Pb–Free Packages are Available*

Та	Table 1. TRUTH TABLE								
SELECT		OPERATING		OUTPUTS					
S1	S2	MODE	Q0 _{n + 1}	Q1 _{n + 1}	Q2 _{n + 1}	Q3 _{n + 1}			
L	L	Parallel Entry	D0	D1	D2	D3			
L	Н	Shift Right*	Q1 _n	Q2 _n	Q3 _n	DR			
н	L	Shift Left*	DL	Q0 _n	Q1 _n	Q2 _n			
н	н	Stop Shift	Q0 _n	Q1 _n	Q2 _n	32 _n			

Outputs as exist after pulse appears at "C" input with input conditions as shown (Pulse Positive transition of clock input).


Pin assignment is for Dual-in-Line Package.

ON Semiconductor®

http://onsemi.com

*For additional marking information, refer to Application Note AND8002/D.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

© Semiconductor Components Industries, LLC, 2006 February, 2006 - Rev. 8

Table 2. MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
V_{EE}	Power Supply (V _{CC} = 0)	-8.0 to 0	Vdc
VI	Input Voltage (V _{CC} = 0)	0 to V _{EE}	Vdc
l _{out}	Output Current – Continuous – Surge	50 100	mA
T _A	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range – Plastic – Ceramic	−55 to +150 −55 to +165	°C ℃

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

		0° 25°		5°	75 °			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
١ _E	Power Supply Current	-	112	-	102	-	112	mA
l _{inH}	Input Current High Pins 5,6,9,11,12,13 Pins 7,10 Pin 4	- - -	405 416 510		255 260 320	- - -	255 260 320	μΑ
I _{inL}	Input Current Low	0.5	-	0.5	-	0.3	-	μΑ
V _{OH}	High Output Voltage	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
V _{OL}	Low Output Voltage	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
V _{IH}	High Input Voltage	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
VIL	Low Input Voltage	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

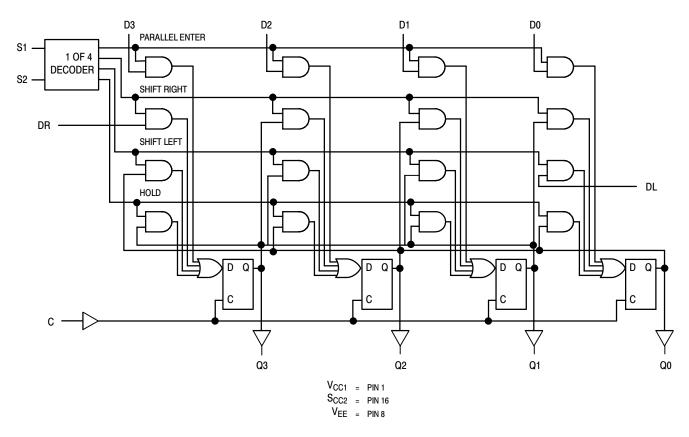

1. Each MECL 10H[™] series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to −2.0 V.

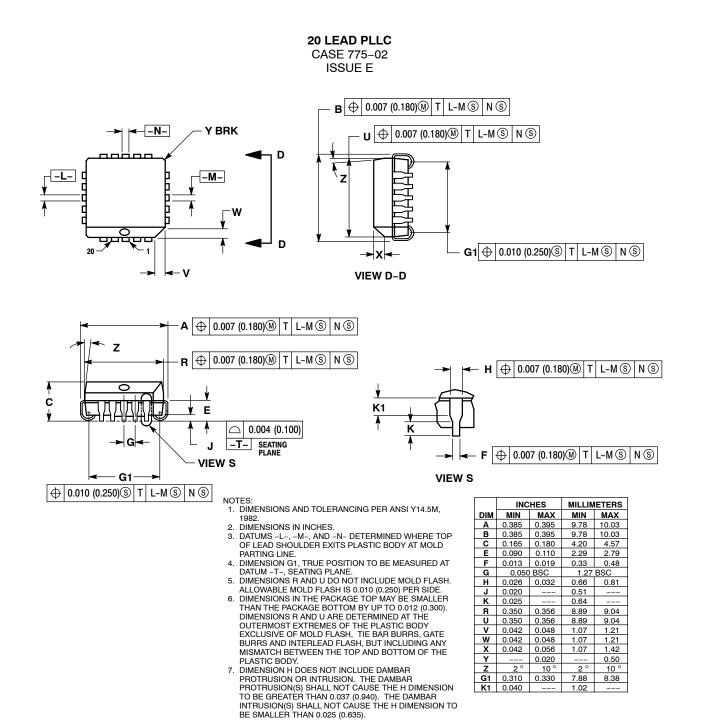
Table 4. AC PARAMETERS

t _{pd}	Propagation Delay	1.0	2.0	1.0	2.0	1.1	2.1	ns
t _{hold}	Hold Time – Data, Select		-	1.0	-	1.0	-	ns
t _{set}	Set-up Time Data Select	1.5 3.0	-	1.5 3.0		1.5 3.0	-	ns
t _r	Rise Time	0.5	2.4	0.5	2.4	0.5	2.4	ns
t _f	Fall Time	0.5	2.4	0.5	2.4	0.5	2.4	ns
f _{shift}	Shift Frequency	250	-	250	-	250	-	MHz

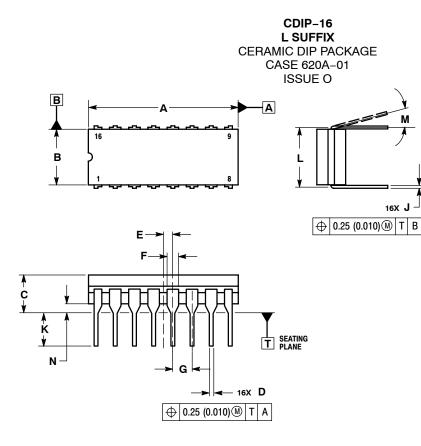
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

LOGIC DIAGRAM

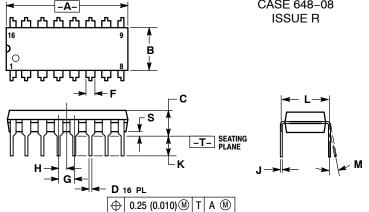
APPLICATION INFORMATION


The MC10H141 is a four-bit universal shift register which performs shift left, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Inputs S1 and S2 control the four possible operations of the register without external gating of the clock. The flip-flops shift information on the positive edge of the clock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (DL) and one for shifting in from the right (DR).

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10H141FN	PLLC-20	46 Units / Rail
MC10H141FNG	PLLC-20 (Pb-Free)	46 Units / Rail
MC10H141FNR2	PLLC-20	500 / Tape & Reel
MC10H141FNR2G	PLLC-20 (Pb-Free)	500 / Tape & Reel
MC10H141L	CDIP-16	25 Unit / Rail
MC10H141P	PDIP-16	25 Unit / Rail
MC10H141PG	PDIP-16 (Pb-Free)	25 Unit / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY

THIS DRAWING REPLACES OBSOLETE CASE OUTLINE 620-10. 5

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Ε	0.050 BSC		1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62 BSC		
Μ	0 °	15 °	0 °	15°	
Ν	0.020	0.040	0.51	1.01	

NOTES:

 NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.740 0.770		18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050 BSC 1.27 E		BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0 °	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

MECL 10H and MECL 10K are trademarks of Motorola, Inc.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death apsociated with such unintended or unauthorized use personal and sole sole copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.