16-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F4216A/78F4218A and 78F4216AY/78F4218AY are products of μ PD784216A/784218A, 784216AY/784218AY Subseries in the 78K/IV Series.

The μ PD78F4216A/78F4218A have flash memory in place of the internal ROM of the μ PD784216A/784218A. The incorporation of flash memory allows a program to be written or erased while mounted on the target board.

The μ PD78F4216AY/78F4218AY are based on the μ PD78F4216A/78F4218A Subseries with the addition of a multimaster-supporting $I^{2} \mathrm{C}$ bus interface.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.
μ PD784216A, 784218A, 784216AY, 784218AY Subseries Hardware User's Manual: U13570E
78K/IV Series Instructions User's Manual:
U10905E

FEATURES

- Pin compatible with the mask ROM products
- Flash memory: 128 KB (μ PD78F4216A/78F4216AY)

256 KB (μ PD78F4218A/78F4218AY)

- Internal RAM: 8,192 bytes (μ PD78F4216A/78F4216AY)

12,800 bytes (μ PD78F4218A/78F4218AY)

- Supply voltage: VDD $=1.9$ to 5.5 V

APPLICATIONS

Cellular phones, PHS, cordless telephones, CD-ROM, AV equipment

Unless otherwise specified, references in this document to the μ PD78F4218AY refer to the μ PD78F4216A, 78F4218A, 78F4216AY, and 78F4218AY.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ORDERING INFORMATION

Part Number	Package	Internal ROM (Bytes)	Internal RAM (Bytes)
μ PD78F4216AGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	128 K	8,192
μ PD78F4216AGF-3BA	100-pin plastic QFP (14×20)	128 K	8,192
μ PD78F4218AGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	256 K	12,800
μ PD78F4218AGF-3BA	100-pin plastic QFP (14×20)	256 K	12,800
μ PD78F4216AYGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	128 K	8,192
μ PD78F4216AYGF-3BA	100-pin plastic QFP (14×20)	128 K	8,192
μ PD78F4218AYGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	256 K	12,800
μ PD78F4218AYGF-3BA	100-pin plastic QFP (14×20)	256 K	12,800

78K/IV SERIES LINEUP

\square : Products in mass-production

ASSP models On-chip 10-bit A/D converter

 On-chip analog circuit for VCRs
Enhanced timer

μ PD784976A

On-chip VFD controller/driver

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP ${ }^{\text {TM }}$ (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

OVERVIEW OF FUNCTIONS (1/2)

Part Number Item		$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 4216 \mathrm{~A}, \\ & \mu \mathrm{PD} 78 \mathrm{~F} 4216 \mathrm{~A} \end{aligned}$	μ PD78F4218A, μ PD78F4218AY
Number of basic instructions (mnemonics)		113	
General-purpose registers		8 bits $\times 16$ registers $\times 8$ bank mapping)	8 registers $\times 8$ banks (memory
Minimum instruction execution time		- 160 ns (@fxx $=12.5 \mathrm{MHz}$ - $61 \mu \mathrm{~s}$ (@fxt $=32.768 \mathrm{kHz}$	main system clock) subsystem clock)
Internal memory	Flash memory	128 KB	256 KB
	RAM	8,192 bytes	12,800 bytes
Memory space		1 MB with program and data spaces combined	
I/O ports	Total	86	
	CMOS input	8	
	CMOS I/O	72	
	N-ch open-drain I/O	6	
Pins with additional functions ${ }^{\text {Note } 1}$	Pins with pull-up resistor	70	
	LED direct drive output	22	
	Middle-voltage pin	6	
Real-time output port		4 bits $\times 2$ or 8 bits $\times 1$	
Timer/event counter		Timer/event counter: Timer counter $\times 1$ (16-bit) Capture/compare register $\times 2$	Pulse output egister $\times 2$ - PPG output - Square wave output - One-shot pulse output
		Timer/event counter 1: Timer counter $\times 1$ (8-bit) Compare register $\times 1$	Pulse output - PWM output - Square wave output
		Timer/event counter 2: Timer counter $\times 1$ (8-bit) Compare register $\times 1$	Pulse output - PWM output - Square wave output
		Timer/event counter 5: Timer counter $\times 1$ (8-bit) Compare register $\times 1$	Pulse output - PWM output - Square wave output
		Timer/event counter 6: Timer counter $\times 1$ (8-bit) Compare register $\times 1$	Pulse output - PWM output - Square wave output
		Timer/event counter 7: Timer counter $\times 1$ (8-bit) Compare register $\times 1$	Pulse output - PWM output - Square wave output
		Timer/event counter 8: Timer counter $\times 1$ Pulse output (8-bit) Compare register $\times 1$ \bullet PWM output \bullet Square wave output	
Serial interface		- UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) - CSI (3-wire serial I/O, multimaster supporting I ${ }^{2} \mathrm{C}$ bus ${ }^{\text {Note } 2}$): 1 channel	
A/D converter		8-bit resolution $\times 8$ channels	
D/A converter		8-bit resolution $\times 2$ channels	

Notes 1. Pins with additional functions are included with the I/O pins.
2. μ PD78F4216AY, 78F4218AY only

OVERVIEW OF FUNCTIONS (2/2)

Part Number Item		μ PD78F4216A, μ PD78F4216AY	μ PD78F4218A, μ PD78F4218AY
Clock output			
Buzzer output		Selectable from $f_{x x} / 2^{10}, f_{x x} / 2^{11}, f_{x x} / 2^{12}, f_{x x} / 2^{13}$	
Watch timer		1 channel	
Watchdog timer		1 channel	
Standby		- HALT/STOP/IDLE modes - In low power consumption mode (with subsystem clock): HALT/IDLE modes	
Interrupt	Hardware sources	29 (internal: 20, external: 9)	
	Software sources	BRK instruction, BRKCS instruction, operand error	
	Non-maskable	Internal: 1, external: 1	
	Maskable	Internal: 19, external: 8	
		- 4 programmable priority levels - 3 service modes: Vectored interrupt/macro service/context switching	
Supply voltage		$\mathrm{V}_{\text {DD }}=1.9$ to 5.5 V	
Package		100-pin plastic LQFP (fine pitch) (14×14) 100-pin plastic QFP (14×20)	

CONTENTS

1. DIFFERENCES BETWEEN MODELS IN μ PD784216A/784216AY, 784218A/784218AY SUBSERIES 7
2. PIN CONFIGURATION (TOP VIEW) 8
3. BLOCK DIAGRAM 11
4. PIN FUNCTIONS 12
4.1 Port Pins 12
4.2 Non-Port Pins 14
4.3 Pin I/O Circuits and Recommended Connections of Unused Pins 16
5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS) 20
6. PROGRAMMING FLASH MEMORY 22
6.1 Selecting Communication Mode 22
6.2 Flash Memory Programming Function 23
6.3 Connecting Flashpro III 24
7. ELECTRICAL SPECIFICATIONS 25
8. PACKAGE DRAWINGS 50
9. RECOMMENDED SOLDERING CONDITIONS 52
APPENDIX A. DEVELOPMENT TOOLS 54
APPENDIX B. RELATED DOCUMENTS 59

1. DIFFERENCES BETWEEN MODELS IN μ PD784216A/784216AY, 784218A/784218AY SUBSERIES

The only difference between the μ PD784214A, 784215A, 784216A, 784217A, and 784218A lies in the internal memory capacity.

The μ PD784214AY, 784215AY, 784216AY, 784217AY, and 784218AY are models with the addition of an $I^{2} \mathrm{C}$ bus control function.

The μ PD78F4216A, 78F4216AY, 78F4218A, and 78F4218AY are provided with a $128 \mathrm{~KB} / 256 \mathrm{~KB}$ flash memory instead of the mask ROM of the above models.

These differences are summarized in Table 1-1.

Table 1-1. Differences Between Models in μ PD784216A/784216AY, 784218A/784218AY Subseries

| Item |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note The internal flash memory capacity and internal RAM capacity can be changed using the internal memory size switching register (IMS).

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (not engineering samples) of the mask ROM version.

2. PIN CONFIGURATION (TOP VIEW)

- 100-pin plastic LQFP (fine pitch) (14×14) μ PD78F4216AGC-8EU, μ PD78F4218AGC-8EU, μ PD78F4216AYGC-8EU, μ PD78F4218AYGC-8EU

Notes 1. Connect the VPP pin to VSS directly or via a pull-down resistor in normal operation mode. Connect the VPP pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470Ω to $10 \mathrm{k} \Omega$.
2. Connect the $A V_{D D}$ pin to $V_{D D}$.
3. Connect the AVss pin to Vss.
4. The SCLO and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.
5. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

- 100-pin plastic QFP (14×20) μ PD78F4216AGF-3BA, μ PD78F4218AGF-3BA, μ PD78F4216AYGF-3BA, μ PD78F4218AYGF-3BA

Notes 1. Connect the VPP pin to Vss directly or via a pull-down resistor in normal operation mode. Connect the VPP pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470Ω to $10 \mathrm{k} \Omega$.
2. Connect the $A V$ dd pin to $V_{d d}$.
3. Connect the AVss pin to Vss.
4. The SCL0 and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.
5. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

A0 to A19:	Address bus	P120 to P127:	Port 12
AD0 to AD7:	Address/data bus	P130, P131:	Port 13
ANIO to ANI7:	Analog input	PCL:	Programmable clock
ANO0, ANO1:	Analog output	$\overline{\mathrm{RD}}$:	Read strobe
ASCK1, ASCK2:	Asynchronous serial clock	RESET:	Reset
ASTB:	Address strobe	RTP0 to RTP7:	Real-time output port
AVdD:	Analog power supply	RxD1, RxD2:	Receive data
AVrefo, $A V_{\text {ref1 }}$:	Analog reference voltage	SCK0 to SCK2:	Serial clock
AVss:	Analog ground	SCLO ${ }^{\text {Note } 1}$:	Serial clock
BUZ:	Buzzer clock	SDA0 ${ }^{\text {Note } 1}$:	Serial data
EXA ${ }^{\text {Note }}{ }^{\text {2 }}$	External access status output	SIO to SI2:	Serial input
INTP0 to INTP6:	Interrupt from peripherals	SO0 to SO2:	Serial output
NMI:	Non-maskable interrupt	TIO0, TIO1,	
P00 to P06:	Port 0	TI1, TI2, TI5 to TI8:	Timer input
P10 to P17:	Port 1	TO0 to TO2, TO5 to TO8:	Timer output
P20 to P27:	Port 2	TxD1, TxD2:	Transmit data
P30 to P37:	Port 3	VDD:	Power supply
P40 to P47:	Port 4	VPP:	Programming power supply
P50 to P57:	Port 5	Vss:	Ground
P60 to P67:	Port 6	WAIT:	Wait
P70 to P72:	Port 7	$\overline{\mathrm{WR}}$:	Write strobe
P80 to P87:	Port 8	X1, X2:	Crystal (main system clock)
P90 to P95:	Port 9	XT1, XT2:	Crystal (subsystem clock)
P100 to P103:	Port 10		

Notes 1. The SCL0 and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.
2. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

3. BLOCK DIAGRAM

Notes 1. This function supports the $I^{2} C$ bus interface and is available in the μ PD78F4216AY, 78F4218AY only.
2. The EXA pin is available in the μ PD78F4218A, 78 F4218AY only.

4. PIN FUNCTIONS

4.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00	I/O	INTP0	Port 0 (P0): - 7-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P01		INTP1	
P02		INTP2/NMI	
P03		INTP3	
P04		INTP4	
P05		INTP5	
P06		INTP6	
P10 to P17	Input	ANIO to ANI7	Port 1 (P1): - 8-bit input only port
P20	1/O	RxD1/SI1	Port 2 (P2): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P21		TxD1/SO1	
P22		ASCK1/SCK1	
P23		PCL	
P24		BUZ	
P25		SIO/SDAO ${ }^{\text {Note } 1}$	
P26		SO0	
P27		SCK0/SCLo ${ }^{\text {Note } 1}$	
P30	I/O	TOO	Port 3 (P3): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P31		TO1	
P32		TO2	
P33		TI1	
P34		TI2	
P35		T100	
P36		TI01	
P37		EXA ${ }^{\text {Note } 2}$	
P40 to P47	I/O	AD0 to AD7	Port 4 (P4): - 8-bit I/O port - Input/output can be specified in 1-bit units. - When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting. - LEDs can be driven directly.
P50 to P57	I/O	A8 to A15	Port 5 (P5): - 8-bit I/O port - Input/output can be specified in 1-bit units. - When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting. - LEDs can be driven directly.

Notes 1. This SDA0 and SCL0 are available in the μ PD78F4216AY, 78F4218AY only.
2. This function is available in the μ PD78F4218A, 784218AY only.

4.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6): - 8-bit I/O port - Input/output can be specified in 1-bit units. - When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting.
P61		A17	
P62		A18	
P63		A19	
P64		$\overline{\mathrm{RD}}$	
P65		$\overline{\mathrm{WR}}$	
P66		WAIT	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7): - 3-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P71		TxD2/SO2	
P72		ASCK2/ $\overline{\text { SCK2 }}$	
P80 to P87	I/O	A0 to A7	Port 8 (P8): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting. - The interrupt control flag (KRIF) is set to 1 when a falling edge is detected at a pin of this port.
P90 to P95	I/O	-	Port 9 (P9): - N-ch open-drain middle-voltage I/O port - 6-bit I/O port - Input/output can be specified in 1-bit units. - LEDs can be driven directly.
P100	I/O	TI5/TO5	Port 10 (P10): - 4-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P101		T16/TO6	
P102		T17/TO7	
P103		TI8/TO8	
P120 to P127	I/O	RTP0 to RTP7	Port 12 (P12): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): - 2-bit I/O port - Input/output can be specified in 1-bit units.

4.2 Non-Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
TIOO	Input	P35	External count clock input to 16-bit timer counter
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer counter 1
TI2		P34	External count clock input to 8-bit timer counter 2
TI5		P100/TO5	External count clock input to 8-bit timer counter 5
TI6		P101/TO6	External count clock input to 8-bit timer counter 6
TI7		P102/TO7	External count clock input to 8-bit timer counter 7
TI8		P103/TO8	External count clock input to 8-bit timer counter 8
TOO	Output	P30	16-bit timer output (shared by 14-bit PWM output)
TO1		P31	8 -bit timer output (shared by 8 -bit PWM output)
TO2		P32	
TO5		P100/TI5	
TO6		P101/TI6	
TO7		P102/TI7	
TO8		P103/TI8	
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Input	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SIO	Input	P25/SDA0 ${ }^{\text {Note }}$	Serial data input (3-wire serial I/O 0)
SI1		P20/RxD1	Serial data input (3-wire serial I/O 1)
SI2		P70/RxD2	Serial data input (3-wire serial I/O 2)
SOO	Output	P26	Serial data output (3-wire serial I/O 0)
SO1		P21/TxD1	Serial data output (3-wire serial I/O 1)
SO2		P71/TxD2	Serial data output (3-wire serial I/O 2)
SDA0 ${ }^{\text {Note }}$	I/O	P25/SIO	Serial data input/output (${ }^{2} \mathrm{C}$ bus)
$\overline{\text { SCKO }}$		P27/SCL0 ${ }^{\text {Note }}$	Serial clock input/output (3-wire serial I/O 0)
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O 1)
$\overline{\text { SCK2 }}$		P72/ASCK2	Serial clock input/output (3-wire serial I/O 2)
SCLO ${ }^{\text {Note }}$		P27/SCK0	Serial clock input/output (${ }^{2} \mathrm{C}$ bus)
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTPO		P00	External interrupt request input
INTP1		P01	
INTP2		P02/NMI	
INTP3		P03	
INTP4		P04	
INTP5		P05	
INTP6		P06	

Note This function is available in the μ PD78F4216AY, 78F4218AY only.

4.2 Non-Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
PCL	Output	P23	Clock output (for trimming main system clock and subsystem clock)
BUZ	Output	P24	Buzzer output
RTP0 to RTP7	Output	P120 to P127	Real-time output port that outputs data in synchronization with trigger
AD0 to AD7	I/O	P40 to P47	Lower address/data bus for expanding memory externally
A0 to A7	Output	P80 to P87	Lower address bus for expanding memory externally
A8 to A15		P50 to P57	Middle address bus for expanding memory externally
A16 to A19		P60 to P63	Higher address bus for expanding memory externally
$\overline{\mathrm{RD}}$	Output	P64	Strobe signal output for reading from external memory
$\overline{\mathrm{WR}}$		P65	Strobe signal output for writing to external memory
WAIT	Input	P66	Wait insertion at external memory access
ASTB	Output	P67	Strobe output that externally latches address information output to ports 4 through 6 and 8 to access external memory
EXA ${ }^{\text {Note }}$	Output	P37	Status signal output at external memory access
$\overline{\text { RESET }}$	Input	-	System reset input
X1	Input	-	Connecting crystal resonator for main system clock oscillation
X2	-		
XT1	Input	-	Connecting crystal resonator for subsystem clock oscillation
XT2	-		
ANIO to ANI7	Input	P10 to P17	A/D converter analog input
ANOO, ANO1	Output	P130, P131	D/A converter analog output
$\mathrm{AV}_{\text {Refo }}$	-	-	A/D converter reference voltage input
$\mathrm{AV}_{\text {Ref1 }}$			D/A converter reference voltage input
AVDD			A/D converter positive power supply. Connect to Vid.
AVss			GND for A/D converter and D/A converter. Connect to Vss.
VDD			Positive power supply
Vss			GND
$V_{\text {PP }}$			Flash memory programming mode setting. Applying high-voltage for program write/verify. Connect this pin to Vss directly or via a pull-down resistor in normal operation mode. Connect the Vpp pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470Ω to $10 \mathrm{k} \Omega$.

Note The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

4.3 Pin I/O Circuits and Recommended Connections of Unused Pins

The I/O circuit type of each pin and recommended connections of unused pins are shown in Table 4-1.
For each type of I/O circuit, refer to Figure 4-1.
Table 4-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTPO	8-N	I/O	Input: Independently connect to Vss via a resistor Output: Leave open
P01/INTP1			
P02/INTP2/NMI			
P03/INTP3 to P06/INTP6			
P10/ANI0 to P17/ANI7	9	Input	Connect to Vss or Vdd
P20/RxD1/SI1	10-K	I/O	Input: Independently connect to Vss via a resistor Output: Leave open
P21/TxD1/SO1	10-L		
P22/ASCK1/SCK1	10-K		
P23/PCL	10-L		
P24/BUZ			
P25/SI0/SDA0 ${ }^{\text {Note } 1}$	10-K		
P26/SO0	10-L		
P27/SCK0/SCL0 ${ }^{\text {Note } 1}$	10-K		
P30/TO0 to P32/TO2	12-E		
P33/TI1, P34/TI2	8-N		
P35/TI00, P36/TI01	10-M		
P37/EXA ${ }^{\text {Note } 2}$	12-E		
P40/AD0 to P47/AD7	5-A		
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/ $\overline{\mathrm{RD}}$			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-N		
P71/TxD2/SO2	10-M		
P72/ASCK2/SCK2	8-N		
P80/A0 to P87/A7	12-E		
P90 to P95	13-D		
P100/TI5/TO5	8-N		
P101/TI6/TO6			
P102/TI7/TO7			
P103/TI8/TO8			
P120/RTP0 to P127/RTP7	12-E		
P130/ANO0, P131/ANO1	12-F		

Notes 1. The SDA0 and SCL0 pins are available in the μ PD78F4216AY, 78F4218AY only.
2. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

Table 4-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
RESET	2-G	Input	-
XT1	16		Connect to Vss
XT2		-	Leave open
AVrefo	-		Connect to Vss
AVref1			Connect to Vdd
AVdd			
AVss			Connect to Vss
VPP			Connect this pin to Vss directly or via a pull-down resist in normal operation mode. Connect the Vpp pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470Ω to $10 \mathrm{k} \Omega$.

Remark Because the circuit type numbers are standardized among the 78 K Series products, they are not sequential in some models (i.e., some circuits are not provided).

Figure 4-1. Pin I/O Circuits (1/2)

Figure 4-1. Pin I/O Circuits (2/2)

5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that is set by software and is used to specify a part of the internal memory that is not to be used. By setting this register, the internal memory of the μ PD78F4218AY can be mapped identically to that of a mask ROM version with a different internal memory (ROM and RAM) capacity.

IMS is set with an 8-bit memory manipulation instruction.
RESET input sets IMS to FFH.
(1) μ PD78F4216A, 78F4216AY

Figure 5-1. Internal Memory Size Switching Register (IMS) Format

Address: 0FFFCH After reset: FFH W

IMS

7	6	5	4	3	2	1	0
1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM capacity selection
0	0	48 KB
0	1	64 KB
1	0	96 KB
1	1	128 KB

RAM1	RAM0	Peripheral RAM capacity selection
0	0	3,072 bytes
0	1	4,608 bytes
1	0	6,114 bytes
1	1	7,680 bytes

Caution IMS is not provided on the mask ROM versions (μ PD784214A, 784215A, 784216A, μ PD784214AY, 784215AY, and 784216AY).

Table 5-1 shows the IMS setting values to make the memory mapping the same as that of the mask ROM versions.

Table 5-1. Setting Value of Internal Memory Size Switching Register (IMS)

Target Mask ROM Version	IMS Setting Value
μ PD784214A, 784214AY	ECH
μ PD784215A, 784215AY	FDH
μ PD784216A, 784216AY	FFH

(2) μ PD78F4218A, 78F4218AY

Figure 5-2. Internal Memory Size Switching Register (IMS) Format

Address: 0FFFCH			After reset: FFH W		W	2	1	0
	7	6	5	4	3			
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAMO

ROM1	ROM0	Internal ROM capacity selection
0	0	64 KB
0	1	128 KB
1	0	192 KB
1	1	256 KB

RAM1	RAM0	Peripheral RAM capacity selection
0	0	3,072 bytes
0	1	6,656 bytes
1	0	7,168 bytes
1	1	12,288 bytes

Caution IMS is not provided on the mask ROM versions (μ PD784217A, 784218A, 784217AY, and 784218AY).

Table 5-2 shows the IMS setting values to make the memory mapping the same as that of the mask ROM versions.

Table 5-2. Setting Value of Internal Memory Size Switching Register (IMS)

Target Mask ROM Version	IMS Setting Value
μ PD784217A, 784217AY	EFH
μ PD784218A, 784218AY	FFH

6. PROGRAMMING FLASH MEMORY

The flash memory can be written with the μ PD78F4218AY mounted on the target board (on-board). To do so, connect a dedicated flash programmer (Flashpro III (part number: FL-PR3, PG-FP3) to the host machine and target system.

Writing to flash memory can also be performed using flash memory writing adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selecting Communication Mode

To write the flash memory, use Flashpro III by serial communication. Select a serial communication mode from those listed in Table 6-1 in the format shown in Figure 6-1. Each communication mode is selected by the number of Vpp pulses shown in Table 6-1.

Table 6-1. Communication Modes

Communication Mode	Number of Channels	Pins Used ${ }^{\text {Note } 1}$	Number of Vpp Pulses
3-wire serial I/O	3	$\begin{aligned} & \text { SCKO/P27/SCLO }{ }^{\text {Note } 2} \\ & \text { SOO/P26 } \\ & \text { SIO/P25/SDAO }{ }^{\text {Note 2 }} \end{aligned}$	0
		$\overline{\text { SCK1/ASCK1/P22 }}$ SO1/TxD1/P21 SI1/RxD1/P20	1
		SCK2/ASCK2/P72 SO2/TxD2/P71 SI2/RxD2/P70	2
3-wire serial I/O (handshake ${ }^{\text {Note } 3}$)	1	$\begin{aligned} & \hline \text { SCK0/P27/SCLO } \\ & \text { Sote 2 } \\ & \text { SOO/P26 } \\ & \text { SIO/P25/SDA0 }{ }^{\text {Note 2 }} \\ & \text { P24/BUZ } \end{aligned}$	3
UART	2	TxD1/SO1/P21 RxD1/SI1/P20	8
		TxD2/SO2/P71 RxD2/SI2/P70	9

Notes 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as that after reset. If the external device connected to each port does not acknowledge the state after reset, pin handling such as connecting to Vdd or Vss via a resistor is required.
2. The SCL0 and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.
3. This mode is available in the μ PD78F4216A and 78F4216AY (other than K, E rank)

This mode is available in the μ PD78F4218A and 78F4218AY (all ranks)

Caution Be sure to select a communication mode with the number of Vpp pulses shown in Table 6-1.

Figure 6-1. Communication Mode Selecting Format

6.2 Flash Memory Programming Function

The flash memory is written by transferring or receiving commands and data in a selected communication mode. The major functions of flash memory programming are listed in Table 6-2.

Table 6-2. Major Functions of Flash Memory Programming

Function	Description
Area erasure	Erases contents of specified memory area.
Area blank check	Checks erased status of specified area.
Data write	Writes flash memory based on write start address and number of data to be written (in bytes).
Area verify	Compares contents of specified memory area with input data.

Verification for the flash memory entails supplying the data to be verified from an external source via a serial interface, and then outputting the existence of unmatched data to the external source after referencing the areas or all of the data. Consequently, the flash memory is not equipped with a read function, and it is not possible for third parties to read the contents of the flash memory with the use of the verification function.

6.3 Connecting Flashpro III

The Flashpro III and μ PD78F4218AY are connected differently depending on the selected communication mode (3-wire serial I/O or UART). Figures 6-2 to 6-4 show the connections in the respective communication modes.

Figure 6-2. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using 3-Wire Serial I/O 0)

Figure 6-3. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using Handshake)

Figure 6-4. Connection of Flashpro III in UART Mode (When Using UART)

Caution Connect the Vpp pin directly to Vss or pull down. For the pull-down connection, use of resistors with a resistance between $470 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ is recommended.

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VdD		-0.3 to +6.5	V
	VPP		-0.3 to +10.5	V
	AVdD		-0.3 to VDD +0.3	V
	AVss		-0.3 to Vss +0.3	V
	AV ${ }_{\text {refo }}$	A/D converter reference voltage input	-0.3 to $V_{\text {dD }}+0.3$	V
	AVREF1	D/A converter reference voltage input	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input voltage	V_{11}	Other than P90 to P95	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	V_{12}	P90 to P95 N-ch open drain	-0.3 to +12	V
	V_{13}	VPP pin for programming	-0.3 to +10.5	V
Analog input voltage	Van	Analog input pin	AV ss - 0.3 to $A \mathrm{~V}_{\text {Refo }}+0.3$	V
Output voltage	Vo		-0.3 to $V_{\text {dD }}+0.3$	V
Output current, low	loL	Per pin	15	mA
		Total of P2, P4 to P8	75	mA
		Total of P0, P3, P9, P10, P12, P13	75	mA
		Total of all pins	100	mA
Output current, high	Іон	Per pin	-10	mA
		Total of all pins	-50	mA
Operating ambient temperature	TA	During normal operation	-40 to +85	${ }^{\circ} \mathrm{C}$
		During flash memory programming	+10 to +40	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +125	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Operating Conditions

- Operating ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right):-40$ to $+85^{\circ} \mathrm{C}$
- Supply voltage and clock cycle time: See Figure 7-1
- Operating voltage with subsystem clock operation: VDD $=1.9$ to 5.5 V

Figure 7-1. Supply Voltage and Clock Cycle Time (CPU Clock Frequency: fcpu)

Capacitance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	Other than Port 9			15	pF
			Port 9			20	pF
Output capacitance	Co		Other than Port 9			15	pF
			Port 9			20	pF
I/O capacitance	Cıo		Other than Port 9			15	pF
			Port 9			20	pF

Main System Clock Oscillator Characteristics ($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$)

Resonator	Recommended Circuit	Parameter	Conditions		MIN.	TYP.	MAX.	Unit
Ceramic resonator or crystal resonator		Oscillation frequency(fx)	ENMP = 0	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	4		25	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	4		12.5	
				$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	4		6.25	
				$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	4		4	
			ENMP = 1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2		12.5	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.5 \mathrm{~V}$	2		6.25	
				$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2		3.125	
				$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	2		2	
External		X1 input	ENMP = 0	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	4		25	MHz
		frequency		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.5 \mathrm{~V}$	4		12.5	
				$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	4		6.25	
				$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	4		4	
			ENMP = 1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2		12.5	MHz
	$\mathrm{X} 2 \quad \mathrm{X} 1$			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	2		6.25	
				$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$	2		3.125	
	CU04			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	2		2	
		X1 input hig width (twxh,	-/low-level $w x L$)		15		250	ns
		X1 input risi	/falling	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		5	ns
		time (txr,		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		10	
				$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		20	
				$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	0		30	

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched back to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	$\text { Vss XT2 } \quad \text { XT1 }$	Oscillation frequency (fxt)		32	32.768	35	kHz
		Oscillation stabilization time ${ }^{\text {Note }}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1.2	2	s
	$\underset{\sim}{\tau} \underset{\sim}{\sim}$		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			10	
External clock		XT1 input frequency (fxT)		32		35	kHz
		XT1 input high-/lowlevel width (tхтн, tхть)		14.3		15.6	$\mu \mathrm{s}$

Note Time required to stabilize oscillation after applying supply voltage (VDD).

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, users are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant
Main system clock: Ceramic resonator connection ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)
(1) μ PD78F4216A, 78F4216AY

Manufacturer	Part Number	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant		Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) tost (ms)
			C1 (pF)	C2 (pF)	MIN. (V)	MAX.(V)	
Murata Mfg. Co., Ltd.	CSTS0200MG06	2.0	On-chip	On-chip	1.9	5.5	0.46
	CSTCC2.00MGOH6	2.0	On-chip	On-chip	1.9	5.5	0.44
	CSTS0400MG06	4.0	On-chip	On-chip	2.7	5.5	0.44
	CSTCC4.00MG0H6	4.0	On-chip	On-chip	2.7	5.5	0.40
	CSTS0600MG03	6.0	On-chip	On-chip	2.7	5.5	0.25
	CSTCC6.00MG	6.0	On-chip	On-chip	2.7	5.5	0.25
	CSTS0800MG03	8.0	On-chip	On-chip	4.5	5.5	0.24
	CSTCC8.00MG	8.0	On-chip	On-chip	4.5	5.5	0.24
	CST10.0MTW	10.0	On-chip	On-chip	4.5	5.5	0.30
	CST10.0MTW093	10.0	On-chip	On-chip	4.5	5.5	0.30
	CSTCC10.0MG	10.0	On-chip	On-chip	4.5	5.5	0.25
	CSTCC10.0MG93	10.0	On-chip	On-chip	4.5	5.5	0.25
	CST12.5MTW	12.5	On-chip	On-chip	4.5	5.5	0.30
	CST12.5MTW093	12.5	On-chip	On-chip	4.5	5.5	0.30
	CSTCV12.5MTJ0C4	12.5	On-chip	On-chip	4.5	5.5	0.25
Kyocera Corp.	PBRC4.00HR	4.0	On-chip	On-chip	2.7	5.5	0.3
	PBRC4.00GR	4.0	33	33	2.7	5.5	0.3
	KBR-4.0MKC	4.0	On-chip	On-chip	2.7	5.5	0.3
	KBR-4.0MSB	4.0	33	33	2.7	5.5	0.3
	PBRC8.00HR	8.0	On-chip	On-chip	4.5	5.5	0.3
	PBRC8.00GR	8.0	33	33	4.5	5.5	0.3
	KBR-8.0MKC	8.0	On-chip	On-chip	4.5	5.5	0.3
	KBR-8.0MSB	8.0	33	33	4.5	5.5	0.3
	PBRC10.00BR-A	10.0	On-chip	On-chip	4.5	5.5	0.2
	PBRC12.50BR-A	12.5	On-chip	On-chip	4.5	5.5	0.2
TDK	FCR4.0MC5	4.0	On-chip	On-chip	2.7	5.5	0.17
	FCR6.0MC5	6.0	On-chip	On-chip	2.7	5.5	0.15
	FCR8.0MC5	8.0	On-chip	On-chip	4.5	5.5	0.15

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.
(2) μ PD78F4218A, 78F4218AY

Manufacturer		Part Number	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant		Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) tost (ms)	
		C1 (pF)		C2 (pF)	MIN. (V)	MAX.(V)			
Murata Mfg. Co., Ltd.			CSTS2.00MG040	2.0	On-chip	On-chip	1.9	5.5	0.72
		CSTLS2M00G56-B0	2.0	On-chip	On-chip	1.9	5.5	0.48	
		CSTCC2M00G56-R0	2.0	On-chip	On-chip	1.9	5.5	0.50	
		CSTLS4M00G56-B0	4.0	On-chip	On-chip	2.7	5.5	0.47	
		CSTCR4M00G55-R0	4.0	On-chip	On-chip	2.7	5.5	0.45	
		CSTLS6M00G56-B0	6.0	On-chip	On-chip	2.7	5.5	0.48	
		CSTCR6M00G55-R0	6.0	On-chip	On-chip	2.7	5.5	0.45	
		CSTLS8M00G53-B0	8.0	On-chip	On-chip	4.5	5.5	0.30	
		CSTCC8M00G53-R0	8.0	On-chip	On-chip	4.5	5.5	0.28	
		CSTLS10M0G53-B0	10.0	On-chip	On-chip	4.5	5.5	0.29	
		CSTCC10M0G53-R0	10.0	On-chip	On-chip	4.5	5.5	0.30	
		CSTLA12M5T55-B0	12.5	On-chip	On-chip	4.5	5.5	0.33	
Kyocera Corporation		PBRC2.00AR-A	2.0	68	68	1.9	5.5	0.4	
		PBRC4.00HR	4.0	On-chip	On-chip	2.7	5.5	0.3	
		PBRC6.00HR	6.0	On-chip	On-chip	2.7	5.5	0.2	
		SSR8.00CR-S24	8.0	On-chip	On-chip	4.5	5.5	0.3	
		SSR12.50CR-S24	12.5	On-chip	On-chip	4.5	5.5	0.3	
	TDK	FCR4.0MC5	4.0	On-chip	On-chip	2.7	5.5	0.30	
		FCR6.0MC5	6.0	On-chip	On-chip	2.7	5.5	0.22	
		FCR8.0MC5	8.0	On-chip	On-chip	4.5	5.5	0.3	
		FCR10.0MC5	10.0	On-chip	On-chip	4.5	5.5	0.20	

\star Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=1.9$ to 5.5 V , $\left.\mathrm{Vss}_{\mathrm{Ss}}=\mathrm{AVss}=0 \mathrm{~V}\right)(1 / 3)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL1	Note 1	$2.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0		0.2 VDD	
	Vاเ2	P00 to P06, P20, P22, P33, P34, P70, P72, \qquad P100 to P103, RESET	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0		0.15 VDD	
	Vıı3	P90 to P95 (N-ch open drain)	$2.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		$0.3 \mathrm{~V}_{\text {D }}$	V
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0		$0.2 \mathrm{~V}_{\text {D }}$	
	VIL4	P10 to P17, P130, P131	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		0.3 V D	V
			$1.9 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.2 \mathrm{~V}$	0		0.2 VDD	
	VIL5	X1, X2, XT1, XT2	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		0.2 VDD	V
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0		$0.1 \mathrm{~V}_{\mathrm{DD}}$	
	VIL6	P25, P27	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		$0.3 \mathrm{~V}_{\text {D }}$	V
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	
Input voltage, high	$\mathrm{V}_{\mathbf{H + 1}}$	Note 1	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.7 V DD		VDD	V
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0.8 V DD		VDD	
	V_{1+2}	P00 to P06, P20, P22, P33, P34, P70, P72, \qquad P100 to P103, RESET	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.8 V DD		VDD	v
			$1.9 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.2 \mathrm{~V}$	0.85Vdd		Vdo	
	$\mathrm{V}_{\mathbf{1 H}}$	P90 to P95 (N-ch open drain)	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.7 V DD		12	V
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0.8 VDD		VDD	
	V_{1+4}	P10 to P17, P130, P131	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.7 V DD		VDD	v
			$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.2 \mathrm{~V}$	0.8 VDD		VDD	
	Vін5	X1, X2, XT1, XT2	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.8 VDD		VDD	V
			$1.9 \mathrm{~V} \leq \mathrm{VDD}<2.2 \mathrm{~V}$	0.85 VDD		VDD	
	Vін6	P25, P27	$2.2 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.7 V DD		VDD	V
			$1.9 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.2 \mathrm{~V}$	0.8 VDD		VDD	
Output voltage, Iow	VoL1	For pins other than P40 to P47, P50 to P57, P90 to P95 loL $=1.6 \mathrm{~mA} \mathrm{~A}^{\text {Note } 1}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			0.4	V
		P40 to P47, P50 to P57 loL $=8 \mathrm{~mA}^{\text {Note } 2}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.0	V
		P90 to P95 lol $=15 \mathrm{~mA}$ Note 2	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		0.8	2.0	V
	Vol2	$\mathrm{loL}=400 \mu \mathrm{~A}^{\text {Note } 2}$				0.5	V
Output voltage, high	Voh1	IOH $=-1 \mathrm{~mA}^{\text {Note } 2}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	Vdo-1.0			V
		IOH $=-100 \mu \mathrm{~A}^{\text {Note } 2}$	$1.9 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	V $\mathrm{DD}-0.5$			V
Input leakage current, low	lıL1	V I $=0 \mathrm{~V}$	$\begin{aligned} & \text { Except X1, X2, XT1 } \\ & \text { XT2 } \end{aligned}$			-3	$\mu \mathrm{A}$
	ILı2		X1, X2, XT1, XT2			-20	$\mu \mathrm{A}$
Input leakage current, high	Іıнн	$V_{1}=V_{D D}$	$\begin{aligned} & \text { Except X1, X2, XT1 } \\ & \text { XT2 } \end{aligned}$			3	$\mu \mathrm{A}$
	ІІнг		X1, X2, XT1, XT2			20	$\mu \mathrm{A}$
	ІІнз	$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$ (N -ch open drain)	P90 to P95			20	$\mu \mathrm{A}$
Output leakage current, low	ILoL1	V o $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Output leakage current, high	ILoh1	V O $=\mathrm{V}_{\mathrm{DD}}$				3	$\mu \mathrm{A}$

Notes 1. P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P80 to P87, P120 to P127
2. Per pin

DC Characteristics ($\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AVDD}=1.9$ to 5.5 V , $\left.\mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}\right)(2 / 3)$
(1) μ PD78F4216A, 78F4216AY

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Supply voltage	IdD1	Operation mode	$\mathrm{fxx}=12.5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		17	40	mA
			$\mathrm{fxx}^{\text {c }}$ = $\mathrm{MHz}, \mathrm{VdD}=3.0 \mathrm{~V} \pm 10 \%$		5	17	mA
			$\mathrm{fxx}^{\text {a }}$ 2 MHz, V DD $=2.0 \mathrm{~V} \pm 5 \%$		2	10	mA
	IdD2	HALT mode	$\mathrm{fxx}=12.5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		6	20	mA
					2	10	mA
			$\mathrm{fxx}^{\text {a }}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$		0.4	7	mA
	IdD3	IDLE mode	$\mathrm{fxx}^{\text {a }} 12.5 \mathrm{MHz}, \mathrm{V} \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		1	3	mA
			$\mathrm{fxx}=6 \mathrm{MHz}, \mathrm{VdD}=3.0 \mathrm{~V} \pm 10 \%$		0.5	1.3	mA
			$\mathrm{fxx}^{\text {a }}$ 2 MHz, $\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$		0.3	0.9	mA
	IdD4	Operation mode ${ }^{\text {Note }}$	$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		130	500	$\mu \mathrm{A}$
			$\mathrm{fxx}^{\prime}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		90	350	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 2.7 \mathrm{~V}$		80	300	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 1.9 \mathrm{~V} \leq \mathrm{VDD}^{\text {c }} 2.0 \mathrm{~V}$		70	250	$\mu \mathrm{A}$
	IdD5	$\begin{aligned} & \text { HALT } \\ & \text { mode }^{\text {Note }} \end{aligned}$	$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{VdD}=5.0 \mathrm{~V} \pm 10 \%$		60	200	$\mu \mathrm{A}$
			$\mathrm{fxx}^{\prime}=32 \mathrm{kHz}, \mathrm{VdD}=3.0 \mathrm{~V} \pm 10 \%$		20	160	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 2.0 \mathrm{~V} \leq \mathrm{VDD} \leq 2.7 \mathrm{~V}$		15	120	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 1.9 \mathrm{~V} \leq \mathrm{VDD}<2.0 \mathrm{~V}$		10	100	$\mu \mathrm{A}$
	Idod	IDLE mode ${ }^{\text {Note }}$	$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		50	190	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		15	150	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 2.0 \mathrm{~V} \leq \mathrm{VDD} \leq 2.7 \mathrm{~V}$		12	110	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 1.9 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.0 \mathrm{~V}$		7	90	$\mu \mathrm{A}$
Data retention voltage	Voddr	HALT, IDLE modes		1.9		5.5	V
Data retention current	IdDDR	STOP mode	$\mathrm{VDD}=2.0 \mathrm{~V} \pm 5 \%$		2	10	$\mu \mathrm{A}$
			V DD $=5.0 \mathrm{~V} \pm 10 \%$		10	50	$\mu \mathrm{A}$
Pull-up resistor	RL	V I $=0 \mathrm{~V}$		10	30	100	$\mathrm{k} \Omega$

Note When main system clock is stopped and subsystem clock is operating.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AVDD}=1.9$ to 5.5 V , $\left.\mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}\right)(3 / 3)$
(2) $\mu \mathrm{PD} 78 \mathrm{~F} 4218 \mathrm{~A}, 78 \mathrm{~F} 4218 \mathrm{AY}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Supply voltage	IdD1	Operation mode	$\mathrm{fxx}^{\text {c }} 12.5 \mathrm{MHz}, \mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		19	40	mA
			$\mathrm{ffxx}=6 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		6	17	mA
			$\mathrm{fxx}^{\text {a }}=3 \mathrm{MHz}, \mathrm{VDD}=2.0 \mathrm{~V} \pm 5 \%$		2	10	mA
	IdD2	HALT mode	$\mathrm{fxx}^{\text {a }}=12.5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		7	20	mA
			$\mathrm{fxx}=6 \mathrm{MHz}, \mathrm{V} \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$		2	10	mA
			$\mathrm{fxx}^{\text {a }} 3 \mathrm{MHz}, \mathrm{VDD}=2.0 \mathrm{~V} \pm 5 \%$		0.5	7	mA
	IdD3	IDLE mode			1	3	mA
			$\mathrm{ffx}=6 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.5	1.3	mA
			$\mathrm{fxx}^{\text {a }} 3 \mathrm{MHz}, \mathrm{VDD}=2.0 \mathrm{~V} \pm 5 \%$		0.3	0.9	mA
	IDD4	Operation mode ${ }^{\text {Note }}$	$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		140	500	$\mu \mathrm{A}$
			$\mathrm{fxx}^{\text {a }}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V} \pm 10 \%$		100	350	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$		90	300	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$		80	250	$\mu \mathrm{A}$
	Ido5	HALT mode ${ }^{\text {Note }}$	$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		60	200	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		20	160	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$		15	120	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$		10	100	$\mu \mathrm{A}$
	Ido6	$\begin{array}{\|l} \text { IDLE } \\ \text { mode }^{\text {Note }} \end{array}$	$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		50	190	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		15	150	$\mu \mathrm{A}$
			$\mathrm{fxx}=32 \mathrm{kHz}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$		12	110	$\mu \mathrm{A}$
			$\mathrm{fxx}^{\prime}=32 \mathrm{kHz}, 1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$		7	90	$\mu \mathrm{A}$
Data retention voltage	Vddor	HALT, IDLE	modes	1.9		5.5	V
Data retention current	IdDDR	STOP mode	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$		2	10	$\mu \mathrm{A}$
			V $\mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		10	50	$\mu \mathrm{A}$
Pull-up resistor	RL	V I $=0 \mathrm{~V}$		10	30	100	$\mathrm{k} \Omega$

Note When main system clock is stopped and subsystem clock is operating.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AVdD}=1.9$ to $5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$)
(1) Read/write operation (1/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	tcyk	$4.5 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$	80			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	160			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	320			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	500			ns
Address setup time (to ASTB \downarrow)	tsast	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$	$(0.5+a) T-20$			ns
		$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	$(0.5+a) T-40$			ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$	$(0.5+a) T-80$			$n s$
Address hold time (from ASTB \downarrow)	thstla	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$	0.5T-19			ns
		VdD $=3.0 \mathrm{~V} \pm 10 \%$	0.5T-24			ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-34			ns
ASTB high-level width	twsth	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10 \%$	$(0.5+a) T-17$			ns
		$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$	$(0.5+a) T-40$			ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$	$(0.5+\mathrm{a}) \mathrm{T}-110$			ns
Address hold time (from $\overline{\mathrm{RD}} \uparrow$)	thra	$\mathrm{V} D \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$	0.5T-14			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	0.5T-14			ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-14			ns
Delay time from address to $\overline{\mathrm{RD}} \downarrow$	tdar	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10 \%$	$(1+a) T-24$			ns
		$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$	$(1+a) T-35$			ns
		$V_{D D}=2.0 \mathrm{~V} \pm 5 \%$	$(1+a) T-80$			ns
Address float time (from $\overline{\mathrm{RD}} \downarrow$)	trar	V DD $=5.0 \mathrm{~V} \pm 10 \%$			0	ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$			0	ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$			0	ns
Data input time from address	tDaid	$\mathrm{V} D \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$			$(2.5+a+n) T-37$	ns
		$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$			$(2.5+a+n) T-52$	ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$			$(2.5+a+n) T-120$	ns
Data input time from ASTB \downarrow	tDStid	V DD $=5.0 \mathrm{~V} \pm 10 \%$			$(2+n) T-35$	ns
		$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$			$(2+n) T-50$	ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$			$(2+n) T-80$	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	tDRID	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$			$(1.5+n) T-40$	ns
		$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$			$(1.5+n) T-50$	ns
		$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V} \pm 5 \%$			$(1.5+n) T-90$	ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tostr	$\mathrm{V} D \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-20			ns
Data hold time (from $\overline{\mathrm{RD}} \uparrow$)	thrid	V $D=5.0 \mathrm{~V} \pm 10 \%$	0			ns
		$V_{\text {dD }}=3.0 \mathrm{~V} \pm 10 \%$	0			ns
		$V_{\text {dD }}=2.0 \mathrm{~V} \pm 5 \%$	0			ns

Remark T : tcyk $=1 / \mathrm{fxx}$ (fxx: main system clock frequency)
a: 1 (during address wait), otherwise, 0
n : Number of waits ($\mathrm{n} \geq 0$)
(1) Read/write operation (2/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Address active time from $\overline{\mathrm{RD}} \uparrow$	tora	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.5T-2			ns
		$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	0.5T-12			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-35			ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to ASTB \uparrow	torst	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-40			ns
$\overline{\mathrm{RD}}$ low-level width	twri	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) \mathrm{T}-25$			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) \mathrm{T}-30$			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$(1.5+n) \mathrm{T}-25$			ns
Address active time from $\overline{\mathrm{WR}} \uparrow$	towa	V DD $=5.0 \mathrm{~V} \pm 10 \%$	$0.5 \mathrm{~T}-2$			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	0.5T-12			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-35			ns
Delay time from address to $\overline{\mathrm{WR}} \downarrow$	tdaw	V DD $=5.0 \mathrm{~V} \pm 10 \%$	(1+a) T-24			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	$(1+a) T-34$			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$(1+a) T-70$			ns
Address hold time (from $\overline{\mathrm{WR}} \uparrow$)	thwa	V DD $=5.0 \mathrm{~V} \pm 10 \%$	0.5T-14			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	0.5T-14			ns
		$\mathrm{VDD}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-14			ns
Delay time from ASTB \downarrow to data output	tostod	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$			$0.5 \mathrm{~T}+15$	ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$			$0.5 \mathrm{~T}+30$	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			$0.5 \mathrm{~T}+240$	ns
Delay time from $\overline{\mathrm{WR}} \downarrow$ to data output	towod	V DD $=5.0 \mathrm{~V} \pm 10 \%$			0.5T-30	ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$			0.5T-30	ns
		V DD $=2.0 \mathrm{~V} \pm 5 \%$			0.5T-30	ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tostw	$\mathrm{V} D=5.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-20			ns
Data setup time (to $\overline{\mathrm{WR}} \uparrow$)	tsoowr	V DD $=5.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) \mathrm{T}-20$			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) T-25$			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$(1.5+n) \mathrm{T}-70$			ns
Data hold time (from $\overline{\mathrm{WR}} \uparrow$)	thwod	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$	0.5T-14			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	0.5T-14			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-50			ns
Delay time from $\overline{\mathrm{WR}} \uparrow$ to ASTB \uparrow	towst	V DD $=5.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	0.5T-9			ns
		V DD $=2.0 \mathrm{~V} \pm 5 \%$	0.5T-30			ns
$\overline{\mathrm{WR}}$ low-level width	twwL	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) \mathrm{T}-25$			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	$(1.5+n) \mathrm{T}-30$			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$(1.5+n) \mathrm{T}-30$			ns

Remark T : tcyk $=1 / \mathrm{fxx}$ (fxx: main system clock frequency)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$
(1) Read/write operation (3/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay time from address to EXA \downarrow	tadexd	V $\mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$	0			ns
		VDD $=3.0 \mathrm{~V} \pm 10 \%$	0			ns
		$V_{D D}=2.0 \mathrm{~V} \pm 5 \%$	0			ns
Delay time from EXA \downarrow to ASTB \downarrow	textah	V DD $=5.0 \mathrm{~V} \pm 10 \%$	0.5T-20			ns
		$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$	0.5T-30			ns
		$V_{D D}=2.0 \mathrm{~V} \pm 5 \%$	0.5T-40			ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to EXA \uparrow	texrds	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$	0			ns
		$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	0			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	0			ns
Delay time from $\overline{\mathrm{WR}} \uparrow$ to EXA \uparrow	texwds	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$	T			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	T			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	T			ns
Delay time from EXA \uparrow to ASTB \uparrow	texadr	V DD $=5.0 \mathrm{~V} \pm 10 \%$	0.5T			ns
		$V_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$	0.5T			ns
		$V_{D D}=2.0 \mathrm{~V} \pm 5 \%$	0.5T			ns

Remark T: $\mathrm{tcyk}^{\prime}=1 / \mathrm{f}_{\mathrm{xx}}$ (fxx : main system clock frequency)
(2) External wait timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input time from address to $\overline{\text { WAIT }} \downarrow$	tdawt	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$			$(2+a) T-40$	ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$			(2+a) T-60	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			$(2+a) T-300$	ns
Input time from ASTB \downarrow to $\overline{\text { WAIT }} \downarrow$	tostwt	V DD $=5.0 \mathrm{~V} \pm 10 \%$			$1.5 \mathrm{~T}-40$	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$			1.5T-60	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			1.5T-260	ns
Hold time from ASTB \downarrow to $\overline{\text { WAIT }}$	thstwt	V DD $=5.0 \mathrm{~V} \pm 10 \%$	$(0.5+n) \mathrm{T}+5$			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	$(0.5+n) T+10$			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$(0.5+n) T+30$			ns
Delay time from ASTB \downarrow to WAIT \uparrow	tostwth	V DD $=5.0 \mathrm{~V} \pm 10 \%$			$(1.5+n) T-40$	ns
		V $\mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$			$(1.5+n) T-60$	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			$(1.5+n) \mathrm{T}-90$	ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }} \downarrow$	torwt	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$			T-40	ns
		V $\mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$			T-60	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			T-70	ns
Hold time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT } ~} \downarrow$	thrwt	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	$\mathrm{nT}+5$			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	$\mathrm{nT}+10$			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$\mathrm{nT}+30$			ns
Delay time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }} \uparrow$	torwth	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$			$(1+n) T-40$	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$			$(1+n) T-60$	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			$(1+n) T-90$	ns
Data input time from $\overline{\text { WAIT }} \uparrow$	towtio	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$			0.5T-5	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$			0.5T-10	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			0.5T-30	ns
Delay time from $\overline{\text { WAIT }} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	towtr	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.5 T			ns
		V $\mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$	0.5 T			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$0.5 \mathrm{~T}+5$			ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	towtw	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.5T			ns
		V $\mathrm{VD}=3.0 \mathrm{~V} \pm 10 \%$	0.5T			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$0.5 \mathrm{~T}+5$			ns
Input time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	towwtL	V DD $=5.0 \mathrm{~V} \pm 10 \%$			T-40	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$			T-60	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			T-90	ns
Hold time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\text { WAIT }}$	thwwt	V DD $=5.0 \mathrm{~V} \pm 10 \%$	$\mathrm{nT}+5$			ns
		V DD $=3.0 \mathrm{~V} \pm 10 \%$	$\mathrm{nT}+10$			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$	$\mathrm{nT}+30$			ns
Delay time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\text { WAIT } \uparrow}$	towwth	V DD $=5.0 \mathrm{~V} \pm 10 \%$			$(1+n) \mathrm{T}-40$	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$			$(1+n) T-60$	ns
		$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 5 \%$			$(1+n) T-90$	ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$
(3) Serial operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AVDD}=1.9$ to 5.5 V , V ss $=\mathrm{AV}$ ss $\left.=0 \mathrm{~V}\right)(1 / 2)$
(a) 3-wire serial I/O mode ($\overline{\mathrm{SCK}}$: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy1	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	640			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	1,280			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2,560			ns
		$1.9 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.0 \mathrm{~V}$	4,000			ns
$\overline{\text { SCK }}$ high-/low-level width	tkH , tкL1	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	270			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	590			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1,180			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	1,900			ns
SI setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik 1	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	10			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	30			ns
SI hold time (from $\overline{\text { SCK } \uparrow \text {) }}$	tнкк1		40			ns
Delay time from $\overline{\text { SCK }} \downarrow$ to SO output	toso1				30	ns
Hold time from $\overline{\mathrm{SCK}} \uparrow$ to SO output	thsol		$\begin{aligned} & \text { tксү1/2- } \\ & 50 \\ & \hline \end{aligned}$			ns

(b) 3-wire serial I/O mode ($\overline{\mathbf{S C K}}$: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксү2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	640			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,280			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2,560			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	4,000			ns
$\overline{\text { SCK }}$ high-/low-level width	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \mathrm{~L} \\ & \text { tKL2 } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	320			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	640			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1,280			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	2,000			ns
SI setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik2	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	10			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	30			ns
SI hold time (from $\overline{\text { SCK }} \uparrow$)	tHIK2		40			ns
Delay time from $\overline{\text { SCK }} \downarrow$ to SO output	toso2				30	ns
Hold time from $\overline{\text { SCK }} \uparrow$ to SO output	thsoz		$\begin{aligned} & \text { tкč2/2 - } \\ & 50 \end{aligned}$			ns

(c) UART mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксуз	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	417			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	833			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1,667			ns
ASCK high-/low-level width	$\begin{aligned} & \text { tкнз } \\ & \text { tкцз } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	208			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	416			ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	833			ns

(3) Serial Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=1.9$ to $\left.5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}\right)(2 / 2)$
(d) $I^{2} C$ bus mode

Parameter		Symbol	Standard Mode		High-Speed Mode		Unit	
		MIN.	MAX.	MIN.	MAX.			
SCL0 clock frequency			fclk	0	100	0	400	kHz
Bus free time (between stop and start conditions)		tbuF	4.7	-	1.3	-	$\mu \mathrm{s}$	
Hold time ${ }^{\text {Note1 }}$		thd : STA	4.0	-	0.6	-	$\mu \mathrm{s}$	
Low-level width of SCLO clock		tıow	4.7	-	1.3	-	$\mu \mathrm{s}$	
High-level width of SCLO clock		thigh	4.0	-	0.6	-	$\mu \mathrm{s}$	
Setup time of start/restart conditions		tsu : STA	4.7	-	0.6	-	$\mu \mathrm{s}$	
Data hold time	When using CBUScompatible master	thD : DAT	5.0	-	-	-	$\mu \mathrm{s}$	
	When using $\mathrm{I}^{2} \mathrm{C}$ bus		$0^{\text {Note } 2}$	-	$0^{\text {Note } 2}$	$0.9{ }^{\text {Note } 3}$	$\mu \mathrm{s}$	
Data setup time		tsu : DAT	250	-	$100^{\text {Note } 4}$	-	ns	
Rise time of SDAO and SCLO signals		tR	-	1,000	$20+0.1 \mathrm{Cb}^{\text {Note } 5}$	300	ns	
Fall time of SDAO and SCLO signals		$\mathrm{tF}_{\text {F }}$	-	300	$20+0.1 \mathrm{Cb}^{\text {Note } 5}$	300	ns	
Setup time of stop condition		tsu : sto	4.0	-	0.6	-	$\mu \mathrm{s}$	
Pulse width of spike restricted by input filter		tsp	-	-	0	50	ns	
Load capacitance of each bus line		Cb	-	400	-	400	pF	

Notes 1. For the start condition, the first clock pulse is generated after the hold time.
2. To fill the undefined area of the SCLO falling edge, it is necessary for the device to provide an internal SDA0 signal (on Virmin.) with at least 300 ns of hold time.
3. If the device does not extend the SCLO signal low-level hold time (thow), only the maximum data hold time thD: DAT needs to be satisfied.
4. The high-speed mode $I^{2} C$ bus can be used in a standard mode $I^{2} C$ bus system. In this case, the conditions described below must be satisfied.

- If the device does not extend the SCLO signal low-level hold time tsu : DAT $\geq 250 \mathrm{~ns}$
- If the device extends the SCLO signal low-level hold time Be sure to transmit the data bit to the SDAO line before the SCLO line is released (trmax. + tsu : DAT $=1,000+250=1,250 \mathrm{~ns}$ by standard mode $\mathrm{I}^{2} \mathrm{C}$ bus specification)

5. Cb : Total capacitance per bus line (unit: pF)
(4) Clock output operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{AVDD}=1.9$ to 5.5 V , V ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PCL cycle time	toycl	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{nT}$	80		31,250	ns
PCL high-/low-level width	$\begin{aligned} & \text { tcle } \\ & \text { tclu } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, 0.5 \mathrm{~T}-10$	30		15,615	ns
PCL rise/fall time	tcLR tcla	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			5	ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			10	ns
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			20	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)
n : Divided frequency ratio set by software in the CPU
(-When using the main system clock: $\mathrm{n}=1,2,4,8,16,32,64,128$

- When using the subsystem clock: $\mathrm{n}=1$
(5) Other operations ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=\mathrm{AV} \mathrm{DD}=1.9$ to 5.5 V , $\mathrm{V} s \mathrm{~s}=\mathrm{AVss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twNIL twNiH		10			$\mu \mathrm{~s}$
Interrupt input high-/low-level width	twitL twith	INTPO to INTP6	100			ns
$\overline{\text { RESET }}$ high-/low-level width	twRSL twRSH		10			$\mu \mathrm{~s}$

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=1.9$ to 5.5 V , $\mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bits
Overall error ${ }^{\text {Notes 1, } 2}$		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & 2.2 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{REFO}} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{AV} \mathrm{VD}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$			± 1.2	\%FSR
		$\begin{aligned} & 1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V} \\ & 1.9 \mathrm{~V} \leq \mathrm{AV}_{\text {REFO }} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{~A} \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$			± 1.6	\%FSR
Conversion time	tconv		14		144	$\mu \mathrm{s}$
Sampling time	tsamp		24/fxx			$\mu \mathrm{s}$
Analog input voltage	VIAN		AVss		AVrefo	V
Reference voltage	AVrefo		1.9		AVdD	V
Resistance between $A V_{\text {refo }}$ and $A V s s$	Ravrefo	When not A/D converting		40		$\mathrm{k} \Omega$

Notes 1. Quantization error ($\pm 1 / 2$ LSB) is not included.
2. Overall error is indicated as a ratio to the full-scale value.

Remark fxx: Main system clock frequency

D/A Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=1.9$ to 5.5 V , $\left.\mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	Bits
Overall error ${ }^{\text {Notes 1, }} \mathbf{2}$		$\begin{aligned} & \mathrm{R}=10 \mathrm{M} \Omega, 2.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{DD}}, \\ & 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~A} \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$				± 0.6	\%FSR
		$\begin{aligned} & \mathrm{R}=10 \mathrm{M} \Omega, 1.9 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{REF} 1} \leq \mathrm{V}_{\mathrm{DD}}, \\ & 1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.0 \mathrm{~V}, \mathrm{AV} \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$				± 1.2	\%FSR
Settling time		Load conditions:$\mathrm{C}=30 \mathrm{pF}$	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq 5.5 \mathrm{~V}$			10	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1}<4.5 \mathrm{~V}$			15	$\mu \mathrm{s}$
			$1.9 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1}<2.7 \mathrm{~V}$			20	$\mu \mathrm{s}$
Output resistance	Ro	DACSO, 1 = 55 H			8		k Ω
Reference voltage	AVref1			1.9		VdD	V
AV ${ }_{\text {geF } 1}$ current	Aldef1	For only 1 channel				2.5	mA

Notes 1. Quantization error ($\pm 1 / 2$ LSB) is not included.
2. Overall error is indicated as a ratio to the full-scale value.

Flash Memory Programming Characteristics
($\mathrm{T}_{\mathrm{A}}=10$ to $40^{\circ} \mathrm{C}$, $\mathrm{VdD}=\mathrm{AVdD}=1.9$ to 5.5 V , Vss $=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{~V} P \mathrm{P}=9.7$ to 10.3 V)
(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fxx	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2		12.5	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	2		6.25	MHz
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2		3.125	MHz
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	2	2	2	MHz
Oscillation frequency ${ }^{\text {Note } 1}$	fx	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	4		25	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	4		12.5	MHz
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	4		6.25	MHz
		$1.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	4	4	4	MHz
Supply voltage ${ }^{\text {Note } 2}$	VDD		1.9		5.5	V
	VPPL	When detecting VPP low level	0		0.2 VDD	V
	VPP	When detecting VPP high level	0.9 VDD		1.1 VDD	V
	VPPH	When detecting VPP high voltage	9.7	10	10.3	V
Write time	Cwrt		$20^{\text {Note } 3}$			times
Operating temperature ${ }^{\text {Note } 4}$	TA		-40		85	${ }^{\circ} \mathrm{C}$
Storage temperature ${ }^{\text {Note } 5}$	Tstg		-65		125	${ }^{\circ} \mathrm{C}$
Programming temperature	Tprg		10		40	${ }^{\circ} \mathrm{C}$

Notes 1. When rewriting without using handshake mode
2. μ PD78F4216A, 78F4216AY K rank: $2.7 \mathrm{~V} \leq \mathrm{V} D<5.5 \mathrm{~V}, \mathrm{~V} P=10.3 \pm 0.3 \mathrm{~V}$

E rank: 2.7 V $\leq \mathrm{V}$ DD $<5.5 \mathrm{~V}$, VPP $=10.0 \pm 0.3 \mathrm{~V}$
3. Operation cannot be guaranteed when the number of rewrites exceeds 20. In the case of K rank products of the μ PD78F4216A and 78F4216AY, operation cannot be guaranteed when the number of rewrites exceeds 5 .
4. μ PD78F4216A, 78F4216AY K rank: $T_{A}=-10$ to $+60^{\circ} \mathrm{C}$
5. $\mu \mathrm{PD} 78 \mathrm{~F} 4216 \mathrm{~A}, 78 \mathrm{~F} 4216 \mathrm{AY} \mathrm{K}$ rank: $\mathrm{TA}_{\mathrm{A}}=-10$ to $+80^{\circ} \mathrm{C}$

Cautions 1. If writing is not successful in the initial write operation, execute the program command again, and then execute the verify command to confirm that the write operation has been completed normally (K.E.P rank of the μ PD78F4216A and 78F4216AY).
2. Handshake mode is supported by products as shown below.

- μ PD78F4216A, 78F4216AY: Products with other than K, E rank
- μ PD78F4218A, 78F4218AY: Products with any rank

Remarks 1. The fifth letter from the left in the lot number indicates the rank of the product.
2. After executing the program command, execute the verify command to confirm that the write operation has been completed normally.
3. Handshake mode is the CSI write mode that uses P24. Handshake mode can be used with the PGFR3 and FL-PR3.
4. The I rank only applies to ES (engineering sample) products. Because these products are engineering samples, their operation cannot be guaranteed.
(2) Write erase characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Vpp supply voltage	VPP2	During flash memory programming	9.7	10.0	10.3	V
Vod supply current	IdD	When $\mathrm{V}_{\text {PP }}=\mathrm{V}_{\text {PP2 }}$, $\mathrm{fxx}=12.5 \mathrm{MHz}$			40	mA
VPP supply current	IPP	When VPP = VPP2			100	mA
Step erase time	Ter	Note 1		0.2		S
Overall erase time per area	Tera	When step erase time $=0.2 \mathrm{~s}^{\text {Note 2 }}$			20	s/area
Write-back time	T_{wb}	Note 3		50		ms
Number of write-backs per writeback command	Cwb	When write-back time $=50 \mathrm{~ms}^{\text {Note } 4}$			60	times/ write-back command
Number of erase/write-backs	Cerwb				16	times
Step write time	Twr	Note 5		50		$\mu \mathrm{s}$
Overall write time per word	Twrw	When step write time $=50 \mu$ s $(1 \text { word }=1 \text { byte })^{\text {Note } 6}$	50		500	$\mu \mathrm{s} /$ word
Number of rewrites per area	Cerwr	1 erase +1 write after erase $=1$ rewrite $^{\text {Note } 7}$	20			times/ area

Notes 1. The recommend setting value for the step erase time is 0.2 s .
2. The rewrite time before erasure and the erase verify time (write-back time) is not included.
3. The recommended setting value for the write-back time is 50 ms .
4. Write-back is executed once by the issuance of the write-back command. Therefore, the retry times must be the maximum value minus the number of commands issued.
5. Recommended value of the step write time is $50 \mu \mathrm{~s}$.
6. The actual write time per word is 100μ s longer. The internal verify time during or after a write is not included.
7. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
Example: P: Write, E: Erase
Shipped product $\rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites
Shipped product $\rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites

Remarks 1. The range of the operating clock during flash memory programming is the same as the range during normal operation.
2. When using the PG-FP3, the time parameters that need to be downloaded from the parameter files for write/erase are automatically set. Unless otherwise directed, do not change the set values.

Data Retention Characteristics ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AVdD}=1.9$ to 5.5 V , Vss $=\mathrm{AVss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	Voddr	STOP mode	1.9		5.5	V
Data retention current	IdDDR	V ${ }_{\text {DDER }}=5.0 \mathrm{~V} \pm 10 \%$		10	50	$\mu \mathrm{A}$
		V $\mathrm{DDDR}=2.0 \mathrm{~V} \pm 5 \%$		2	10	$\mu \mathrm{A}$
VDD rise time	trvo		200			$\mu \mathrm{s}$
Vod fall time	trvo		200			$\mu \mathrm{s}$
Vod hold time (from STOP mode setting)	thvo		0			ms
STOP release signal input time	torel		0			ms
Oscillation stabilization wait time	twait	Crystal resonator	30			ms
		Ceramic resonator	5			ms
Low-level input voltage	VIL	RESET, P00/INTP0 to P06/INTP6	0		$0.1 V_{\text {ddor }}$	V
High-level input voltage	VIH		0.9 V dode		Vddor	V

AC Timing Test Points

Timing Waveforms
(1)

Read operations

Remark The signal is output from pins A 0 to A 7 when P 80 to P 87 are unused.

(2) Write operation

Remark The signal is output from pins A0 to A 7 when P 80 to P 87 are unused.

Serial Operation

(1) 3-wire serial I/O mode

(2) UART mode

(3) $I^{2} C$ bus mode (μ PD78F4216AY, 78F4218AY only)

Clock Output Timing

Interrupt Input Timing

INTP0 to INTP6

Reset Input Timing

RESET

Clock Timing

Data Retention Characteristics

8. PACKAGE DRAWINGS

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

note
Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	16.00 ± 0.20
B	14.00 ± 0.20
C	14.00 ± 0.20
D	16.00 ± 0.20
F	1.00
G	1.00
H	$0.22_{-0.04}^{+0.05}$
I	0.08
J	0.50 (T.P.)
K	1.00 ± 0.20
L	0.50 ± 0.20
M	$0.17_{-0}^{+0.03}$
N	0.08
P	1.40 ± 0.05
Q	0.10 ± 0.05
R	$3^{\circ}+7_{-3}^{\circ}$
S	1.60 MAX.
S100GC-50-8EU, 8EA-2	

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

100-PIN PLASTIC QFP (14x20)

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	23.6 ± 0.4
B	20.0 ± 0.2
C	14.0 ± 0.2
D	17.6 ± 0.4
F	0.8
G	0.6
H	0.30 ± 0.10
I	0.15
J	0.65 (T.P.)
K	1.8 ± 0.2
L	0.8 ± 0.2
M	$0.15_{-0}^{+0.10}$
N	0.10
P	2.7 ± 0.1
Q	0.1 ± 0.1
R	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.
	P100GF-65-3BA1-4

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

\star 9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F4218AY should be soldered and mounted under the following recommended conditions.
For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 9-1. Surface Mounting Type Soldering Conditions

(1) μ PD78F4216AGC-8EU:100-pin plastic LQFP (fine pitch) (14×14) μ PD78F4218AGC-8EU:100-pin plastic LQFP (fine pitch) (14×14) μ PD78F4216AYGC-8EU:100-pin plastic LQFP (fine pitch) (14×14) μ PD78F4218AYGC-8EU: 100-pin plastic LQFP (fine pitch) (14×14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-107-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).
(2) μ PD78F4216AGF-3BA:100-pin plastic QFP (14×20)
μ PD78F4216AYGF-3BA:100-pin plastic QFP (14×20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

(3) μ PD78F4218AGF-3BA:100-pin plastic QFP (14×20)
μ PD78F4218AYGF-3BA:100-pin plastic QFP (14×20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)	IR35-207-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)	VP15-207-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature), Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)	WS60-207-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark The label on the dry pack was correct originally.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F4218AY. Also refer to (5) Cautions on using development tools.
(1) Language processing software

RA78K4	Assembler package common to 78K/IV Series
CC78K4	C compiler package common to 78K/IV Series
DF784218	Device file common to μ PD784216A, 784216AY, 784218A, 784218AY Subseries
CC78K4-L	C compiler library source file common to 78K/IV Series

(2) Flash memory writing tools

Flashpro III (Part number: FL-PR3, PG-FP3)	Dedicated flash programmer for microcontroller incorporating flash memory
FA-100GF	Adapter for writing 100-pin plastic QFP (GF-3BA type) flash memory. Connection must be performed in accordance with the target product.
FA-100GC	Adapter for writing 100-pin plastic LQFP (GC-8EU type) flash memory. Connection must be performed in accordance with the target product.

(3) Debugging tools

- When IE-78K4-NS in-circuit emulator is used

IE-78K4-NS	In-circuit emulator common to 78K/IV Series
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter required when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and cable when PC-9800 series notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter required when using IBM PC/AT ${ }^{\text {TM }}$ compatibles as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Interface adapter required when using PC that incorporates PCI bus as host machine
IE-784225-NS-EM1	Emulation board to emulate μ PD784216A, 784216AY, 784218A, 784218AY Subseries
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
NP-100GC	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the NP-100GC and a target system board on which a 100-pin plastic LQFP (GC-8EU type) can be mounted
ID78K4-NS	Integrated debugger for IE-78K4-NS
SM78K4	System simulator common to 78K/IV Series
DF784218	Device file common to μ PD784216A, 784216AY, 784218A, 784218AY Subseries

- When IE-784000-R in-circuit emulator is used

IE-784000-R	In-circuit emulator common to 78K/IV Series
IE-70000-98-IF-C	Interface adapter required when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter required when using IBM PC/AT and compatibles as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Interface adapter required when using PC that incorporates PCI bus as host machine
IE-78000-R-SV3	Interface adapter and cable required when EWS is used as host machine
IE-784225-NS-EM1	Emulation board to emulate μ PD784216A, 784216AY, 784218A, 784218AY Subseries
IE-784000-R-EM	Emulation board common to 78K/IV Series
IE-78K4-R-EX3	Emulation probe conversion board required when using IE-784225-NS-EM1 on IE-784000-R.
EP-784218GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EP-78064GC-R	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the EP-78064GC-R and a target system board on which a $100-p i n ~ p l a s t i c ~ L Q F P ~(G C-8 E U ~ t y p e) ~ c a n ~ b e ~ m o u n t e d ~$
ID78K4	Integrated debugger for IE-784000-R
SM78K4	System simulator common to 78K/IV Series
DF784218	Device file common to μ PD784216A, 784216AY, 784218A, 784218AY Subseries

(4) Real-time OS

RX78K4	Real-time OS for 78K/IV Series

(5) Cautions on using development tools

- The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784218.
- The CC78K4 and RX78K4 are used in combination with the RA78K4 and DF784218.
- The FL-PR3, FA-100GF, FA-100GC, NP-100GF, and NP-100GC are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191).
- The TGC-100SDW is a product made by TOKYO ELETECH CORPORATION.

For further information, contact Daimaru Kogyo, Ltd.
Tokyo Electronic Division (TEL: +81-3-3820-7112)
Osaka Electronic Division (TEL: +81-6-6244-6672)

- For third party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machine and OS suitable for each software are as follows.

	PC	EWS
	PC-9800 series [Windows ${ }^{\text {TM }}$] IBM PC/AT and compatibles [Japanese/English Windows]	$\begin{gathered} \text { HP9000 Series } 700^{\mathrm{TM}}\left[\mathrm{HP}-\mathrm{UX}^{\top \mathrm{TM}}\right] \\ \text { SPARCstation }^{\top \mathrm{M}}\left[\text { SunOS }^{\mathrm{TM}}, \text { Solaris }^{\mathrm{TM}}{ }^{3}\right] \end{gathered}$
RA78K4	\checkmark Note	\checkmark
CC78K4	$\checkmark^{\text {Note }}$	\checkmark
ID78K4-NS	\checkmark	-
ID78K4	\checkmark	\checkmark
SM78K4	\checkmark	-
RX78K4	$\downarrow^{\text {Note }}$	\checkmark

Note DOS-based software
(6) Notes on target system design

The following shows a diagram of the connection conditions between the emulation probe, conversion socket, and conversion connector. Design your system making allowances for conditions such as the form of parts mounted on the target system as shown below.

Figure A-1. Distance Between In-Circuit Emulator and Conversion Socket

Notes 1. Pin 1 position on NP-100GF
2. Pin 1 position on NP-100GC

Figure A-2. Conditions for Target System Connection (1)

Remark The NP-100GF is a product of Naito Densei Machida Mfg. Co., Ltd.

Figure A-3. Conditions for Target System Connection (2)

Remark The NP-100GC is a product of Naito Densei Machida Mfg. Co., Ltd.
The TGC-100SDW is a product of Tokyo Eletech Corporation.

^ APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, $784218 A Y ~ D a t a ~ S h e e t ~$	U14121E
μ PD78F4216A, 78F4218A, 78F4216AY, 78F4218AY Data Sheet	This document
μ PD784216A, 784218A, 784216AY, 784218AY Subseries User's Manual - Hardware	U13570E
78K/IV Series User's Manual - Instruction	U10905E
$78 K / I V$ Series Application Note - Software Basics	U10095E

Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K4 Assembler Package	Operation	U15254E
	Language	U15255E
	Structured Assembler Preprocessor	U11743E
CC78K4 C Compiler	Operation	U15557E
	Language	U15556E
SM78K4 System Simulator Ver. 1.40 or Later Windows Based	Reference	U10093E
SM78K Series System Simulator Ver. 1.40 or Later	External Part User Open Interface Specification	U10092E
ID78K Series Integrated Debugger Ver. 2.30 or Later Windows Based	Operation	U15185E
RX78K4 Real-time OS	Fundamentals	U10603E
	Installation	U10604E
Project Manager Ver 3.12 or Later Windows Based		U14610E

Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K4-NS In-Circuit Emulator	U13356E
IE-784225-NS-EM1 Emulation Board	U13742E
IE-784000-R In-Circuit Emulator	U12903E
IE-784218-R-EM1 Emulation Board	U12155E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products \& Packages -	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.
[MEMO]

NOTES FOR CMOS DEVICES

PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[^0]
Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829
NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 0301
Fax: 0211-65 03327

- Sucursal en España

Madrid, Spain
Tel: 091-504 2787
Fax: 091-504 2860

- Succursale Française

Vélizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899

- Filiale Italiana

Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

- Branch The Netherlands

Eindhoven, The Netherlands
Tel: 040-244 5845
Fax: 040-244 4580

- Branch Sweden

Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

- United Kingdom Branch

Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138
Fax: 021-6841-1137
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

Purchase of NEC $I^{2} C$ components conveys a license under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} C$ Standard Specification as defined by Philips.

- The information in this document is current as of May, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: IEBus and FIP are trademarks of NEC Corporation.
 Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
 PC/AT is a trademark of International Business Machines Corporation.
 HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
 SPARCstation is a trademark of SPARC International, Inc.
 Solaris and SunOS are trademarks of Sun Microsystems, Inc.

