74F138 1-of-8 Decoder/Demultiplexer

FAIRCHILD

SEMICONDUCTOR

74F138 1-of-8 Decoder/Demultiplexer

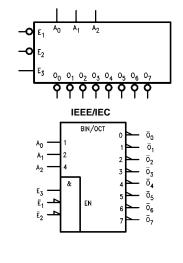
General Description

The F138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three F138 devices or a 1-of-32 decoder using four F138 devices and one inverter.

Ordering Code:

Order Number	Package Number	Package Description					
74F138SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow					
74F138SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74F138PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code						

Features


Demultiplexing capability

Multiple input enable for easy expansion

■ Active LOW mutually exclusive outputs

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

$\begin{array}{c} A_0 \\ A_1 \\ A_2 \\ \overline{E}_1 \\ \overline{E}_2 \\ \overline{E}_3 \\ \overline{O}_7 \\ \overline{O}_1 \\ \overline{O}_$	1 2 3 4 5 6 7 8	0	16 15 14 13 12 11 10 9	$ \begin{array}{c} - v_{cc} \\ - \overline{o}_0 \\ - \overline{o}_1 \\ - \overline{o}_2 \\ - \overline{o}_3 \\ - \overline{o}_4 \\ - \overline{o}_5 \\ - \overline{o}_5 \end{array} $
©7 GND —	8		9	-ō ₆

© 2000 Fairchild Semiconductor Corporation DS009478

www.fairchildsemi.com

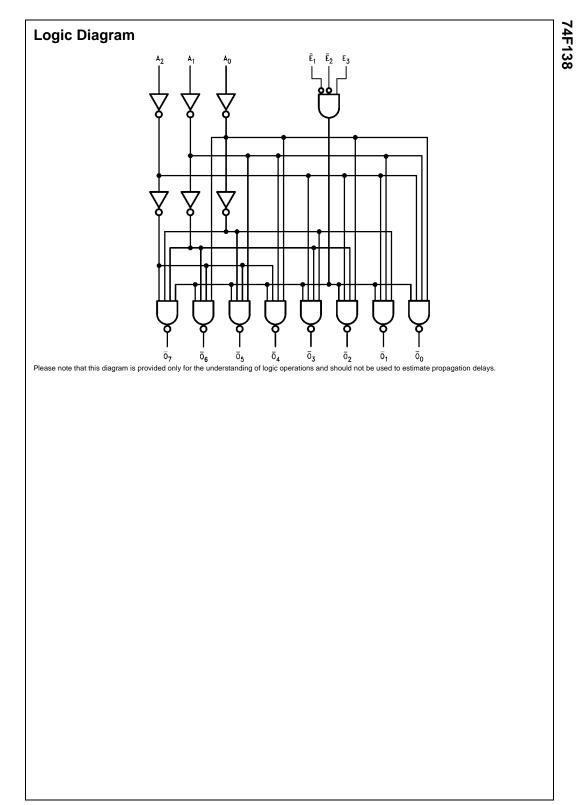
74F138

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	s Description	HIGH/LOW	Output I _{OH} /I _{OL}	
A ₀ -A ₂	Address Inputs	1.0/1.0	20 µA/–0.6 mA	
$\overline{E}_1, \overline{E}_2$	Enable Inputs (Active LOW)	1.0/1.0	20 µA/–0.6 mA	
E ₃	Enable Input (Active HIGH)	1.0/1.0	20 µA/–0.6 mA	
$\overline{O}_0 - \overline{O}_7$	Outputs (Active LOW)	50/33.3	-	

Truth Table

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial


Functional Description

The F138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A₀, A₁, A₂) and, when enabled, provides eight mutually exclusive active LOW outputs ($\overline{O}_0 - \overline{O}_7$). The F138 features three Enable inputs, two active LOW (\overline{E}_1 , \overline{E}_2) and one active HIGH (E₃). All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is HIGH. This multiple enable function allows easy parallel

expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four F138 devices and one inverter (See Figure 1). The F138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

FIGURE 1. Expansion to 1-of-32 Decoding

www.fairchildsemi.com

www.fairchildsemi.com

3

74F138

Absolute Maximum Ratings(Note 1)

$-65^{\circ}C$ to $+150^{\circ}C$
$-55^{\circ}C$ to $+125^{\circ}C$
-55°C to +150°C
-0.5V to +7.0V
-0.5V to +7.0V
-30 mA to +5.0 mA
–0.5V to V _{CC}
-0.5V to +5.5V
twice the rated I _{OL} (mA)
4000V

Recommended Operating Conditions

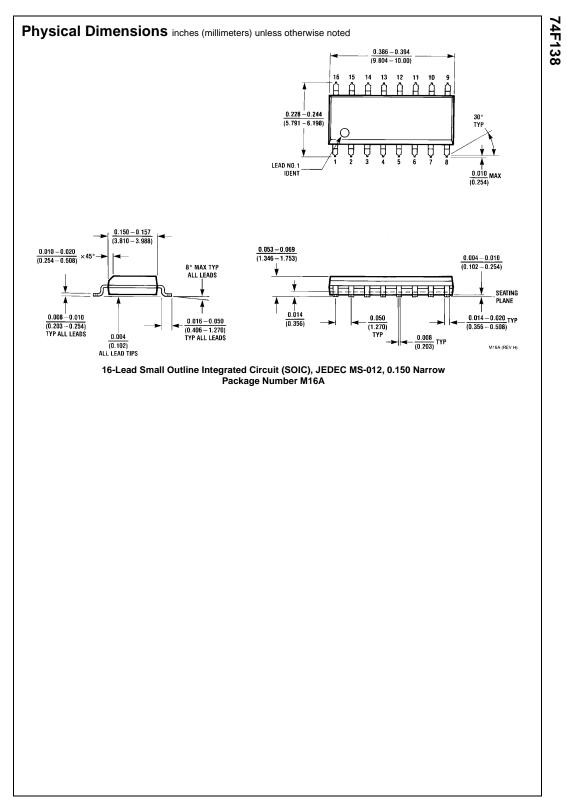
Free Air Ambien	t Temperature
Supply Voltage	

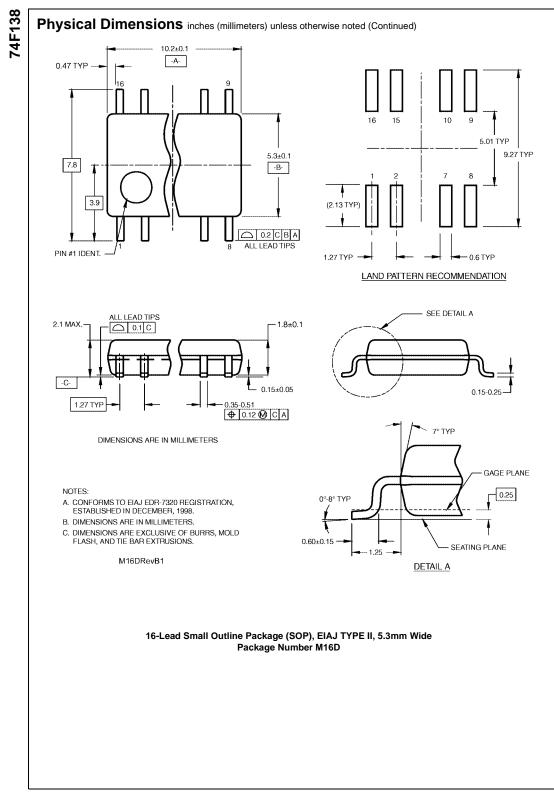
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

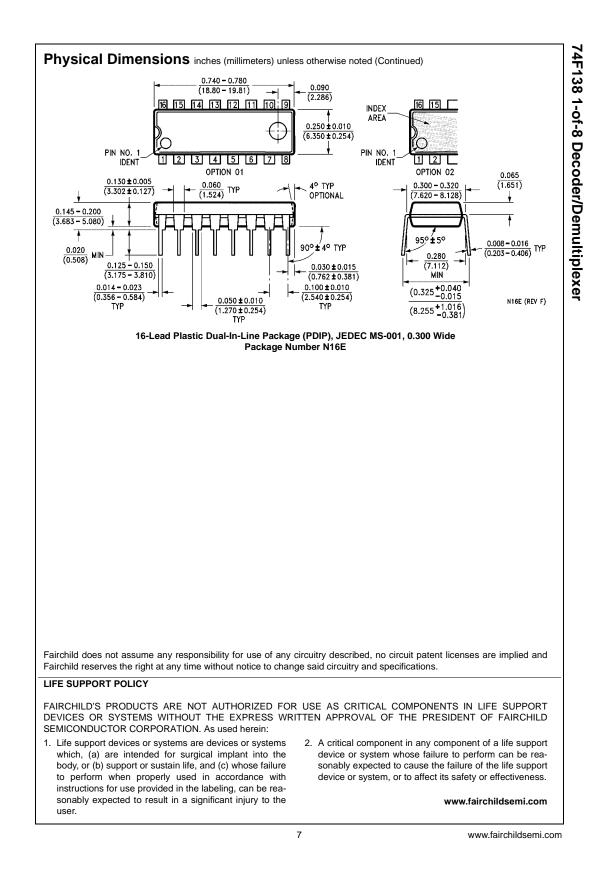
DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7			v	IVIIN	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage								
I _{IH}	Input HIGH	iput HIGH 5.0 uA	Мах	V - 2 7V					
	Current				5.0	μA	IVIAX	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current				7.0		Max	V − 7 0V	
	Breakdown Test				7.0	μA	IVIAX	V _{IN} = 7.0V	
I _{CEX}	Output HIGH				50	A	Max		
	Leakage Current				50	μA	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	A	0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75	μΑ	μΑ 0.0	All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OS}	Output Short-Circuit Current		-60	1	-150	mA	Max	$V_{OUT} = 0V$	
ICCH	Power Supply Current			13	20	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			13	20	mA	Max	$V_0 = LOW$	


AC Electrical Characteristics

Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V C _L = 50 pF			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		
		Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	3.5	5.6	7.5	3.5	8.5		
t _{PHL}	A_n to \overline{O}_n	4.0	6.1	8.0	4.0	9.0	ns	
t _{PLH}	Propagation Delay	3.5	5.4	7.0	3.5	8.0	ns	
t _{PHL}	\overline{E}_1 or \overline{E}_2 to \overline{O}_n	3.0	5.3	7.0	3.0	7.5		
t _{PLH}	Propagation Delay	4.0	6.2	8.0	4.0	9.0		
t _{PHL}	E_3 to \overline{O}_n	3.5	5.6	7.5	3.5	8.5	ns	

www.fairchildsemi.com


4

www.fairchildsemi.com

6

