16-Channel, High Voltage Analog Switch

Features

- HVCMOS $^{\circledR}$ technology for high performance
- 220 V operating conditions
- Output on-resistance typically 22Ω
- 5.0 and 12.0 V CMOS logic compatibility
- Very low quiescent current consumption (-10 A A$)$
- -45 dB min off isolation at 7.5 MHz
- Low parasitic capacitance
- Excellent noise immunity
- Flexible high voltage supplies

General Description

The Supertex HV20822 is a 220V, 16-channel, highvoltage analog switch integrated circuit (IC) configured as 2 sets of 8 single-pole single-throw analog switches. It is intended for use in applications requiring high voltage switching controlled by low voltage control signals such as ultrasound imaging and printers.

The 2 sets of 8 analog switches are controlled by 2 input logic controls, $D_{\mathbb{N}} 1$ and $D_{\mathbb{N}} 2$. A logic high on $D_{\mathbb{N}} 1$ will turn On switches 0 to 7 and a logic high on $D_{\mathbb{N}} 2$ will turn $O n$ switches 8 to 15 .

Block Diagram

Ordering Information

	Package Option
Device	48-Lead LQFP
	7.00x7.00mm body
	1.60mm height (max)
	0.50 mm pitch
HV20822	HV20822FG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
V_{DD} Logic power supply voltage	-0.5 V to +15 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ Supply voltage	+225 V
$\mathrm{~V}_{\mathrm{PP}}$ Positive high voltage supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+225 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ Negative high voltage supply	+0.5 V to -225 V
Logic input voltages	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{SIG}}$ Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	1.0 W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

48-Lead LQFP (FG) (top view)

Product Marking

YY = Year Sealed WW = Week Sealed
L = Lot Number C = Country of Origin* A = Assembler ID*
Bottom Marking
\qquad = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si or 47
48-Lead LQFP (FG)

Recommended Operating Conditions

Sym	Parameter	Value
$V_{\text {PP }}$	Positive high voltage supply ${ }^{1}$	+50 V to +110 V
V_{NN}	Negative high voltage supply ${ }^{1}$	-10 V to $\mathrm{V}_{\mathrm{pp}}-220 \mathrm{~V}$
$V_{\text {D }}$	Logic power supply voltage ${ }^{1}$	+4.75 V to +12.6 V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ to V_{DD}
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	0 V to 1.0 V
$\mathrm{V}_{\text {SIG }}$	Analog signal voltage peak-to-peak ${ }^{2}$	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{T}_{\text {A }}$	Operating free air-temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Power } \\ & V_{\text {SIG }} m \end{aligned}$	n sequence is arbitrary except GND must be po $V_{N N} \leq V_{S I G} \leq V_{P P}$ or floating during power up/down	

DC Electrical Characteristics (Over recommended operating conditions unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		min	max	min	typ	max	min	max		
$\mathrm{R}_{\text {Ons }}$	Small signal switch on-resistance	-	30	-	26	32	-	40	Ω	$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V} \end{aligned}$
		-	25	-	22	27	-	35		$\begin{aligned} & V_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\text {SIIG }}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=50 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-170 \mathrm{~V} \end{aligned}$
		-	25	-	22	27	-	30		$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, I_{S I G}=5.0 \mathrm{~mA}, \\ & V_{P P}=110 \mathrm{~V}, V_{N N}=-110 \mathrm{~V} \end{aligned}$
		-	20	-	18	22	-	25		$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, I_{\text {SIIG }}=200 \mathrm{~mA}, \\ & V_{P P}=110 \mathrm{~V}, V_{N N}=-110 \mathrm{~V} \end{aligned}$
$\Delta R_{\text {ons }}$	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	\%	$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, I_{\text {SIG }}=5.0 \mathrm{~mA}, \\ & V_{P P}=110 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-110 \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {onL }}$	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1.0 \mathrm{~mA}$
$\mathrm{I}_{\text {sol }}$	Switch-off leakage per switch	-	5.0	-	1.0	10	-	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}$ and $\mathrm{V}_{\text {NN }}+10 \mathrm{~V}$
-	DC offset switch-off	300	-	-	100	300	-	300	mV	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
	DC offset switch-on	500	-	-	100	500	-	500		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
$\mathrm{I}_{\text {PPQ }}$	Pos. HV supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All SWs off
$\mathrm{I}_{\text {NNQ }}$	Neg. HV supply current	-	-	-	-10	-50	-	-		
$\mathrm{I}_{\text {PPQ }}$	Pos. HV supply current	-	-		10	50	-	-		All SWs on, $\mathrm{I}_{\text {sw }}=5.0 \mathrm{~mA}$
$\mathrm{I}_{\text {NNQ }}$	Neg. HV supply current	-	-	-	-10	-50	-	-		
-	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $\leq 0.1 \%$
$\mathrm{f}_{\text {sw }}$	Output switch frequency	-	-	-	-	50	-		KHz	Duty cycle $=50 \%$
$\mathrm{I}_{\text {PP }}$	$\mathrm{I}_{\text {PP }}$ supply current	-	8.1	-	-	8.8	-	10	mA	$\mathrm{V}_{\mathrm{PP}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V}$, all SWs turning on and off at 50 KHz
$\mathrm{I}_{\text {NN }}$	$\mathrm{I}_{\text {NN }}$ supply current	-	-8.1	-	-	-8.8	-	-10		
$\mathrm{I}_{\text {PP }}$	$\mathrm{I}_{\text {PP }}$ supply current	-	5.0	-	-	6.3	-	6.9		$V_{P P}=110 \mathrm{~V}, V_{N N}=-110 \mathrm{~V} \text {, all } \mathrm{SWs}$ turning on and off at 50 KHz
$\mathrm{I}_{\text {NN }}$	$\mathrm{I}_{\text {NN }}$ supply current	-	-5.0	-	-	-6.3	-	-6.9		
$\mathrm{I}_{\text {DDQ }}$	Logic supply quiescent current	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic states are at DC
I_{DD}	Logic supply average current	-	2.0	-	-	2.0	-	2.0	mA	$\mathrm{D}_{1 \mathrm{~N}} 1=\mathrm{D}_{1 \mathrm{~N}} 2=3.0 \mathrm{MHz}, \overline{\mathrm{LE}}=$ high

AC Electrical Characteristics (Over recommended operating conditions unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		min	max	min	typ	max	min	max		
$t_{\text {SIG(Off) }}$	Time to turn off $\mathrm{V}_{\text {SIG }}{ }^{*}$	0	-	0	-	-	0	-	ns	---
$t_{\text {wLE }}$	Time width of $\overline{\mathrm{LE}}$	150	-	150	-	-	150	-	ns	---
$t_{\text {wdin }}$	Time width of $\mathrm{D}_{\text {IN }}$	150	-	150	-	-	150	-	ns	---
$\mathrm{t}_{\text {SD }}$	Set up time before $\overline{\mathrm{LE}}$ rises	150	-	150	-	-	150	-	ns	---

[^0]
AC Electrical Characteristics (cont.)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		min	max	min	typ	max	min	max		
t_{on}	Turn-on time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{~K} \Omega$
$\mathrm{t}_{\text {off }}$	Turn-off time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{~K} \Omega$
K	Off isolation	-30	-	-30	-33	-	-30	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1.0 \mathrm{~K} \Omega / 15 \mathrm{pF}$ Load
		-45	-	-45	-50	-	-45	-	dB	$f=7.5 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
K_{CR}	Switch crosstalk	-45	-	-45	-	-	-45	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
$\mathrm{C}_{\text {Gs(off) }}$	Off-capacitance switch to GND	5.0	17	5.0	12	17	5.0	17	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, 1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {GS(On) }}$	On-capacitance switch to GND	25	50	25	38	50	25	50	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, 1.0 \mathrm{MHz}$
$+\mathrm{V}_{\text {SPK }}$	Output voltage spike	-	-	-	4.0	-	-	-	V	---
$-V_{\text {SPK }}$		-	-	-	-4.0	-	-	-		---

Logic Truth Table

$D_{\mathbb{N}}{ }^{2}$	$D_{\mathbb{N}} 1$	$\overline{L E}$	sW0 to SW7	SW8 to SW15
L	L	L	Off	Off
L	H	L	On	Off
H	L	L	Off	On
H	H	O	On	
X	X	H	Hold Previous State	

Logic Timing Waveform

Test Circuits

Switch OFF Leakage

DC Offset ON/OFF

$\mathrm{T}_{\text {ON }} / T_{\text {OFF }}$ Test Circuit

OFF Isolation

Isolation Diode Current

Crosstalk

Charge Injection

Output Voltage Spike

Pin Description

Pin \#	Function
1	VNN
2	N/C
3	VPP
4	N/C
5	$\mathrm{D}_{\text {IN }} 1$
6	$\overline{\text { LE }}$
7	$\mathrm{D}_{1 \mathrm{~N}} 2$
8	N/C
9	N/C
10	VDD
11	GND
12	N/C
13	N/C
14	SW15
15	SW15
16	SW14
17	SW14
18	SW13
19	SW13
20	SW12
21	SW12
22	SW11
23	SW11
24	N/C

Pin \#	Function
25	SW10
26	SW10
27	SW9
28	SW9
29	SW8
30	SW8
31	SW7
32	SW7
33	SW6
34	SW6
35	SW5
36	SW5
37	SW4
38	SW4
39	N/C
40	SW3
41	SW3
42	SW2
43	SW2
44	SW1
45	SW1
46	SW0
47	SW0
48	

48-Lead LQFP Package Outline (FG)

$7.00 \times 7.00 \mathrm{~mm}$ body, 1.60 mm height (max), 0.50 mm pitch

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ
Dimension (mm)	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*		0.75			7°

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-48LQFPFG Version, D041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
[^0]: * Time required for analog signal to turn off before output switch turns off.

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

