

MOS INTEGRATED CIRCUIT

μ PD78F4216A, 78F4218A, 78F4216AY, 78F4218AY

16-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F4216A/78F4218A and 78F4216AY/78F4218AY are products of μ PD784216A/784218A, 784216AY/784218AY Subseries in the 78K/IV Series.

The μ PD78F4216A/78F4218A have flash memory in place of the internal ROM of the μ PD784216A/784218A. The incorporation of flash memory allows a program to be written or erased while mounted on the target board.

The μ PD78F4216AY/78F4218AY are based on the μ PD78F4216A/78F4218A Subseries with the addition of a multimaster-supporting I²C bus interface.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD784216A, 784218A, 784216AY, 784218AY Subseries Hardware User's Manual: U13570E 78K/IV Series Instructions User's Manual: U10905Ε

FEATURES

- · Pin compatible with the mask ROM products
- Flash memory: 128 KB (μPD78F4216A/78F4216AY)

256 KB (μPD78F4218A/78F4218AY)

- Internal RAM: 8,192 bytes (μPD78F4216A/78F4216AY)
 - 12,800 bytes (μPD78F4218A/78F4218AY)
- Supply voltage: VDD = 1.9 to 5.5 V

APPLICATIONS

Cellular phones, PHS, cordless telephones, CD-ROM, AV equipment

Unless otherwise specified, references in this document to the μ PD78F4218AY refer to the μ PD78F4216A, 78F4216AY, and 78F4218AY.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ORDERING INFORMATION

Part Number	Package	Internal ROM (Bytes)	Internal RAM (Bytes)
μPD78F4216AGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	128 K	8,192
μPD78F4216AGF-3BA	100-pin plastic QFP (14×20)	128 K	8,192
μPD78F4218AGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	256 K	12,800
μPD78F4218AGF-3BA	100-pin plastic QFP (14×20)	256 K	12,800
μPD78F4216AYGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	128 K	8,192
μPD78F4216AYGF-3BA	100-pin plastic QFP (14 × 20)	128 K	8,192
μPD78F4218AYGC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	256 K	12,800
μPD78F4218AYGF-3BA	100-pin plastic QFP (14 × 20)	256 K	12,800

78K/IV SERIES LINEUP

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

OVERVIEW OF FUNCTIONS (1/2)

	Part Number	μPD78F42	.16A,		μPD78F4218A,			
Item		μPD78F4216AY			μPD78F4218AY			
Number of basic i	nstructions (mnemonics)	113						
General-purpose	registers	8 bits \times 16 registers \times 8 banks, or 16 bits \times 8 registers \times 8 banks (memory mapping)						
Minimum instructi	Minimum instruction execution time		 160 ns (@fxx = 12.5 MHz operation with main system clock) 61 μs (@fxτ = 32.768 kHz operation with subsystem clock) 					
Internal	Flash memory	128 KB		256 KB				
memory	RAM	8,192 bytes		12,800 byt	es			
Memory space		1 MB with program and	data spaces combi	ined				
I/O ports Total		86						
	CMOS input	8						
	CMOS I/O	72						
	N-ch open-drain I/O	6						
Pins with	Pins with pull-up resistor	70						
additional	LED direct drive output	22						
functions Note 1	Middle-voltage pin	6						
Real-time output port		4 bits × 2 or 8 bits × 1						
Timer/event counter		Timer/event counter: (16-bit)	Timer counter \times 1 Capture/compare register \times 2		Pulse output • PPG output • Square wave output • One-shot pulse output			
		Timer/event counter 1: (8-bit)	$\label{eq:timer_counter} \begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$		Pulse output • PWM output • Square wave output			
		Timer/event counter 2: (8-bit)	Timer counter \times 1 Compare register \times 1		Pulse output • PWM output • Square wave output			
		Timer/event counter 5: (8-bit)	$\begin{tabular}{ll} Timer counter \times 1 \\ Compare register \times 1 \end{tabular}$		Pulse output • PWM output • Square wave output			
		Timer/event counter 6: (8-bit)	$\begin{tabular}{ll} Timer counter \times 1 \\ Compare register \times 1$		Pulse output • PWM output • Square wave output			
		Timer/event counter 7: (8-bit)	Timer counter \times 1 Compare register \times 1		Pulse output • PWM output • Square wave output			
		Timer/event counter 8: (8-bit)	Timer counter \times 1 Compare register \times 1		Pulse output • PWM output • Square wave output			
Serial interface		UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, multimaster supporting I ² C bus ^{Note 2}): 1 channel						
A/D converter		8-bit resolution \times 8 channels						
D/A converter		8-bit resolution × 2 char	nnels					

Notes 1. Pins with additional functions are included with the I/O pins.

2. μ PD78F4216AY, 78F4218AY only

OVERVIEW OF FUNCTIONS (2/2)

	Part Number	μPD78F4216A,	μPD78F4218A,		
Item		μPD78F4216AY μPD78F4218AY			
Clock output		Selectable from fxx, fxx/2, fxx/2 ² , fxx/2 ³ ,	fxx/2 ⁴ , fxx/2 ⁵ , fxx/2 ⁶ , fxx/2 ⁷ , fxт		
Buzzer output		Selectable from fxx/2 ¹⁰ , fxx/2 ¹¹ , fxx/2 ¹² ,	fxx/2 ¹³		
Watch timer		1 channel			
Watchdog timer		1 channel			
Standby		HALT/STOP/IDLE modes In low power consumption mode (with subsystem clock): HALT/IDLE modes			
Interrupt	Hardware sources	29 (internal: 20, external: 9)			
	Software sources	BRK instruction, BRKCS instruction, operand error			
	Non-maskable	Internal: 1, external: 1			
	Maskable	Internal: 19, external: 8			
		 4 programmable priority levels 3 service modes: Vectored interrupt/macro service/context switching 			
Supply voltage		V _{DD} = 1.9 to 5.5 V			
Package		100-pin plastic LQFP (fine pitch) (14 \times 14) 100-pin plastic QFP (14 \times 20)			

CONTENTS

١.	SUBSERIESSUBSERIES	-
	SUBSENIES	<i>1</i>
2.	PIN CONFIGURATION (TOP VIEW)	8
3.	BLOCK DIAGRAM	11
4.	PIN FUNCTIONS	12
	4.1 Port Pins	12
	4.2 Non-Port Pins	14
	4.3 Pin I/O Circuits and Recommended Connections of Unused Pins	16
5.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	20
6.	PROGRAMMING FLASH MEMORY	22
	6.1 Selecting Communication Mode	22
	6.2 Flash Memory Programming Function	23
	6.3 Connecting Flashpro III	24
7.	ELECTRICAL SPECIFICATIONS	25
8.	PACKAGE DRAWINGS	50
9.	RECOMMENDED SOLDERING CONDITIONS	52
ΑF	PPENDIX A. DEVELOPMENT TOOLS	54
ΔΕ	PPENDIX B RELATED DOCUMENTS	50

1. DIFFERENCES BETWEEN MODELS IN μ PD784216A/784216AY, 784218A/784218AY SUBSERIES

The only difference between the μ PD784214A, 784215A, 784216A, 784217A, and 784218A lies in the internal memory capacity.

The μ PD784214AY, 784215AY, 784216AY, 784217AY, and 784218AY are models with the addition of an I²C bus control function.

The μ PD78F4216A, 78F4216AY, 78F4218A, and 78F4218AY are provided with a 128 KB/256 KB flash memory instead of the mask ROM of the above models.

These differences are summarized in Table 1-1.

Table 1-1. Differences Between Models in µPD784216A/784216AY, 784218A/784218AY Subseries

Part Number Item	μPD784214A, μPD784214AY	μPD784215A, μPD784215AY	μPD784216A, μPD784216AY	μPD784217A, μPD784217AY	μPD784218A, μPD784218AY	μPD78F4216A, μPD78F4216AY	μPD78F4218A, μPD78F4218AY	
Internal ROM	96 KB (Mask ROM)	128 KB (Mas	128 KB (Mask ROM)		256 KB (Mask ROM)	128 KB (Flash memory)	256 KB (Flash memory)	
Internal RAM	3,584 bytes	5,120 bytes	8,192 bytes	12,800 bytes		8,192 bytes	12,800 bytes	
Internal memory size switching register (IMS)	Not provided					Provided ^{Note}		
ROM correction	Not provided			Provided		Not provided	Provided	
External access status function	Not provided			Provided		Not provided	Provided	
Supply voltage	V _{DD} = 1.8 to 5	.5 V		$V_{DD} = 1.9 \text{ to } 5.5 \text{ V}$			5.5 V	
Electrical specifications	Refer to the d	Refer to the data sheet for each device.						
Recommended soldering conditions								
EXA pin	Not provided			Provided		Not provided	Provided	
TEST pin	Provided					Not provided		
V _{PP} pin	Not provided					Provided		

Note The internal flash memory capacity and internal RAM capacity can be changed using the internal memory size switching register (IMS).

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (not engineering samples) of the mask ROM version.

2. PIN CONFIGURATION (TOP VIEW)

100-pin plastic LQFP (fine pitch) (14 × 14)
 μPD78F4216AGC-8EU, μPD78F4218AGC-8EU, μPD78F4216AYGC-8EU, μPD78F4218AYGC-8EU

Notes 1. Connect the VPP pin to Vss directly or via a pull-down resistor in normal operation mode. Connect the VPP pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 k Ω .

- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.
- **4.** The SCL0 and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.
- **5.** The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

100-pin plastic QFP (14 × 20)
 μPD78F4216AGF-3BA, μPD78F4218AGF-3BA, μPD78F4216AYGF-3BA, μPD78F4218AYGF-3BA

Notes 1. Connect the VPP pin to Vss directly or via a pull-down resistor in normal operation mode. Connect the VPP pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 k Ω .

- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.
- **4.** The SCL0 and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.
- 5. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

 A0 to A19:
 Address bus
 P120 to P127:
 Port 12

 AD0 to AD7:
 Address/data bus
 P130, P131:
 Port 13

ANI0 to ANI7: Analog input PCL: Programmable clock

ANO0, ANO1: Analog output RD: Read strobe
ASCK1, ASCK2: Asynchronous serial clock RESET: Reset

ASCK1, ASCK2: Asynchronous serial clock RESET: Reset

ASTB: Address strobe RTP0 to RTP7: Real-time output port

AVDD: Analog power supply RxD1, RxD2: Receive data

AVREFO, AVREF1: Analog reference voltage SCK0 to SCK2: Serial clock

Analog reference voltage SCK0 to SCK2: SCL0^{Note 1}: AVss: Analog ground Serial clock SDA0^{Note 1}: BUZ: Buzzer clock Serial data EXANote 2: External access status output SI0 to SI2: Serial input INTP0 to INTP6: Interrupt from peripherals SO0 to SO2: Serial output

NMI: Non-maskable interrupt TI00, TI01,

 P00 to P06:
 Port 0
 TI1, TI2, TI5 to TI8:
 Timer input

 P10 to P17:
 Port 1
 TO0 to TO2, TO5 to TO8:
 Timer output

 P20 to P27:
 Port 2
 TxD1, TxD2:
 Transmit data

 P30 to P37:
 Port 3
 VDD:
 Power supply

P40 to P47: Port 4 VPP: Programming power supply

 P50 to P57:
 Port 5
 Vss:
 Ground

 P60 to P67:
 Port 6
 WAIT:
 Wait

P70 to P72: Port 7 WR: Write strobe
P80 to P87: Port 8 X1, X2: Crystal (main system of

P80 to P87: Port 8 X1, X2: Crystal (main system clock)
P90 to P95: Port 9 XT1, XT2: Crystal (subsystem clock)

P100 to P103: Port 10

Notes 1. The SCL0 and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.

2. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

3. BLOCK DIAGRAM

Notes 1. This function supports the I^2 C bus interface and is available in the μ PD78F4216AY, 78F4218AY only.

2. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

4. PIN FUNCTIONS

4.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function			
P00	I/O	INTP0	Port 0 (P0):			
P01	1	INTP1	• 7-bit I/O port			
P02	1	INTP2/NMI	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip 			
P03	1	INTP3	pull-up resistor can be specified in 1-bit units by a software			
P04	1	INTP4	setting.			
P05	1	INTP5				
P06	1	INTP6				
P10 to P17	Input	ANI0 to ANI7	Port 1 (P1): • 8-bit input only port			
P20	I/O	RxD1/SI1	Port 2 (P2):			
P21	1	TxD1/SO1	8-bit I/O port I have fourteen be apposited in 1 bit units.			
P22	1	ASCK1/SCK1	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip 			
P23	1	PCL	pull-up resistor can be specified in 1-bit units by a software			
P24	1	BUZ	setting.			
P25	1	SI0/SDA0 ^{Note 1}				
P26	1	S00				
P27	1	SCK0/SCL0 ^{Note 1}				
P30	I/O	TO0	Port 3 (P3):			
P31		TO1	8-bit I/O port I any to struct our bands and in the inventor			
P32		TO2	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip 			
P33		TI1	pull-up resistor can be specified in 1-bit units by a software			
P34		TI2	setting.			
P35		TI00				
P36		TI01				
P37]	EXA ^{Note 2}				
P40 to P47	I/O	AD0 to AD7	Port 4 (P4): • 8-bit I/O port • Input/output can be specified in 1-bit units. • When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting. • LEDs can be driven directly.			
P50 to P57	I/O	A8 to A15	Port 5 (P5): • 8-bit I/O port • Input/output can be specified in 1-bit units. • When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting. • LEDs can be driven directly.			

Notes 1. This SDA0 and SCL0 are available in the μ PD78F4216AY, 78F4218AY only.

2. This function is available in the μ PD78F4218A, 784218AY only.

4.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6):
P61]	A17	8-bit I/O port Input/output can be appointed in 1 bit units.
P62]	A18	 Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can
P63		A19	be specified by a software setting.
P64]	RD	
P65]	WR	
P66]	WAIT	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7):
P71		TxD2/SO2	 3-bit I/O port Input/output can be specified in 1-bit units.
P72		ASCK2/SCK2	 Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P80 to P87	I/O	A0 to A7	 Port 8 (P8): 8-bit I/O port Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting. The interrupt control flag (KRIF) is set to 1 when a falling edge is detected at a pin of this port.
P90 to P95	I/O	_	Port 9 (P9): N-ch open-drain middle-voltage I/O port 6-bit I/O port Input/output can be specified in 1-bit units. LEDs can be driven directly.
P100	I/O	TI5/TO5	Port 10 (P10):
P101]	TI6/TO6	4-bit I/O port Input/output can be enseified in 1 bit units.
P102]	TI7/TO7	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip
P103		TI8/TO8	pull-up resistor can be specified in 1-bit units by a software setting.
P120 to P127	I/O	RTP0 to RTP7	Port 12 (P12): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by a software setting.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): • 2-bit I/O port • Input/output can be specified in 1-bit units.

4.2 Non-Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
TI00	Input	P35	External count clock input to 16-bit timer counter
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer counter 1
TI2		P34	External count clock input to 8-bit timer counter 2
TI5		P100/TO5	External count clock input to 8-bit timer counter 5
TI6		P101/TO6	External count clock input to 8-bit timer counter 6
TI7		P102/TO7	External count clock input to 8-bit timer counter 7
TI8		P103/TO8	External count clock input to 8-bit timer counter 8
TO0	Output	P30	16-bit timer output (shared by 14-bit PWM output)
TO1		P31	8-bit timer output (shared by 8-bit PWM output)
TO2		P32	
TO5		P100/TI5	
TO6		P101/TI6	
TO7		P102/TI7	
TO8		P103/TI8	
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Input	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SI0	Input	P25/SDA0 ^{Note}	Serial data input (3-wire serial I/O 0)
SI1		P20/RxD1	Serial data input (3-wire serial I/O 1)
SI2		P70/RxD2	Serial data input (3-wire serial I/O 2)
SO0	Output	P26	Serial data output (3-wire serial I/O 0)
SO1		P21/TxD1	Serial data output (3-wire serial I/O 1)
SO2		P71/TxD2	Serial data output (3-wire serial I/O 2)
SDA0 ^{Note}	I/O	P25/SI0	Serial data input/output (I ² C bus)
SCK0		P27/SCL0 ^{Note}	Serial clock input/output (3-wire serial I/O 0)
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O 1)
SCK2		P72/ASCK2	Serial clock input/output (3-wire serial I/O 2)
SCL0 Note		P27/SCK0	Serial clock input/output (I ² C bus)
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTP0		P00	External interrupt request input
INTP1		P01	
INTP2	_	P02/NMI	
INTP3	_	P03	
INTP4		P04	
INTP5		P05	
INTP6		P06	

Note This function is available in the μ PD78F4216AY, 78F4218AY only.

4.2 Non-Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
PCL	Output	P23	Clock output (for trimming main system clock and subsystem clock)
BUZ	Output	P24	Buzzer output
RTP0 to RTP7	Output	P120 to P127	Real-time output port that outputs data in synchronization with trigger
AD0 to AD7	I/O	P40 to P47	Lower address/data bus for expanding memory externally
A0 to A7	Output	P80 to P87	Lower address bus for expanding memory externally
A8 to A15		P50 to P57	Middle address bus for expanding memory externally
A16 to A19		P60 to P63	Higher address bus for expanding memory externally
RD	Output	P64	Strobe signal output for reading from external memory
WR		P65	Strobe signal output for writing to external memory
WAIT	Input	P66	Wait insertion at external memory access
ASTB	Output	P67	Strobe output that externally latches address information output to ports 4 through 6 and 8 to access external memory
EXA ^{Note}	Output	P37	Status signal output at external memory access
RESET	Input	-	System reset input
X1	Input	-	Connecting crystal resonator for main system clock oscillation
X2	_		
XT1	Input	-	Connecting crystal resonator for subsystem clock oscillation
XT2	_		
ANI0 to ANI7	Input	P10 to P17	A/D converter analog input
ANO0, ANO1	Output	P130, P131	D/A converter analog output
AV _{REF0}	_	-	A/D converter reference voltage input
AV _{REF1}			D/A converter reference voltage input
AV _{DD}			A/D converter positive power supply. Connect to VDD.
AVss			GND for A/D converter and D/A converter. Connect to Vss.
V _{DD}			Positive power supply
Vss]		GND
V _{PP}			Flash memory programming mode setting. Applying high-voltage for program write/verify. Connect this pin to Vss directly or via a pull-down resistor in normal operation mode. Connect the VPP pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 $k\Omega$.

Note The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

4.3 Pin I/O Circuits and Recommended Connections of Unused Pins

The I/O circuit type of each pin and recommended connections of unused pins are shown in Table 4-1. For each type of I/O circuit, refer to Figure 4-1.

Table 4-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0	8-N	I/O	Input: Independently connect to Vss via a resistor
P01/INTP1			Output: Leave open
P02/INTP2/NMI			
P03/INTP3 to P06/INTP6			
P10/ANI0 to P17/ANI7	9	Input	Connect to Vss or VDD
P20/RxD1/SI1	10-K	I/O	Input: Independently connect to Vss via a resistor
P21/TxD1/SO1	10-L		Output: Leave open
P22/ASCK1/SCK1	10-K		
P23/PCL	10-L		
P24/BUZ			
P25/SI0/SDA0 ^{Note 1}	10-K		
P26/SO0	10-L		
P27/SCK0/SCL0 ^{Note 1}	10-K		
P30/TO0 to P32/TO2	12-E		
P33/TI1, P34/TI2	8-N		
P35/TI00, P36/TI01	10-M		
P37/EXA ^{Note 2}	12-E		
P40/AD0 to P47/AD7	5-A		
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-N		
P71/TxD2/SO2	10-M		
P72/ASCK2/SCK2	8-N		
P80/A0 to P87/A7	12-E		
P90 to P95	13-D		
P100/TI5/TO5	8-N		
P101/TI6/TO6			
P102/TI7/TO7			
P103/TI8/TO8			
P120/RTP0 to P127/RTP7	12-E		
P130/ANO0, P131/ANO1	12-F		

Notes 1. The SDA0 and SCL0 pins are available in the μ PD78F4216AY, 78F4218AY only.

2. The EXA pin is available in the μ PD78F4218A, 78F4218AY only.

Table 4-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
RESET	2-G	Input	-
XT1	16		Connect to Vss
XT2		-	Leave open
AV _{REF0}	-		Connect to Vss
AV _{REF1}			Connect to V _{DD}
AVDD			
AVss			Connect to Vss
Vpp			Connect this pin to Vss directly or via a pull-down resist in normal operation mode. Connect the VPP pin to Vss via a pull-down resistor in a system in which the on-chip flash memory is written while mounted on the target board. For the pull-down connection, it is recommended to use a resistor with a resistance ranging from 470 Ω to 10 $k\Omega$.

Remark Because the circuit type numbers are standardized among the 78K Series products, they are not sequential in some models (i.e., some circuits are not provided).

Type 2-G Type 10-K V_{DD} Pull-up P-ch enable VDD Data P-ch ⊸IN/OUT Open drain Output disable -N-ch Schmitt-triggered input with hysteresis characteristics Type 10-L Type 5-A $V_{\text{DD}} \\$ Pull-up Pull-up enable enable V_{DD} V_{DD} Data Data P-ch O IN/OUT -○IN/OUT Open drain Output disable Output Vss /// Input enable Type 8-N Type 10-M V_{DD} VDD Pull-up Pull-up enable enable V_{DD} Data P-ch Data → IN/OUT -○IN/OUT Output N-ch Output disable -N-ch disable Vss 7/// V_{DD} Type 12-E Type 9 Pull-up enable Comparator IN O Data -○ IN/OUT V_{REF} Output N-ch (Threshold voltage) disable P-ch ♀ Input Input enable enable

Figure 4-1. Pin I/O Circuits (1/2)

Analog output voltage

N-ch

Figure 4-1. Pin I/O Circuits (2/2)

5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that is set by software and is used to specify a part of the internal memory that is not to be used. By setting this register, the internal memory of the μ PD78F4218AY can be mapped identically to that of a mask ROM version with a different internal memory (ROM and RAM) capacity.

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to FFH.

(1) μPD78F4216A, 78F4216AY

Figure 5-1. Internal Memory Size Switching Register (IMS) Format

Address: 0FFFCH		After reset: FFH		H W				
	7	6 5		4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM capacity selection
0	0	48 KB
0	1	64 KB
1	0	96 KB
1	1	128 KB

RAM1	RAM0	Peripheral RAM capacity selection				
0	0	3,072 bytes				
0	1	4,608 bytes				
1	0	6,114 bytes				
1	1	7,680 bytes				

Caution IMS is not provided on the mask ROM versions (μ PD784214A, 784215A, 784216A, μ PD784214AY, 784215AY, and 784216AY).

Table 5-1 shows the IMS setting values to make the memory mapping the same as that of the mask ROM versions.

Table 5-1. Setting Value of Internal Memory Size Switching Register (IMS)

Target Mask ROM Version	IMS Setting Value
μPD784214A, 784214AY	ECH
μPD784215A, 784215AY	FDH
μPD784216A, 784216AY	FFH

(2) μ PD78F4218A, 78F4218AY

Figure 5-2. Internal Memory Size Switching Register (IMS) Format

Address	: 0FFFCH	Aft	er reset: FF	H W				
	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM capacity selection
0	0	64 KB
0	1	128 KB
1	0	192 KB
1	1	256 KB

RAM1	RAM0	Peripheral RAM capacity selection				
0	0	3,072 bytes				
0	1	6,656 bytes				
1	0	7,168 bytes				
1	1	12,288 bytes				

Caution IMS is not provided on the mask ROM versions (μ PD784217A, 784218A, 784217AY, and 784218AY).

Table 5-2 shows the IMS setting values to make the memory mapping the same as that of the mask ROM versions.

Table 5-2. Setting Value of Internal Memory Size Switching Register (IMS)

Target Mask ROM Version	IMS Setting Value
μPD784217A, 784217AY	EFH
μPD784218A, 784218AY	FFH

6. PROGRAMMING FLASH MEMORY

The flash memory can be written with the μ PD78F4218AY mounted on the target board (on-board). To do so, connect a dedicated flash programmer (Flashpro III (part number: FL-PR3, PG-FP3) to the host machine and target system.

Writing to flash memory can also be performed using flash memory writing adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selecting Communication Mode

To write the flash memory, use Flashpro III by serial communication. Select a serial communication mode from those listed in Table 6-1 in the format shown in Figure 6-1. Each communication mode is selected by the number of VPP pulses shown in Table 6-1.

Communication Mode	Number of Channels	Pins Used ^{Note 1}	Number of VPP Pulses
3-wire serial I/O	3	SCK0/P27/SCL0 ^{Note 2} SO0/P26 S10/P25/SDA0 ^{Note 2}	0
		SCK1/ASCK1/P22 SO1/TxD1/P21 SI1/RxD1/P20	1
		SCK2/ASCK2/P72 SO2/TxD2/P71 SI2/RxD2/P70	2
3-wire serial I/O (handshake ^{Note 3})	1	SCK0/P27/SCL0 ^{Note 2} SO0/P26 SI0/P25/SDA0 ^{Note 2} P24/BUZ	3
UART	2	TxD1/SO1/P21 RxD1/SI1/P20	8
		TxD2/SO2/P71 RxD2/SI2/P70	9

Table 6-1. Communication Modes

Notes 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as that after reset. If the external device connected to each port does not acknowledge the state after reset, pin handling such as connecting to VDD or Vss via a resistor is required.

- **2.** The SCL0 and SDA0 pins are available in the μ PD78F4216AY, 78F4218AY only.
- 3. This mode is available in the μ PD78F4216A and 78F4216AY (other than K, E rank) This mode is available in the μ PD78F4218A and 78F4218AY (all ranks)

Caution Be sure to select a communication mode with the number of VPP pulses shown in Table 6-1.

Figure 6-1. Communication Mode Selecting Format

6.2 Flash Memory Programming Function

The flash memory is written by transferring or receiving commands and data in a selected communication mode. The major functions of flash memory programming are listed in Table 6-2.

Table 6-2. Major Functions of Flash Memory Programming

Function	Description
Area erasure	Erases contents of specified memory area.
Area blank check	Checks erased status of specified area.
Data write	Writes flash memory based on write start address and number of data to be written (in bytes).
Area verify	Compares contents of specified memory area with input data.

Verification for the flash memory entails supplying the data to be verified from an external source via a serial interface, and then outputting the existence of unmatched data to the external source after referencing the areas or all of the data. Consequently, the flash memory is not equipped with a read function, and it is not possible for third parties to read the contents of the flash memory with the use of the verification function.

6.3 Connecting Flashpro III

The Flashpro III and μ PD78F4218AY are connected differently depending on the selected communication mode (3-wire serial I/O or UART). Figures 6-2 to 6-4 show the connections in the respective communication modes.

Figure 6-2. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using 3-Wire Serial I/O 0)

Figure 6-3. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using Handshake)

Figure 6-4. Connection of Flashpro III in UART Mode (When Using UART)

Caution Connect the VPP pin directly to Vss or pull down. For the pull-down connection, use of resistors with a resistance between 470 k Ω and 10 k Ω is recommended.

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbol	Con	ditions	Ratings	Unit		
Supply voltage	V _{DD}			-0.3 to +6.5	V		
	V _{PP}			-0.3 to +10.5	V		
	AV _{DD}				V		
	AVss			-0.3 to Vss + 0.3	V		
	AV _{REF0}	A/D converter reference	voltage input	-0.3 to V _{DD} + 0.3	V		
	AV _{REF1}	D/A converter reference	voltage input	-0.3 to V _{DD} + 0.3	V		
Input voltage	Vıı	Other than P90 to P95		-0.3 to V _{DD} + 0.3	V		
	V _{I2}	P90 to P95	P90 to P95 N-ch open drain		٧		
	Vıз	V _{PP} pin for programming		-0.3 to +10.5	V		
Analog input voltage	Van	Analog input pin		AVss - 0.3 to AVREF0 + 0.3	V		
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V		
Output current, low	lol	Per pin	Per pin		mA		
		Total of P2, P4 to P8		75	mA		
		Total of P0, P3, P9, P10,	P12, P13	75	mA		
		Total of all pins		100	mA		
Output current, high	Іон	Per pin		-10	mA		
		Total of all pins		-50	mA		
Operating ambient	TA	During normal operation		-40 to +85	°C		
temperature		During flash memory programming		During flash memory programming +10 to +40		+10 to +40	°C
Storage temperature	T _{stg}			-65 to +125	°C		

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

*

Operating Conditions

- Operating ambient temperature (T_A): -40 to +85°C
- Supply voltage and clock cycle time: See Figure 7-1
- Operating voltage with subsystem clock operation: $V_{DD} = 1.9$ to 5.5 V

Figure 7-1. Supply Voltage and Clock Cycle Time (CPU Clock Frequency: fcpu)

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	С	f = 1 MHz	Other than Port 9			15	pF
		Unmeasured pins returned to 0 V.	Port 9			20	pF
Output capacitance	Со	returned to 0 V.	Other than Port 9			15	pF
			Port 9			20	pF
I/O capacitance	Сю		Other than Port 9			15	pF
			Port 9			20	pF

Resonator	Recommended Circuit	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation	ENMP = 0	$4.5~V \leq V_{DD} \leq 5.5~V$	4		25	MHz
resonator		frequency		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	
or crystal resonator	X2 X1 Vss	(fx)		2.0 V ≤ V _{DD} < 2.7 V	4		6.25	
				1.9 V ≤ V _{DD} < 2.0 V	4		4	
			ENMP = 1	$4.5~V \leq V_{DD} \leq 5.5~V$	2		12.5	MHz
				2.7 V ≤ V _{DD} < 4.5 V	2		6.25	
	///-			2.0 V ≤ V _{DD} < 2.7 V	2		3.125	
				1.9 V ≤ V _{DD} < 2.0 V	2		2	
External	rnal	X1 input	ENMP = 0	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	4		25	MHz
clock		frequency (fx)		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	
				2.0 V ≤ V _{DD} < 2.7 V	4		6.25	
				1.9 V ≤ V _{DD} < 2.0 V	4		4	
			ENMP = 1	$4.5~V \leq V_{DD} \leq 5.5~V$	2		12.5	MHz
	X2 X1			2.7 V ≤ V _{DD} < 4.5 V	2		6.25	
				2.0 V ≤ V _{DD} < 2.7 V	2		3.125	
	μPD74HCU04			1.9 V ≤ V _{DD} < 2.0 V	2		2	
		X1 input hig width (twxH,			15		250	ns
		X1 input risi	ng/falling	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		5	ns
		time (txR, txF)	2.7 V ≤ V _{DD} < 4.5 V	0		10	
				2.0 V ≤ V _{DD} < 2.7 V	0		20	

Main System Clock Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.

 $1.9 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V}$

- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched back to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	VSS XIZ XII	Oscillation frequency (fxr)		32	32.768	35	kHz
		Oscillation	$4.5~V \leq V_{DD} \leq 5.5~V$		1.2	2	s
	+ +	stabilization time Note	1.9 V ≤ V _{DD} < 4.5 V			10	
External clock	XT2 XT1	XT1 input frequency (fxr)		32		35	kHz
	μPD74HCU04	XT1 input high-/low-level width (txth, txtl)		14.3		15.6	μs

Note Time required to stabilize oscillation after applying supply voltage (VDD).

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, users are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant Main system clock: Ceramic resonator connection ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

(1) μ PD78F4216A, 78F4216AY

Manufacturer	Part Number	Oscillation Frequency		Recommended Circuit Constant		n Voltage nge	Oscillation Stabilization Time
		fxx (MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX.(V)	(MAX.) tost (ms)
Murata Mfg.	CSTS0200MG06	2.0	On-chip	On-chip	1.9	5.5	0.46
Co., Ltd.	CSTCC2.00MG0H6	2.0	On-chip	On-chip	1.9	5.5	0.44
	CSTS0400MG06	4.0	On-chip	On-chip	2.7	5.5	0.44
	CSTCC4.00MG0H6	4.0	On-chip	On-chip	2.7	5.5	0.40
	CSTS0600MG03	6.0	On-chip	On-chip	2.7	5.5	0.25
	CSTCC6.00MG	6.0	On-chip	On-chip	2.7	5.5	0.25
	CSTS0800MG03	8.0	On-chip	On-chip	4.5	5.5	0.24
	CSTCC8.00MG	8.0	On-chip	On-chip	4.5	5.5	0.24
	CST10.0MTW	10.0	On-chip	On-chip	4.5	5.5	0.30
	CST10.0MTW093	10.0	On-chip	On-chip	4.5	5.5	0.30
	CSTCC10.0MG	10.0	On-chip	On-chip	4.5	5.5	0.25
	CSTCC10.0MG93	10.0	On-chip	On-chip	4.5	5.5	0.25
	CST12.5MTW	12.5	On-chip	On-chip	4.5	5.5	0.30
	CST12.5MTW093	12.5	On-chip	On-chip	4.5	5.5	0.30
	CSTCV12.5MTJ0C4	12.5	On-chip	On-chip	4.5	5.5	0.25
Kyocera Corp.	PBRC4.00HR	4.0	On-chip	On-chip	2.7	5.5	0.3
	PBRC4.00GR	4.0	33	33	2.7	5.5	0.3
	KBR-4.0MKC	4.0	On-chip	On-chip	2.7	5.5	0.3
	KBR-4.0MSB	4.0	33	33	2.7	5.5	0.3
	PBRC8.00HR	8.0	On-chip	On-chip	4.5	5.5	0.3
	PBRC8.00GR	8.0	33	33	4.5	5.5	0.3
	KBR-8.0MKC	8.0	On-chip	On-chip	4.5	5.5	0.3
	KBR-8.0MSB	8.0	33	33	4.5	5.5	0.3
	PBRC10.00BR-A	10.0	On-chip	On-chip	4.5	5.5	0.2
	PBRC12.50BR-A	12.5	On-chip	On-chip	4.5	5.5	0.2
TDK	FCR4.0MC5	4.0	On-chip	On-chip	2.7	5.5	0.17
	FCR6.0MC5	6.0	On-chip	On-chip	2.7	5.5	0.15
	FCR8.0MC5	8.0	On-chip	On-chip	4.5	5.5	0.15

★ Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

^

(2) μPD78F4218A, 78F4218AY

	Manufacturer	Manufacturer Part Number		Recommended Circuit Constant		Oscillatio Rai	n Voltage nge	Oscillation Stabilization Time
			fxx (MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX.(V)	(MAX.) tost (ms)
	Murata Mfg.	CSTS2.00MG040	2.0	On-chip	On-chip	1.9	5.5	0.72
	Co., Ltd.	CSTLS2M00G56-B0	2.0	On-chip	On-chip	1.9	5.5	0.48
		CSTCC2M00G56-R0	2.0	On-chip	On-chip	1.9	5.5	0.50
		CSTLS4M00G56-B0	4.0	On-chip	On-chip	2.7	5.5	0.47
		CSTCR4M00G55-R0	4.0	On-chip	On-chip	2.7	5.5	0.45
		CSTLS6M00G56-B0	6.0	On-chip	On-chip	2.7	5.5	0.48
		CSTCR6M00G55-R0	6.0	On-chip	On-chip	2.7	5.5	0.45
		CSTLS8M00G53-B0	8.0	On-chip	On-chip	4.5	5.5	0.30
		CSTCC8M00G53-R0	8.0	On-chip	On-chip	4.5	5.5	0.28
		CSTLS10M0G53-B0	10.0	On-chip	On-chip	4.5	5.5	0.29
		CSTCC10M0G53-R0	10.0	On-chip	On-chip	4.5	5.5	0.30
		CSTLA12M5T55-B0	12.5	On-chip	On-chip	4.5	5.5	0.33
*	Kyocera	PBRC2.00AR-A	2.0	68	68	1.9	5.5	0.4
	Corporation	PBRC4.00HR	4.0	On-chip	On-chip	2.7	5.5	0.3
		PBRC6.00HR	6.0	On-chip	On-chip	2.7	5.5	0.2
		SSR8.00CR-S24	8.0	On-chip	On-chip	4.5	5.5	0.3
		SSR12.50CR-S24	12.5	On-chip	On-chip	4.5	5.5	0.3
*	TDK	FCR4.0MC5	4.0	On-chip	On-chip	2.7	5.5	0.30
		FCR6.0MC5	6.0	On-chip	On-chip	2.7	5.5	0.22
		FCR8.0MC5	8.0	On-chip	On-chip	4.5	5.5	0.3
		FCR10.0MC5	10.0	On-chip	On-chip	4.5	5.5	0.20

★ Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$) (1/3)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Input voltage, low	V _{IL1}	Note 1	$2.2~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
			$1.9 \text{ V} \le \text{V}_{DD} < 2.2 \text{ V}$	0		0.2V _{DD}	
	V _{IL2}	P00 to P06, P20, P22, P33,	$2.2~V \leq V_{DD} \leq 5.5~V$	0		0.2V _{DD}	V
		P34, P70, P72, P100 to P103, RESET	1.9 V ≤ V _{DD} < 2.2 V	0		0.15V _{DD}	
	V _{IL3}	P90 to P95	$2.2~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
		(N-ch open drain)	$1.9 \text{ V} \le \text{V}_{DD} < 2.2 \text{ V}$	0		0.2V _{DD}	
	V _{IL4}	P10 to P17, P130, P131	$2.2~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
			$1.9 \text{ V} \le \text{V}_{DD} < 2.2 \text{ V}$	0		0.2V _{DD}	
	V _{IL5}	X1, X2, XT1, XT2	$2.2~V \leq V_{DD} \leq 5.5~V$	0		0.2V _{DD}	V
			$1.9 \text{ V} \le \text{V}_{DD} < 2.2 \text{ V}$	0		0.1V _{DD}	
	V _{IL6}	P25, P27	$2.2~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
			$1.9 \text{ V} \le \text{V}_{DD} < 2.2 \text{ V}$	0		0.2V _{DD}	
Input voltage, high	V _{IH1}	Note 1	$2.2~V \leq V_{DD} \leq 5.5~V$	0.7V _{DD}		V _{DD}	٧
			1.9 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
	V _{IH2}	P00 to P06, P20, P22, P33,	$2.2 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.8V _{DD}		V _{DD}	V
		P34, P70, P72, P100 to P103, RESET	1.9 V ≤ V _{DD} < 2.2 V	0.85V _{DD}		V _{DD}	
	V _{IH3}	P90 to P95	$2.2~V \leq V_{DD} \leq 5.5~V$	0.7V _{DD}		12	V
		(N-ch open drain)	1.9 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
	V _{IH4}	P10 to P17, P130, P131	$2.2~V \leq V_{DD} \leq 5.5~V$	0.7V _{DD}		V _{DD}	٧
			1.9 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
	V _{IH5}	X1, X2, XT1, XT2	$2.2 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.8V _{DD}		V _{DD}	٧
			1.9 V ≤ V _{DD} < 2.2 V	0.85V _{DD}		V _{DD}	
	V _{IH6}	P25, P27	$2.2 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.7V _{DD}		V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
Output voltage, low	V _{OL1}	For pins other than P40 to P47, P50 to P57, P90 to P95 loL = 1.6 mA ^{Note 1}	$4.5~V \leq V_{DD} \leq 5.5~V$			0.4	V
		P40 to P47, P50 to P57 lo _L = 8 mA ^{Note 2}	$4.5~V \leq V_{DD} \leq 5.5~V$			1.0	V
		P90 to P95 lo _L = 15 mA ^{Note 2}	$4.5~V \leq V_{DD} \leq 5.5~V$		0.8	2.0	V
	V _{OL2}	IoL = 400 μA ^{Note 2}	L			0.5	V
Output voltage, high	V _{OH1}	Iон = -1 mA ^{Note 2}	$4.5~V \leq V_{DD} \leq 5.5~V$	V _{DD} – 1.0			V
		$I_{OH} = -100 \ \mu A^{Note 2}$	1.9 V ≤ V _{DD} ≤ 5.5 V	V _{DD} - 0.5			V
Input leakage current, low	ILIL1	V1 = 0 V	Except X1, X2, XT1 XT2			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
Input leakage current, high	Ішн	VI = VDD	Except X1, X2, XT1, XT2			3	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μΑ
	Ішнз	V _I = 12 V (N-ch open drain)	P90 to P95			20	μA
Output leakage current, low	ILOL1	Vo = 0 V	•			-3	μA
Output leakage current, high	Ісонт	Vo = V _{DD}				3	<i>μ</i> Α

Notes 1. P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P80 to P87, P120 to P127

2. Per pin

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V) (2/3)

(1) μ PD78F4216A, 78F4216AY

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	I _{DD1}	Operation	$f_{XX} = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		17	40	mA
		mode	fxx = 6 MHz, V _{DD} = 3.0 V ±10%		5	17	mA
			fxx = 2 MHz, V _{DD} = 2.0 V ±5%		2	10	mA
	I _{DD2}	HALT mode	$f_{XX} = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		6	20	mA
			$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		2	10	mA
			$f_{XX} = 2 \text{ MHz}, V_{DD} = 2.0 \text{ V} \pm 5\%$		0.4	7	mA
	I _{DD3}	IDLE mode	$f_{XX} = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		1	3	mA
			$f_{XX} = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		0.5	1.3	mA
			fxx = 2 MHz, V _{DD} = 2.0 V ±5%		0.3	0.9	mA
	I _{DD4}	Operation	$f_{XX} = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		130	500	μΑ
		mode ^{Note}	$f_{XX} = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		90	350	μΑ
			$f_{XX} = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} \le 2.7 \text{ V}$		80	300	μΑ
			$f_{XX} = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		70	250	μΑ
	I _{DD5}	HALT mode ^{Note}	$f_{XX} = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		60	200	μΑ
			$f_{XX} = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		20	160	μΑ
			$f_{XX} = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} \le 2.7 \text{ V}$		15	120	μΑ
			$f_{XX} = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		10	100	μΑ
	I _{DD6}	IDLE	$f_{XX} = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		50	190	μΑ
		mode ^{Note}	fxx = 32 kHz, V _{DD} = 3.0 V ±10%		15	150	μΑ
			$f_{XX} = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} \le 2.7 \text{ V}$		12	110	μΑ
			$fxx = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		7	90	μΑ
Data retention voltage	VDDDR	HALT, IDLE r	nodes	1.9		5.5	V
Data retention current	IDDDR	STOP mode	V _{DD} = 2.0 V ±5%		2	10	μΑ
			V _{DD} = 5.0 V ±10%		10	50	μΑ
Pull-up resistor	RL	Vı = 0 V		10	30	100	kΩ

Note When main system clock is stopped and subsystem clock is operating.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V) (3/3)

(2) μ PD78F4218A, 78F4218AY

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	I _{DD1}	Operation	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		19	40	mA
		mode	$f_{XX} = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		6	17	mA
			$f_{XX} = 3 \text{ MHz}, V_{DD} = 2.0 \text{ V} \pm 5\%$		2	10	mA
	I _{DD2}	HALT mode	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		7	20	mA
			$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		2	10	mA
			$fxx = 3 \text{ MHz}, V_{DD} = 2.0 \text{ V} \pm 5\%$		0.5	7	mA
	I _{DD3}	IDLE mode	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		1	3	mA
			$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		0.5	1.3	mA
			$fxx = 3 \text{ MHz}, V_{DD} = 2.0 \text{ V} \pm 5\%$		0.3	0.9	mA
	I _{DD4}	Operation	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		140	500	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		100	350	μΑ
			$fxx = 32 \text{ kHz}, \ 2.0 \ \text{V} \le \text{V}_{\text{DD}} \le 2.7 \ \text{V}$		90	300	μΑ
			$fxx = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		80	250	μΑ
	I _{DD5}	HALT mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		60	200	μΑ
			$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		20	160	μΑ
			$f_{XX} = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} \le 2.7 \text{ V}$		15	120	μΑ
			$fxx = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		10	100	μΑ
	IDD6	IDLE	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		50	190	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		15	150	μΑ
			$f_{XX} = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} \le 2.7 \text{ V}$		12	110	μΑ
			$fxx = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		7	90	μΑ
Data retention voltage	VDDDR	HALT, IDLE r	nodes	1.9		5.5	٧
Data retention current	Idddr	STOP mode	V _{DD} = 2.0 V ±5%		2	10	μΑ
			V _{DD} = 5.0 V ±10%		10	50	μΑ
Pull-up resistor	R∟	Vı = 0 V		10	30	100	kΩ

Note When main system clock is stopped and subsystem clock is operating.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	t cyk	$4.5~V \leq V_{DD} \leq 5.5~V$	80			ns
		$2.7~V \leq V_{DD} < 4.5~V$	160			ns
		$2.0~V \leq V_{DD} < 2.7~V$	320			ns
		$1.9~V \leq V_{DD} < 2.0~V$	500			ns
Address setup time (to ASTB↓)	t sast	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(0.5 + a)T - 20			ns
		V _{DD} = 3.0 V ±10%	(0.5 + a)T - 40			ns
		V _{DD} = 2.0 V ±5%	(0.5 + a)T - 80			ns
Address hold time (from ASTB \downarrow)	t HSTLA	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 19			ns
		V _{DD} = 3.0 V ±10%	0.5T – 24			ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$	0.5T – 34			ns
ASTB high-level width	t wsTH	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(0.5 + a)T - 17			ns
		V _{DD} = 3.0 V ±10%	(0.5 + a)T - 40			ns
		V _{DD} = 2.0 V ±5%	(0.5 + a)T - 110			ns
Address hold time (from RD↑)	thra	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 14			ns
		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±5%	0.5T – 14			ns
Delay time from address to $\overline{\text{RD}}\!\!\downarrow$	t dar	V _{DD} = 5.0 V ±10%	(1 + a)T – 24			ns
		V _{DD} = 3.0 V ±10%	(1 + a)T – 35			ns
		V _{DD} = 2.0 V ±5%	(1 + a)T - 80			ns
Address float time (from $\overline{RD} \downarrow$)	t far	V _{DD} = 5.0 V ±10%			0	ns
		V _{DD} = 3.0 V ±10%			0	ns
		V _{DD} = 2.0 V ±5%			0	ns
Data input time from address	t DAID	$V_{DD} = 5.0 \text{ V} \pm 10\%$			(2.5 + a + n)T - 37	ns
		V _{DD} = 3.0 V ±10%			(2.5 + a + n)T - 52	ns
		V _{DD} = 2.0 V ±5%			(2.5 + a + n)T - 120	ns
Data input time from ASTB \downarrow	t DSTID	$V_{DD} = 5.0 \text{ V} \pm 10\%$			(2 + n)T - 35	ns
		V _{DD} = 3.0 V ±10%			(2 + n)T - 50	ns
		V _{DD} = 2.0 V ±5%			(2 + n)T - 80	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	t DRID	V _{DD} = 5.0 V ±10%			(1.5 + n)T - 40	ns
		V _{DD} = 3.0 V ±10%			(1.5 + n)T – 50	ns
		V _{DD} = 2.0 V ±5%			(1.5 + n)T – 90	ns
Delay time from ASTB↓ to RD↓	t DSTR	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T – 20			ns
Data hold time (from RD↑)	thrid	V _{DD} = 5.0 V ±10%	0			ns
		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±5%	0			ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

a: 1 (during address wait), otherwise, 0

n: Number of waits $(n \ge 0)$

(1) Read/write operation (2/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Address active time from RD↑	t DRA	V _{DD} = 5.0 V ±10%	0.5T – 2			ns
		V _{DD} = 3.0 V ±10%	0.5T – 12			ns
		V _{DD} = 2.0 V ±5%	0.5T – 35			ns
Delay time from RD↑ to ASTB↑	torst	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T – 40			ns
RD low-level width	twrL	V _{DD} = 5.0 V ±10%	(1.5 + n)T – 25			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n)T - 30			ns
		V _{DD} = 2.0 V ±5%	(1.5 + n)T – 25			ns
Address active time from WR↑	towa	V _{DD} = 5.0 V ±10%	0.5T – 2			ns
		V _{DD} = 3.0 V ±10%	0.5T – 12			ns
		V _{DD} = 2.0 V ±5%	0.5T – 35			ns
Delay time from address to WR↓	tDAW	V _{DD} = 5.0 V ±10%	(1 + a)T – 24			ns
		V _{DD} = 3.0 V ±10%	(1 + a)T – 34			ns
		V _{DD} = 2.0 V ±5%	(1 + a)T – 70			ns
Address hold time (from WR↑)	thwa	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±5%	0.5T – 14			ns
Delay time from ASTB↓ to data	tostod	V _{DD} = 5.0 V ±10%			0.5T + 15	ns
output		V _{DD} = 3.0 V ±10%			0.5T + 30	ns
		V _{DD} = 2.0 V ±5%			0.5T + 240	ns
Delay time from WR↓ to data	towod	V _{DD} = 5.0 V ±10%			0.5T - 30	ns
output		V _{DD} = 3.0 V ±10%			0.5T - 30	ns
		V _{DD} = 2.0 V ±5%			0.5T - 30	ns
Delay time from ASTB↓ to WR↓	tostw	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T – 20			ns
Data setup time (to WR↑)	tsodwr	V _{DD} = 5.0 V ±10%	(1.5 + n)T – 20			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n)T – 25			ns
		V _{DD} = 2.0 V ±5%	(1.5 + n)T - 70			ns
Data hold time (from WR↑)	thwod	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±5%	0.5T - 50			ns
Delay time from WR↑ to ASTB↑	towst	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T – 30			ns
WR low-level width	twwL	V _{DD} = 5.0 V ±10%	(1.5 + n)T – 25			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n)T – 30			ns
i l	l	V _{DD} = 2.0 V ±5%	· · · · · · · · · · · · · · · · · · ·	+ +		+

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

a: 1 (during address wait), otherwise, 0

n: Number of wait states (n \geq 0)

(1) Read/write operation (3/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay time from address to	tadexd	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0			ns
EXA↓		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±5%	0			ns
Delay time from EXA↓ to	t extah	V _{DD} = 5.0 V ±10%	0.5T – 20			ns
ASTB↓		V _{DD} = 3.0 V ±10%	0.5T – 30			ns
		V _{DD} = 2.0 V ±5%	0.5T – 40			ns
Delay time from RD↑ to EXA↑	texrds	V _{DD} = 5.0 V ±10%	0			ns
		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±5%	0			ns
Delay time from WR↑ to EXA↑	texwos	V _{DD} = 5.0 V ±10%	Т			ns
		V _{DD} = 3.0 V ±10%	Т			ns
		V _{DD} = 2.0 V ±5%	Т			ns
Delay time from EXA↑ to	texadr	V _{DD} = 5.0 V ±10%	0.5T			ns
ASTB↑		V _{DD} = 3.0 V ±10%	0.5T			ns
		V _{DD} = 2.0 V ±5%	0.5T			ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

(2) External wait timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input time from address to	t DAWT	$V_{DD} = 5.0 \text{ V} \pm 10\%$			(2 + a)T - 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			(2 + a)T - 60	ns
		V _{DD} = 2.0 V ±5%			(2 + a)T - 300	ns
Input time from ASTB↓ to	tostwt	V _{DD} = 5.0 V ±10%			1.5T – 40	ns
$\overline{WAIT} \downarrow$		V _{DD} = 3.0 V ±10%			1.5T – 60	ns
		V _{DD} = 2.0 V ±5%			1.5T – 260	ns
Hold time from ASTB↓ to WAIT	tнsтwт	V _{DD} = 5.0 V ±10%	(0.5 + n)T + 5			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	(0.5 + n)T + 10			ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$	(0.5 + n)T + 30			ns
Delay time from ASTB↓ to	tostwth	V _{DD} = 5.0 V ±10%			(1.5 + n)T - 40	ns
WAIT↑		V _{DD} = 3.0 V ±10%			(1.5 + n)T - 60	ns
		V _{DD} = 2.0 V ±5%			(1.5 + n)T - 90	ns
Input time from RD↓ to WAIT↓	tDRWTL	$V_{DD} = 5.0 \text{ V} \pm 10\%$			T – 40	ns
		V _{DD} = 3.0 V ±10%			T – 60	ns
		V _{DD} = 2.0 V ±5%			T – 70	ns
Hold time from \overline{RD} ↓ to \overline{WAIT} ↓	thrwt	V _{DD} = 5.0 V ±10%	nT + 5			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	nT + 10			ns
		V _{DD} = 2.0 V ±5%	nT + 30			ns
Delay time from RD↓ to WAIT↑	torwth	$V_{DD} = 5.0 \text{ V} \pm 10\%$			(1 + n)T - 40	ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$			(1 + n)T - 60	ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$			(1 + n)T - 90	ns
Data input time from WAIT↑	towtid	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.5T – 5	ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.5T – 10	ns
		$V_{DD} = 2.0 \text{ V } \pm 5\%$			0.5T - 30	ns
Delay time from WAIT↑ to RD↑	towtr	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T			ns
		$V_{DD} = 2.0 \text{ V } \pm 5\%$	0.5T + 5			ns
Delay time from WAIT↑ to WR↑	towtw	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T			ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$	0.5T + 5			ns
Input time from $\overline{WR} \downarrow$ to $\overline{WAIT} \downarrow$	towwtl	$V_{DD} = 5.0 \text{ V} \pm 10\%$			T – 40	ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$			T – 60	ns
		V _{DD} = 2.0 V ±5%			T – 90	ns
Hold time from WR↓ to WAIT	tнwwт	V _{DD} = 5.0 V ±10%	nT + 5			ns
		V _{DD} = 3.0 V ±10%	nT + 10			ns
		V _{DD} = 2.0 V ±5%	nT + 30			ns
Delay time from WR↓ to WAIT↑	towwth	V _{DD} = 5.0 V ±10%			(1 + n)T - 40	ns
		V _{DD} = 3.0 V ±10%			(1 + n)T - 60	ns
		V _{DD} = 2.0 V ±5%			(1 + n)T - 90	ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

a: 1 (during address wait), otherwise, 0

n: Number of wait states (n \geq 0)

(3) Serial operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$) (1/2)

(a) 3-wire serial I/O mode (SCK: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	640			ns
		2.7 V ≤ V _{DD} < 4.5 V	1,280			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	2,560			ns
		1.9 V ≤ V _{DD} < 2.0 V	4,000			ns
SCK high-/low-level width	t кн1,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	270			ns
	t KL1	2.7 V ≤ V _{DD} < 4.5 V	590			ns
		$2.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	1,180			ns
		1.9 V ≤ V _{DD} < 2.0 V	1,900			ns
SI setup time (to SCK↑)	tsıkı	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	10			ns
		1.9 V ≤ V _{DD} < 2.7 V	30			ns
SI hold time (from SCK↑)	t _{HIK1}		40			ns
Delay time from SCK↓ to SO output	tDSO1				30	ns
Hold time from SCK↑ to SO output	t _{HSO1}		tксу1/2 — 50			ns

(b) 3-wire serial I/O mode (SCK: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	640			ns
		2.7 V ≤ V _{DD} < 4.5 V	1,280			ns
		$2.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	2,560			ns
		1.9 V ≤ V _{DD} < 2.0 V	4,000			ns
SCK high-/low-level width	t _{KH2}	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	320			ns
	t _{KL2}	2.7 V ≤ V _{DD} < 4.5 V	640			ns
		2.0 V ≤ V _{DD} < 2.7 V	1,280			ns
		1.9 V ≤ V _{DD} < 2.0 V	2,000			ns
SI setup time (to SCK↑)	tsık2	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	10			ns
		1.9 V ≤ V _{DD} < 2.7 V	30			ns
SI hold time (from SCK↑)	t _{HIK2}		40			ns
Delay time from SCK↓	t _{DSO2}				30	ns
to SO output						
Hold time from SCK↑	thso2		tkcy2/2 -			ns
to SO output			50			

(c) UART mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t KCY3	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	417			ns
		2.7 V ≤ V _{DD} < 4.5 V	833			ns
		1.9 V ≤ V _{DD} < 2.7 V	1,667			ns
ASCK high-/low-level width	tкнз	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	208			ns
	t KL3	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.5~\textrm{V}$	416			ns
		1.9 V ≤ V _{DD} < 2.7 V	833			ns

(3) Serial Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$) (2/2)

(d) I2C bus mode

	Parameter	Symbol	Standa	ard Mode	High-Spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock	r frequency	fclk	0	100	0	400	kHz
Bus free tir	me (between stop onditions)	tbur	4.7	_	1.3	-	μs
Hold time ^N	ote1	thd:STA	4.0	_	0.6	-	μs
Low-level v	vidth of SCL0 clock	tLOW	4.7	_	1.3	-	μs
High-level	width of SCL0 clock	tніgн	4.0	_	0.6	-	μs
Setup time conditions	of start/restart	tsu:sta	4.7	_	0.6	_	μs
Data hold time	When using CBUS- compatible master	thd : dat	5.0	-	_	-	μs
	When using I ² C bus		0 ^{Note 2}	-	0 ^{Note 2}	0.9 ^{Note 3}	μs
Data setup	time	tsu: DAT	250	_	100 ^{Note 4}	-	ns
Rise time o	of SDA0 and SCL0	tR	-	1,000	20 + 0.1Cb ^{Note 5}	300	ns
Fall time of signals	SDA0 and SCL0	t⊧	-	300	20 + 0.1Cb ^{Note 5}	300	ns
Setup time	of stop condition	tsu:sto	4.0	_	0.6	-	μs
Pulse width by input filt	n of spike restricted er	tsp	-	-	0	50	ns
Load capa	citance of each bus	Cb	-	400	-	400	pF

Notes 1. For the start condition, the first clock pulse is generated after the hold time.

- 2. To fill the undefined area of the SCL0 falling edge, it is necessary for the device to provide an internal SDA0 signal (on VIHmin.) with at least 300 ns of hold time.
- 3. If the device does not extend the SCL0 signal low-level hold time (tLow), only the maximum data hold time thd: DAT needs to be satisfied.
- **4.** The high-speed mode I²C bus can be used in a standard mode I²C bus system. In this case, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low-level hold time $t_{SU\,:\,DAT} \geq 250~ns$
 - If the device extends the SCL0 signal low-level hold time
 Be sure to transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line before the SCL0 line is released (transmit the data bit to the SDA0 line before the SCL0 line before the sclow line before the sclow line before the sclow line before the sclow line before the sclow
- 5. Cb: Total capacitance per bus line (unit: pF)

(4) Clock output operation (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PCL cycle time	tcycL	$4.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ nT}$	80		31,250	ns
PCL high-/low-level width	tcll tclh	$4.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 0.5T - 10$	30		15,615	ns
PCL rise/fall time	tolr	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			5	ns
	tclf	2.7 V ≤ V _{DD} < 4.5 V			10	ns
		1.9 V ≤ V _{DD} < 2.7 V			20	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

n: Divided frequency ratio set by software in the CPU

• When using the main system clock: n = 1, 2, 4, 8, 16, 32, 64, 128

• When using the subsystem clock: n = 1

(5) Other operations ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twnil twnih		10			μs
Interrupt input high-/low-level width	twiтL twiтн	INTP0 to INTP6	100			ns
RESET high-/low-level width	twrsL twrsh		10			μs

A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bits
Overall error Notes 1, 2		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$ $2.2 \text{ V} \leq \text{AV}_{REF0} \leq \text{V}_{DD}, \text{AV}_{DD} = \text{V}_{DD}$			±1.2	%FSR
		$1.9 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$ $1.9 \text{ V} \leq \text{AV}_{\text{REF0}} \leq \text{V}_{\text{DD}}, \text{AV}_{\text{DD}} = \text{V}_{\text{DD}}$			±1.6	%FSR
Conversion time	tconv		14		144	μs
Sampling time	t SAMP		24/fxx			μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		1.9		AV _{DD}	V
Resistance between AVREFO and AVss	Ravref0	When not A/D converting		40		kΩ

Notes 1. Quantization error (±1/2 LSB) is not included.

2. Overall error is indicated as a ratio to the full-scale value.

Remark fxx: Main system clock frequency

D/A Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	C	Conditions			MAX.	Unit
Resolution				8	8	8	Bits
Overall error ^{Notes 1, 2}		1	$R = 10 \text{ M}\Omega, 2.0 \text{ V} \le \text{AV}_{\text{REF1}} \le \text{V}_{\text{DD}},$ $2.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{AV}_{\text{DD}} = \text{V}_{\text{DD}}$			±0.6	%FSR
		$R = 10 \text{ M}\Omega, \ 1.9 \text{ V} \le \text{AV}_{\text{REF1}} \le \text{V}_{\text{DD}},$ $1.9 \text{ V} \le \text{V}_{\text{DD}} \le 2.0 \text{ V}, \ \text{AV}_{\text{DD}} = \text{V}_{\text{DD}}$				±1.2	%FSR
Settling time		Load conditions:	4.5 V ≤ AV _{REF1} ≤ 5.5 V			10	μs
		C = 30 pF	2.7 V ≤ AV _{REF1} < 4.5 V			15	μs
			1.9 V ≤ AV _{REF1} < 2.7 V			20	μs
Output resistance	Ro	DACS0, 1 = 55H			8		kΩ
Reference voltage	AV _{REF1}			1.9		V _{DD}	V
AV _{REF1} current	Alref1	For only 1 channe	I			2.5	mA

Notes 1. Quantization error $(\pm 1/2 \text{ LSB})$ is not included.

2. Overall error is indicated as a ratio to the full-scale value.

Flash Memory Programming Characteristics

 $(T_A = 10 \text{ to } 40^{\circ}\text{C}, V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, V_{PP} = 9.7 \text{ to } 10.3 \text{ V})$

(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fxx	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	2		12.5	MHz
		2.7 V ≤ V _{DD} < 4.5 V	2		6.25	MHz
		2.0 V ≤ V _{DD} < 2.7 V	2		3.125	MHz
		1.9 V ≤ V _{DD} < 2.0 V	2	2	2	MHz
Oscillation frequency ^{Note 1}	fx	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	4		25	MHz
		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	MHz
		2.0 V ≤ V _{DD} < 2.7 V	4		6.25	MHz
		1.9 V ≤ V _{DD} < 2.0 V	4	4	4	MHz
Supply voltageNote 2	V _{DD}		1.9		5.5	V
	V _{PPL}	When detecting VPP low level	0		0.2V _{DD}	V
	V _{PP}	When detecting VPP high level	0.9V _{DD}		1.1V _{DD}	V
	V _{PPH}	When detecting VPP high voltage	9.7	10	10.3	V
Write time	Cwrt		20 ^{Note 3}			times
Operating temperatureNote 4	TA		-40		85	°C
Storage temperatureNote 5	Tstg		-65		125	°C
Programming temperature	T _{PRG}		10		40	°C

Notes 1. When rewriting without using handshake mode

- **2.** μ PD78F4216A, 78F4216AY K rank: 2.7 V \leq V_{DD} < 5.5 V, V_{PP} = 10.3 \pm 0.3 V E rank: 2.7 V \leq V_{DD} < 5.5 V, V_{PP} = 10.0 \pm 0.3 V
- 3. Operation cannot be guaranteed when the number of rewrites exceeds 20. In the case of K rank products of the μ PD78F4216A and 78F4216AY, operation cannot be guaranteed when the number of rewrites exceeds 5.
- **4.** μ PD78F4216A, 78F4216AY K rank: T_A = -10 to +60°C
- **5.** μ PD78F4216A, 78F4216AY K rank: T_A = -10 to +80°C
- Cautions 1. If writing is not successful in the initial write operation, execute the program command again, and then execute the verify command to confirm that the write operation has been completed normally (K.E.P rank of the μPD78F4216A and 78F4216AY).
 - 2. Handshake mode is supported by products as shown below.
 - μPD78F4216A, 78F4216AY: Products with other than K, E rank
 - μPD78F4218A, 78F4218AY: Products with any rank
- **Remarks 1.** The fifth letter from the left in the lot number indicates the rank of the product.
 - 2. After executing the program command, execute the verify command to confirm that the write operation has been completed normally.
 - **3.** Handshake mode is the CSI write mode that uses P24. Handshake mode can be used with the PG-FR3 and FL-PR3.
 - **4.** The I rank only applies to ES (engineering sample) products. Because these products are engineering samples, their operation cannot be guaranteed.

(2) Write erase characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP supply voltage	V _{PP2}	During flash memory programming	9.7	10.0	10.3	V
V _{DD} supply current	IDD	When V _{PP} = V _{PP2} , fxx = 12.5 MHz			40	mA
VPP supply current	IPP	When VPP = VPP2			100	mA
Step erase time	Ter	Note 1		0.2		s
Overall erase time per area	Tera	When step erase time = 0.2 s ^{Note 2}			20	s/area
Write-back time	Twb	Note 3		50		ms
Number of write-backs per write- back command	Cwb	When write-back time = 50 ms ^{Note 4}			60	times/ write-back command
Number of erase/write-backs	Cerwb				16	times
Step write time	Twr	Note 5		50		μs
Overall write time per word	Twrw	When step write time = 50 μ s (1 word = 1 byte) ^{Note 6}	50		500	μs/ word
Number of rewrites per area	Cerwr	1 erase + 1 write after erase = 1 rewrite ^{Note 7}	20			times/ area

- **Notes 1.** The recommend setting value for the step erase time is 0.2 s.
 - 2. The rewrite time before erasure and the erase verify time (write-back time) is not included.
 - 3. The recommended setting value for the write-back time is 50 ms.
 - **4.** Write-back is executed once by the issuance of the write-back command. Therefore, the retry times must be the maximum value minus the number of commands issued.
 - **5.** Recommended value of the step write time is 50 μ s.
 - **6.** The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
 - **7.** When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.

```
Example: P: Write, E: Erase Shipped product \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites Shipped product \rightarrow E\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites
```

- **Remarks 1.** The range of the operating clock during flash memory programming is the same as the range during normal operation.
 - 2. When using the PG-FP3, the time parameters that need to be downloaded from the parameter files for write/erase are automatically set. Unless otherwise directed, do not change the set values.

Data Retention Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP mode	1.9		5.5	V
Data retention current	IDDDR	V _{DDDR} = 5.0 V ±10%		10	50	μΑ
		V _{DDDR} = 2.0 V ±5%		2	10	μΑ
V _{DD} rise time	trvd		200			μs
V _{DD} fall time	trvd		200			μs
V _{DD} hold time (from STOP mode setting)	thvd		0			ms
STOP release signal input time	torel		0			ms
Oscillation stabilization wait time	twait	Crystal resonator	30			ms
		Ceramic resonator	5			ms
Low-level input voltage	VIL	RESET, P00/INTP0 to P06/INTP6	0		0.1VDDDR	V
High-level input voltage	Vıн		0.9VDDDR		VDDDR	V

AC Timing Test Points

Timing Waveforms

(1) Read operations

Remark The signal is output from pins A0 to A7 when P80 to P87 are unused.

(2) Write operation

Remark The signal is output from pins A0 to A7 when P80 to P87 are unused.

Serial Operation

(1) 3-wire serial I/O mode

(2) UART mode

(3) I^2C bus mode (μ PD78F4216AY, 78F4218AY only)

Clock Output Timing

Interrupt Input Timing

Reset Input Timing

Clock Timing

Data Retention Characteristics

8. PACKAGE DRAWINGS

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	16.00±0.20
В	14.00±0.20
С	14.00±0.20
D	16.00±0.20
F	1.00
G	1.00
Н	$0.22^{+0.05}_{-0.04}$
I	0.08
J	0.50 (T.P.)
K	1.00±0.20
L	0.50±0.20
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.40±0.05
Q	0.10±0.05
R	3°+7°
S	1.60 MAX.
S1000	GC-50-8FU, 8FA

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

100-PIN PLASTIC QFP (14x20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	0.8
G	0.6
Н	0.30±0.10
I	0.15
J	0.65 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	$0.15^{+0.10}_{-0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
_	

P100GF-65-3BA1-4

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

★9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F4218AY should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 9-1. Surface Mounting Type Soldering Conditions

(1) μ PD78F4216AGC-8EU:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD78F4218AGC-8EU:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD78F4216AYGC-8EU:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD78F4218AYGC-8EU: 100-pin plastic LQFP (fine pitch) (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD78F4216AGF-3BA:100-pin plastic QFP (14 × 20) μ PD78F4216AYGF-3BA:100-pin plastic QFP (14 × 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

(3) μ PD78F4218AGF-3BA:100-pin plastic QFP (14 × 20) μ PD78F4218AYGF-3BA:100-pin plastic QFP (14 × 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	IR35-207-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	VP15-207-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	WS60-207-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark The label on the dry pack was correct originally.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F4218AY. Also refer to **(5) Cautions on using development tools**.

(1) Language processing software

RA78K4	Assembler package common to 78K/IV Series	
CC78K4	C compiler package common to 78K/IV Series	
DF784218	Device file common to μPD784216A, 784216AY, 784218A, 784218AY Subseries	
CC78K4-L	C compiler library source file common to 78K/IV Series	

(2) Flash memory writing tools

Flashpro III (Part number: FL-PR3, PG-FP3)	Dedicated flash programmer for microcontroller incorporating flash memory
FA-100GF	Adapter for writing 100-pin plastic QFP (GF-3BA type) flash memory. Connection must be performed in accordance with the target product.
FA-100GC	Adapter for writing 100-pin plastic LQFP (GC-8EU type) flash memory. Connection must be performed in accordance with the target product.

(3) Debugging tools

• When IE-78K4-NS in-circuit emulator is used

IE-78K4-NS	In-circuit emulator common to 78K/IV Series	
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS	
IE-70000-98-IF-C	Interface adapter required when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)	
IE-70000-CD-IF-A	PC card and cable when PC-9800 series notebook PC is used as host machine (PCMCIA socket supported)	
IE-70000-PC-IF-C	Interface adapter required when using IBM PC/AT TM compatibles as host machine (ISA bus supported)	
IE-70000-PCI-IF-A	Interface adapter required when using PC that incorporates PCI bus as host machine	
IE-784225-NS-EM1	Emulation board to emulate μ PD784216A, 784216AY, 784218A, 784218AY Subseries	
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)	
NP-100GC	Emulation probe for 100-pin plastic LQFP (GC-8EU type)	
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)	
TGC-100SDW	Conversion adapter to connect the NP-100GC and a target system board on which a 100-pin plastic LQFP (GC-8EU type) can be mounted	
ID78K4-NS	Integrated debugger for IE-78K4-NS	
SM78K4	System simulator common to 78K/IV Series	
DF784218	Device file common to μPD784216A, 784216AY, 784218A, 784218AY Subseries	

• When IE-784000-R in-circuit emulator is used

IE-784000-R	In-circuit emulator common to 78K/IV Series	
IE-70000-98-IF-C	Interface adapter required when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)	
IE-70000-PC-IF-C	Interface adapter required when using IBM PC/AT and compatibles as host machine (ISA bus supported)	
IE-70000-PCI-IF-A	Interface adapter required when using PC that incorporates PCI bus as host machine	
IE-78000-R-SV3	Interface adapter and cable required when EWS is used as host machine	
IE-784225-NS-EM1	Emulation board to emulate μ PD784216A, 784216AY, 784218A, 784218AY Subseries	
IE-784000-R-EM	Emulation board common to 78K/IV Series	
IE-78K4-R-EX3	Emulation probe conversion board required when using IE-784225-NS-EM1 on IE-784000-R.	
EP-784218GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)	
EP-78064GC-R	Emulation probe for 100-pin plastic LQFP (GC-8EU type)	
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)	
TGC-100SDW	Conversion adapter to connect the EP-78064GC-R and a target system board on which a 100-pin plastic LQFP (GC-8EU type) can be mounted	
ID78K4	Integrated debugger for IE-784000-R	
SM78K4	System simulator common to 78K/IV Series	
DF784218	Device file common to μ PD784216A, 784216AY, 784218A, 784218AY Subseries	

★ (4) Real-time OS

DV70K4	Deal time OC for 70K/IV Cories
RX78K4	Real-time OS for 78K/IV Series

(5) Cautions on using development tools

- The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784218.
- The CC78K4 and RX78K4 are used in combination with the RA78K4 and DF784218.
- The FL-PR3, FA-100GF, FA-100GC, NP-100GF, and NP-100GC are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191).
- The TGC-100SDW is a product made by TOKYO ELETECH CORPORATION.

For further information, contact Daimaru Kogyo, Ltd.

Tokyo Electronic Division (TEL: +81-3-3820-7112)

Osaka Electronic Division (TEL: +81-6-6244-6672)

- For third party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machine and OS suitable for each software are as follows.

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows TM]	HP9000 Series 700 TM [HP-UX TM]
	IBM PC/AT and compatibles	SPARCstation TM [SunOS TM , Solaris TM]
Software	[Japanese/English Windows]	
RA78K4	\sqrt{Note}	√
CC78K4	\sqrt{Note}	V
ID78K4-NS	V	-
ID78K4	V	V
SM78K4	V	_
RX78K4	\sqrt{Note}	V

Note DOS-based software

★ (6) Notes on target system design

The following shows a diagram of the connection conditions between the emulation probe, conversion socket, and conversion connector. Design your system making allowances for conditions such as the form of parts mounted on the target system as shown below.

In-circuit emulator IE-78K4-NS Target system Emulation board 170 mm IE-784225-NS-EM1 Emulation probe NP-100GF 0 CN₂ NP-100GC Note 1 Note 2 Note 1 Note 2 Conversion socket: CN1 EV-9200GF-100 (for NP-100GF) Conversion connector: TGC-100SDW (for NP-100GC)

Figure A-1. Distance Between In-Circuit Emulator and Conversion Socket

Notes 1. Pin 1 position on NP-100GF

2. Pin 1 position on NP-100GC

Figure A-2. Conditions for Target System Connection (1)

Remark The NP-100GF is a product of Naito Densei Machida Mfg. Co., Ltd.

Figure A-3. Conditions for Target System Connection (2)

Remark The NP-100GC is a product of Naito Densei Machida Mfg. Co., Ltd. The TGC-100SDW is a product of Tokyo Eletech Corporation.

*** APPENDIX B. RELATED DOCUMENTS**

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	
μPD784214A, 784215A, 784216A, 784217A, 784218A, 784214AY, 784215AY, 784216AY, 784217AY, 784218AY Data Sheet	U14121E
μPD78F4216A, 78F4218A, 78F4216AY, 78F4218AY Data Sheet	This document
μPD784216A, 784218A, 784216AY, 784218AY Subseries User's Manual - Hardware	U13570E
78K/IV Series User's Manual - Instruction	U10905E
78K/IV Series Application Note - Software Basics	U10095E

Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K4 Assembler Package	Operation	U15254E
	Language	U15255E
	Structured Assembler Preprocessor	U11743E
CC78K4 C Compiler	Operation	U15557E
	Language	U15556E
SM78K4 System Simulator Ver. 1.40 or Later Windows Based	Reference	U10093E
SM78K Series System Simulator Ver. 1.40 or Later	External Part User Open Interface Specification	U10092E
ID78K Series Integrated Debugger Ver. 2.30 or Later Windows Based	Operation	U15185E
RX78K4 Real-time OS	Fundamentals	U10603E
	Installation	U10604E
Project Manager Ver 3.12 or Later Windows Based		U14610E

Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K4-NS In-Circuit Emulator	U13356E
IE-784225-NS-EM1 Emulation Board	U13742E
IE-784000-R In-Circuit Emulator	U12903E
IE-784218-R-EM1 Emulation Board	U12155E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products & Packages -	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

IEBus and FIP are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

• Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

• Filiale Italiana

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

• Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Branch Sweden

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583 Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

- The information in this document is current as of May, 2002. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).