

MOS INTEGRATED CIRCUIT $\mu PD78F0233$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78F0233 is a member of the μ PD780232 Subseries that belongs to the 78K/0 Series. It replaces the internal ROMNote of the μ PD780232 with a flash memory.

Since the μ PD78F0233 can be written/erased electrically while mounted on a board, it is suitable for applications involving system evaluation during system development, small-scale production, and for systems that are expected to be frequently upgraded.

Note The internal ROM capacity varies (refer to 4. DIFFERENCES BETWEEN μ PD78F0233 AND MASK ROM VERSION for details).

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780232 Subseries User's Manual: U13364E 78K/0 Series User's Manual – Instructions: U12326E

FEATURES

• Pin-compatible with mask ROM versions (except VPP pin)

Flash memory: 24 KB^{Note}
Internal high-speed RAM: 768 bytes
Internal buffer RAM: 32 bytes
VFD display RAM: 112 bytes

Operable in the same supply voltage as mask ROM version (VDD = 4.5 to 5.5 V)

Note The flash memory capacity can be changed with the internal memory size switching register (IMS).

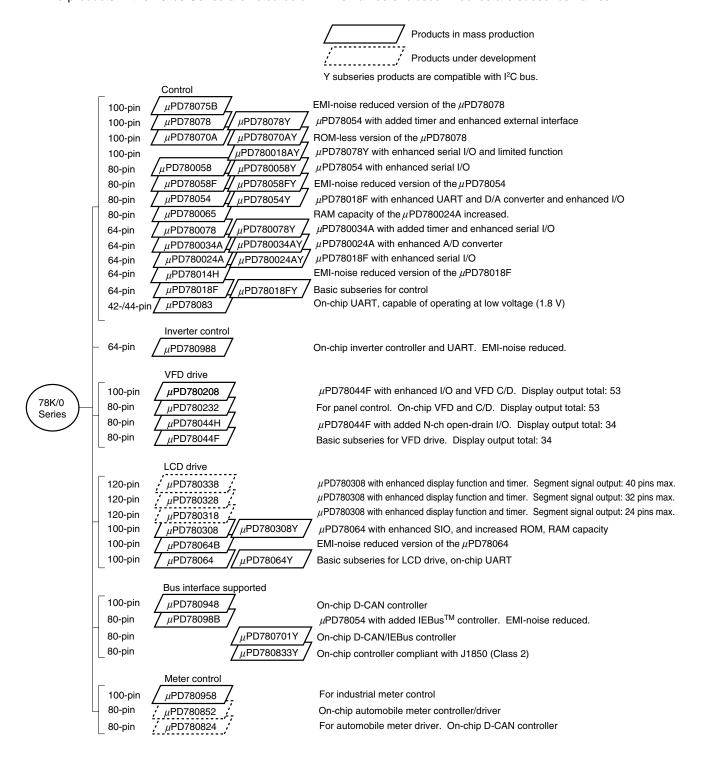
Remark Refer to 4. DIFFERENCES BETWEEN μ PD78F0233 AND MASK ROM VERSION for the differences between the flash memory version and mask ROM versions.

APPLICATIONS

Monolithic mini components, separated mini components, tuners, cassette decks, CD/MD players, audio amplifiers, etc.

ORDERING INFORMATION

Part Number	Package	Internal ROM		
μPD78F0233GC-8BT	80-pin plastic QFP (14 \times 14)	Flash memory		


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP™ (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences among the subseries are shown below.

	Function	ROM		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	V _{DD}	External
Subseries	Name	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	√
	μPD78078	48 K to 60 K											
	μPD78070A	_									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							_	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			_	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	-					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		_	_					1 ch (UART: 1 ch)	33		_
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	I	1 ch	_	8 ch	_	3 ch (UART: 2 ch)	47	4.0 V	√
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	-	2 ch	74	2.7 V	_
drive	μPD780232	16 K to 24 K	3 ch	_	_		4 ch				40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	μPD780338	48 K to 60 K	3 ch	2 ch	1 ch	1 ch	_	10 ch	1 ch	2 ch (UART: 1 ch)	54	1.8 V	_
drive	μPD780328										62		
	μPD780318										70		
	μPD780308	48 K to 60 K	2 ch	1 ch			8 ch	-	_	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	_	_	3 ch (UART: 1 ch)	79	4.0 V	√
interface supported	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	-
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	ı	1 ch	_	_	-	2 ch (UART: 1 ch)	69	2.2 V	_
Dash	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	_	-	3 ch (UART: 1 ch)	56	4.0 V	-
board control	μPD780824	32 K to 60 K								2 ch (UART: 1 ch)	59		

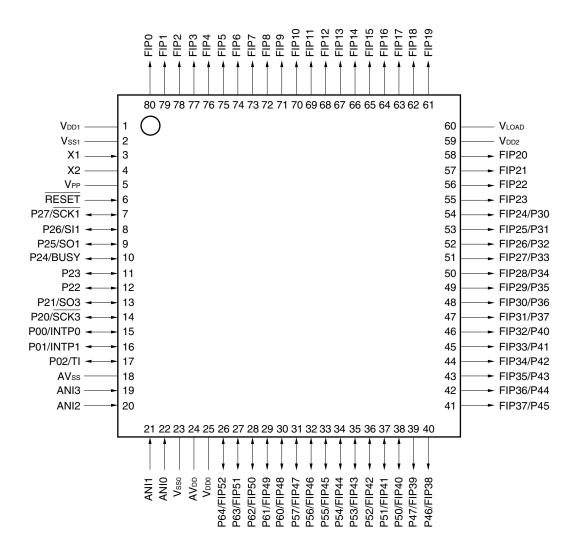
Note 16-bit timer: 2 channels 10-bit timer: 1 channel

Data Sheet U13322EJ2V0DS

OVERVIEW OF FUNCTIONS

	Item	Function			
Internal memory	Flash memory	24 KB ^{Note}			
	High-speed RAM	768 bytes			
	Buffer RAM	32 bytes			
	VFD display RAM	112 bytes			
General-purpose	register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)			
Minimum instructi	on execution time	 On-chip minimum instruction execution time variable function 0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (@ 5.0 MHz operation with system clock) 			
Instruction set		Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test, Boolean operation)			
I/O ports (including alternate-function pins for VFD)		Total: 40 • CMOS I/Os: 11 • P-ch open-drain I/Os: 13 • P-ch open-drain outputs:16			
VFD controller/dri	ver	Total of display outputs: 53 • 15 mA display current: 20 • 5 mA display current: 33			
A/D converter		8-bit resolution × 4 channels Power supply voltage: AV _{DD} = 4.5 to 5.5 V			
Serial interface		2-wire serial mode (transmit only): 1 channel 3-wire serial mode (with automatic transmit/receive function): 1 channel			
Timer		8-bit remote control timer: 1 channel 8-bit timer: 2 channels Watchdog timer: 1 channel			
Vectored	Maskable	Internal: 10, external: 2			
interrupt	Non-maskable	Internal: 1			
sources	Software	1			
Power supply vol	tage	V _{DD} = 4.5 to 5.5 V			
Package		80-pin plastic QFP (14 × 14)			

Note The flash memory capacity can be changed with the internal memory size switching register (IMS).


CONTENTS

	1.	PIN CONFIGURATION (TOP VIEW)	6
	2.	BLOCK DIAGRAM	8
	3.	PIN FUNCTION LIST	
		3.1 Port Pins	
		3.2 Non-Port Pins	
		3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	11
	4.	DIFFERENCES BETWEEN μ PD78F0233 AND MASK ROM VERSION	. 13
	5.	MEMORY SIZE SWITCHING REGISTER (IMS)	. 14
	6.	FLASH MEMORY PROGRAMMING	. 15
		6.1 Selection of Communication Mode	
		6.2 Flash Memory Programming Functions	16
		6.3 Connection to Flashpro III	17
	7.	ELECTRICAL SPECIFICATIONS	. 18
	8.	PACKAGE DRAWING	. 29
۲	9.	RECOMMENDED SOLDERING CONDITIONS	. 30
	AP	PENDIX A. DEVELOPMENT TOOLS	. 31
	۸۵	PENDLY R RELATED DOCUMENTS	35

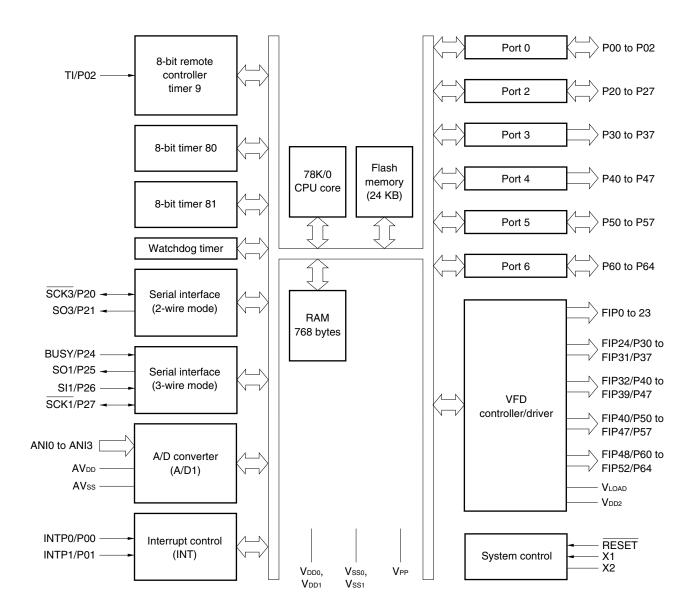
1. PIN CONFIGURATION (TOP VIEW)

• 80-pin plastic QFP (14 \times 14) μ PD78F0233GC-8BT

Cautions 1. Connect directly VPP pin to Vss1 in normal operation mode.

- 2. Connect AVDD pin to VDD1.
- 3. Connect AVss pin to Vss1.

Remark When the μPD78F0233 is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.


Port 6 ANIO to ANI3: Analog input P60 to P64: Analog power supply RESET: Reset AV_{DD}: SCK1 and SCK3: AVss: Analog ground Serial clock BUSY: SI1: Busy Serial input FIP0 to FIP52: Fluorescent indicator panel SO1 and SO3: Serial output INTP0 and INTP1: External interrupt input TI: Timer input P00 to P02: Port 0 VDD0 to VDD2: Power supply

P20 to P27: Port 2 VLOAD: Negative power supply
P30 to P37: Port 3 VPP: Programming power supply

P40 to P47: Port 4 Vsso and Vss1: Ground P50 to P57: Port 5 X1 and X2: Crystal

2. BLOCK DIAGRAM

3. PIN FUNCTION LIST

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate
P00	I/O	Port 0.	Input	Function INTP0
P01	-	3-bit I/O port. Input/output can be specified in 1-bit units.		INTP1
P02	-	When used as an input port, an on-chip pull-up resistor can be connected by software.		TI
P20	I/O	Port 2.	Input	SCK3
P21		8-bit I/O port.		SO3
P22, P23		Input/output can be specified in 1-bit units.		_
P24		When used as an input port, an on-chip pull-up resistor can be connected by software.		BUSY
P25				SO1
P26				SI1
P27				SCK1
P30 to P37	Output	Port 3. 8-bit output-dedicated port.	Output	FIP24 to FIP31
P40 to P47	Output	Port 4. 8-bit output-dedicated port.	Output	FIP32 to FIP39
P50 to P57	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units.	Input	FIP40 to FIP47
P60 to P64	I/O	Port 6. 5-bit I/O port. Input/output can be specified in 1-bit units.	Input	FIP48 to FIP52

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	Valid edge (rising edge, falling edge, or both rising and falling edges)	Input	P00
INTP1		can be specified. External interrupt request input.		P01
TI	Input	8-bit remote control timer 9 (TM9) timer input	Input	P02
SCK3	I/O	Serial interface serial clock I/O	Input	P20
SO3	Output	Serial interface serial data output	Input	P21
BUSY	Input	Serial interface automatic transmit/receive busy signal output	Input	P24
SO1	Output	Serial interface serial data output	Input	P25
SI1	Input	Serial interface serial data input	Input	P26
SCK1	I/O	Serial interface serial clock I/O	Input	P27
FIP0 to FIP23	Output	VFD controller/driver high-voltage tolerant large current output. On-chip pull-down resistor	Output	_
FIP24 to FIP31		VFD controller/driver high-voltage tolerant large current output		P30 to P37
FIP32 to FIP39				P40 to P47
FIP40 to FIP47			Input	P50 to P57
FIP48 to FIP52				P60 to P64
VLOAD	_	VFD controller/driver pull-down resistor connection	_	_
RESET	Input	System reset input	_	_
X1	Input	Crystal connection for system clock oscillation	_	_
X2	_		_	_
ANI0 to ANI3	Input	A/D converter analog input	Input	_
AV _{DD}	_	A/D converter analog power supply/reference voltage input; Keep the same potential with V _{DD1} .	_	_
AVss	_	A/D converter ground potential; Keep the same potential with Vss1.	_	_
V _{DD0}	_	Positive power supply for ports	_	_
V _{DD1}	_	Positive power supply except for ports, analog, and VFD controller/driver	_	_
V _{DD2}	_	Positive power supply for VFD controller/driver	_	_
Vsso	_	Ground potential for ports	_	_
V _{SS1}	_	Ground potential except for ports and analog	_	_
VPP	_	High-voltage applied during program writing/verifying; Connect directly to V _{SS1} pin in normal operation mode.	_	_

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and the recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, see Figure 3-1.

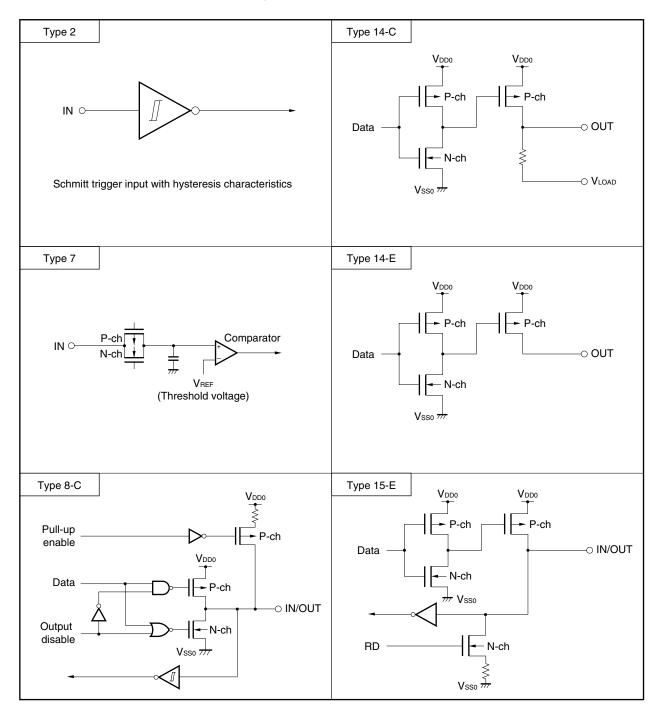

*

Table 3-1. Types of Pin I/O Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P01/INTP1			Output: Leave open.
P02/TI			
P20/SCK3	8-C	I/O	Input: Independently connect to VDDO or VSSO via a resistor.
P21/SO3			Output: Leave open.
P22, P23			
P24/BUSY			
P25/SO1			
P26/SI1			
P27/SCK1			
P30/FIP24 to P37/FIP31	14-E	Output	Leave open.
P40/FIP32 to P47/FIP39			
P50/FIP40 to P57/FIP47	15-E	I/O	Input: Independently connect to VDDO or VSSO via a resistor.
P60/FIP48 to P64/FIP52			Output: Leave open.
FIP0 to FIP23	14-C	Output	Leave open.
RESET	2	Input	_
ANI0 to ANI3	7	Input	Connect to VDD0 or Vsso.
AVDD	_	_	Connect to V _{DD1} .
AVss			Connect to Vss1.
VLOAD			
V _{PP}			Connect to V _{SS1} directly.

Figure 3-1. Pin I/O Circuits

4. DIFFERENCES BETWEEN μ PD78F0233 AND MASK ROM VERSION

The μ PD78F0233 is a product provided with an internal flash memory that enables on-board electrical writing/erasing/rewriting.

The functions of the μ PD78F0233, except those specified for flash memory, can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS).

Table 4-1 shows the differences between the flash memory version (μ PD78F0233) and the mask ROM version (μ PD780232).

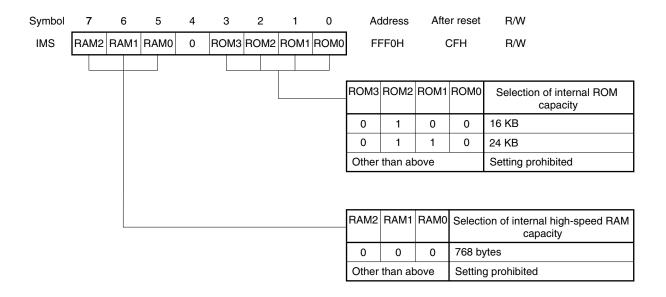
Table 4-1. Differences Between μ PD78F0233 and Mask ROM Versions

Item	μPD78F0233	Mask ROM Version
Internal ROM structure	Flash memory	Mask ROM
Internal ROM capacity	24 KB	16 KB
IC pin	Not provided	Provided
V _{PP} pin	Provided	Not provided
Pull-down resistor in FIP0 to FIP23	Provided	Selected by mask option
Pull-down resistor in P30/FIP24 to P37/FIP31, P40/FIP32 to P47/FIP39, P50/FIP40 to P57/FIP47, P60/FIP48 to P64/FIP52	Not provided	
Electrical specifications and recommended soldering conditions	Refer to the data sheets of individual p	roducts.

Caution

There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

Data Sheet U13322EJ2V0DS 13


5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that is set by software and is used to specify a part of the internal memory that is not to be used. By setting IMS, the internal memory of the uPD78F0233 can be mapped identically to that of a mask ROM version.

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Figure 5-1. Format of Internal Memory Size Switching Register

06H

Caution RESET input set IMS to CFH. After RESET input, always set IMS as follows.

- μPD78F0233:
- When μ PD78F0233 is used with the same memory map as the one used in the mask ROM version (μ PD780232): 04H

6. FLASH MEMORY PROGRAMMING

The flash memory of the μ PD78F0233 can be written while the microcontroller is mounted on the target system board. Rewriting is possible by using the dedicated flash programmer (Flashpro III (FL-PR3, PG-FP3)) or a program. When using Flashpro III, connect it to both the host machine and the target system.

In addition, the flash memory can be written on the flash-programming adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selection of Communication Mode

Write operations to the flash memory are performed using Flashpro III in the serial communication mode. Choose a proper communication mode out of the ones listed in Table 6-1 to perform write operations. When selecting the communication mode, use the format illustrated in Figure 6-1. Select the communication mode according to the number of VPP pulses shown in Table 6-1.

Communication Modes	No. of Channels	PinsNote 1	V _{PP} Pulses
3-wire serial I/O	1	SCK1/P27	0
		SI1/P26	
		SO1/P25	
Pseudo 3-wire serial I/ONote 2	1	P20/SCK3 (serial clock I/O)	12
		P21/SO3 (serial data output)	
		P22 (serial data input)	

Table 6-1. List of Communication Modes

- Notes 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. Therefore, all ports enter an output high-impedance state. If the external device does not acknowledge an output high-impedance state, handling such as connecting to VDDO via a resistor or connecting to VSSO via a resistor is required.
 - 2. Performs serial transmission by controlling ports with software.

Caution Be sure to select the communication mode according to the number of VPP pulses shown in Table 6-1.

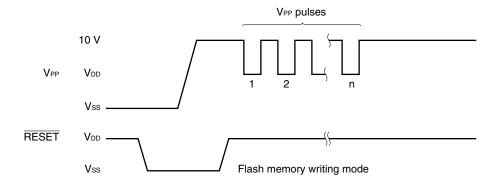


Figure 6-1. Format of Communication Mode Selection

6.2 Flash Memory Programming Functions

Operations such as writing to the flash memory are performed by various commands/data transmission and reception operations according to the selected communication mode. Table 6-2 describes the main flash memory programming functions.

Table 6-2. Main Flash Memory Programming Functions

Function	Description
Reset	Used in cancellation of writing and transmission synchronization detection.
Batch verify	Compares the contents of the entire memory and the input data.
Batch erase	Erases the contents of the entire memory.
Batch blank check	Checks that the entire memory has been deleted.
High-speed writing	Writes to the flash memory based on writing-starting address and the number of writing data
	(bytes)
Continuous writing	Writes continuously based on information input at high-speed writing.
Status	Used to check the current operation mode and the end of operation.
Oscillation frequency setting	Inputs information of frequency of resonator.
Erase time setting	Inputs the time-length to erase the contents of the memory.
Silicon signature reading	Outputs the device name, memory capacity, and information of device block.

6.3 Connection to Flashpro III

The connection of the Flashpro III and the μ PD78F0233 differs according to the communication mode. The connection for each communication mode is shown in Figure 6-2 and 6-3.

Figure 6-2. Connection to Flashpro III in 3-Wire Serial I/O Mode

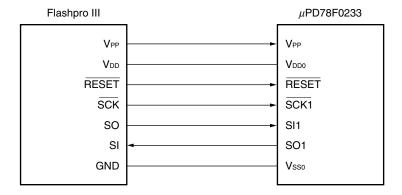


Figure 6-3. Connection to Flashpro III in Pseudo 3-Wire Serial I/O Mode

* 7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	C		Rating	Unit				
Supply voltage	V _{DD}				-0.3 to +6.5	V			
	V _{PP}				-0.3 to +10.5	V			
	VLOAD				V _{DD} - 45 to V _{DD} + 0.3	٧			
	AV _{DD}				-0.3 to V _{DD} + 0.3	٧			
	AVss				-0.3 to +0.3	V			
Input voltage	VII	P00 to P02, P20 to P27, 2	X1, X2, RESET		-0.3 to V _{DD} + 0.3	V			
	V _{I2}	P50 to P57, P60 to P64	V _{DD} - 45 to V _{DD} + 0.3	V					
Output voltage	V 01	·			-0.3 to V _{DD} + 0.3	V			
	V 02								
Analog input voltage	Van	ANI0 to ANI3	Analog input pir	ns	AVss to AVDD	٧			
Output current, high	Іон	1 pin among P00 to P02 a	1 pin among P00 to P02 and P20 to P27						
		Total of P00 to P02 and F	-30	mA					
		1 pin among FIP0 to FIP2 P50 to P57, and P60 to P	-30	mA					
		Total of FIP0 to FIP23, P3	Total of FIP0 to FIP23, P30 to P37, P40 Peak value						
		to P47, P50 to P57, and P60 to P64 rms			-120	mA			
Output current, low	loLNote	1 pin among P00 to P02	and P20 to P27	Peak value	10	mA			
		rms			5	mA			
		Total of P00 to P02 and F	Total of P00 to P02 and P20 to P27 Peak value			P00 to P02 and P20 to P27 Peak value 20		20	mA
				rms	10	mA			
Total loss	Рт	$T_A = -40 \text{ to } +60^{\circ}\text{C}$			700	mW			
		T _A = -60 to +85°C			500	mW			
Operating ambient temperature	Та				-40 to +85	°C			
Storage temperature	Tstg				-40 to +125	°C			

Note The rms value should be calculated as follows: [rms value] = [peak value] $\times \sqrt{\text{Duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	V _{SS1} X1 X2	Oscillation frequency (fx)Note 1	V _{DD} = Oscillation voltage range	1		5	MHz
	C1 C2	Oscillation stabilization timeNote 2	After V _{DD} reaches the minimum value of oscillation voltage range			4	ms
Crystal resonator	Vss1 X1 X2	Oscillation frequency (fx)Note 1		1		5	MHz
	C1 C2	Oscillation stabilization time ^{Note 2}				10	ms
External clock	X1 X2	X1 input frequency (fx)Note 1		1		5	MHz
	Δ μPD74HCU04	X1 input high-/low-level width (txH/txL)		85		450	ns

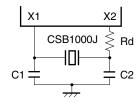
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

Caution

When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.



Recommended Oscillator Constant

System clock: Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	Frequency	Recommended	Circuit Constant	Oscillation Vo	oltage Range	Remark
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg.	CSB1000J ^{Note}	1.00	100	100	4.5	5.5	$Rd = 2.2 k\Omega$
Co., Ltd.	CSA2.00MG040	2.00	100	100			
	CST2.00MG040		On-chip	On-chip			
	CSA3.58MG	3.58	30	30			
	CST3.58MGW		On-chip	On-chip			
	CSA4.19MG	4.19	30	30			
	CST4.19MGW		On-chip	On-chip			
_	CSA5.00MG	5.00	30	30			
	CST5.00MGW		On-chip	On-chip			

Note When using the CSB1000J (1.0 MHz) of Murata Mfg. Co., Ltd. as a ceramic resonator, a limiting resistor (Rd = $2.2 \text{ k}\Omega$) is necessary (refer to the figure below). A limiting resistor is not necessary when another recommended resonator is used.

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz	P00 to P02, P20 to P27			15	pF
		Unmeasured pins returned to 0 V	P50 to P57, P60 to P64			35	pF
Output capacitance	Соит	f = 1 MHz	P00 to P02, P20 to P27			15	pF
		Unmeasured pins returned to 0 V	P30 to P37, P40 to P47, P50 to P57, P60 to P64,			35	pF
			FIP0 to FIP23				
I/O capacitance	Сю	f = 1 MHz	P00 to P02, P20 to P27			15	pF
		Unmeasured pins returned to 0 V	P50 to P57, P60 to P64			35	pF

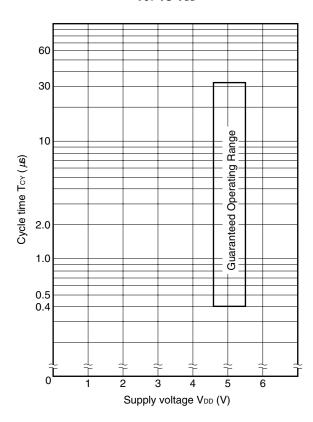
DC Characteristics (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P02, P20 to P27, RESET		0.7 V _{DD}		V _{DD}	٧
	V _{IH2}	P50 to P57, P60 to P64		0.7 V _{DD}		V _{DD}	٧
	VIH3	X1, X2		V _{DD} - 0.5		V _{DD}	٧
Input voltage, low	VIL1	P00 to P02, P20 to P27, RESET		0		0.2 V _{DD}	٧
	V _{IL2}	X1, X2		0		0.4	>
Output voltage, high	Vон	Iон = −1 mA		V _{DD} - 1.0		V _{DD}	>
		Іон = -100 μΑ		V _{DD} - 0.5		V _{DD}	٧
Output voltage, low	Vol	P00 to P02, P20 to P27	IoL = 400 μA			0.5	>
Input leakage current, high	Ішн	P00 to P02, P20 to P27, P50 to P57, P60 to P64, RESET	VIN = VDD				μΑ
	ILIH2	X1, X2	1			20	μΑ
Input leakage	ILIL1	P00 to P02, P20 to P27, RESET	VIN = 0 V			-3	μΑ
current, low	ILIL2	X1, X2]			-20	μΑ
	Ілгз	P50 to P57, P60 to P64	VIN = VLOAD = VDD - 40 V			-10	μΑ
Output leakage current, high	Ісон	P00 to P02, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P64	VOUT = VDD			3	μΑ
Output leakage	ILOL1	P00 to P02, P20 to P27	Vout = 0 V			-3	μΑ
current, low	ILOL2	P30 to P37, P40 to P47, P50 to P57, P60 to P64	Vout = VLOAD = VDD - 40 V			-10	μΑ
VFD output current	Іор	FIP0 to FIP19	$V_{OD} = V_{DD} - 2 V$			-15	mA
		FIP20 to FIP52	1			-5	mA
Software pull-up resistor	R ₁	P00 to P02, P20 to P27	VIN = 0 V	10	30	100	kΩ
On-chip pull-down resistor	R ₂	FIP0 to FIP23	Vod – Vload = 40 V	30	60	135	kΩ
Power supply	I _{DD1}	5 MHz crystal oscillation operation mode	PCC = 00H		9	18	mA
current ^{Note}	I _{DD2}	5 MHz crystal oscillation HALT mode			2.5	7.5	mA
	IDD3	STOP mode			1	30	μΑ

Note Refers to current flowing to the V_{DD} pin. The current flowing to the on-chip pull-up and pull-down resistors is not included.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

2. PCC: Processor clock control register



AC Characteristics

(1) Basic operation (T_A = $-40 \text{ to } +85^{\circ}\text{C}$, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсү	Operated with main system clock	0.4		32	μs
Interrupt request input high-/low-level width	tinth tintl	INTP0, INTP1	10			μs
RESET low-level width	trsl		10			μs

Tcy vs VDD

(2) Timer/counter (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
TI input high-/	tтін		2/F _{count} +0.2 ^{Note}			μs
low-level width	t⊤ı∟					

Note F_{count} is the frequency of the count clock selected by TM9 (the frequency can be selected from $fx/2^6$, $fx/2^7$, $fx/2^8$, and $fx/2^9$).

(3) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

(a) Serial interface (3-wire serial mode)

(i) 3-wire serial mode (SCK1...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy1		800			ns
SCK1 high-/low-level width	tkH1 tkL1		tkcy1/2 - 50			ns
SI1 setup time (to SCK1↑)	tsıĸı		100			ns
SI1 hold time (from SCK1↑)	t KSI1		400			ns
Delay time from SCK1↓ to SO1 output	tkso1	C = 100 pFNote			300	ns

Note C is the load capacitance of the $\overline{SCK1}$ and SO1 output lines.

(ii) 3-wire serial mode (SCK1...External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy2		800			ns
SCK1 high-/low-level width	tkH2 tkL2		400			ns
SI1 setup time (to SCK1↑)	tsık2		100			ns
SI1 hold time (from SCK1↑)	tks12		400			ns
Delay time from SCK1↓ to SO1 output	tkso2	C = 100 pFNote			300	ns
SCK1 rise/fall time	t _{R2}				1	μs

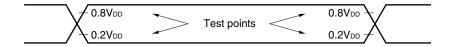
Note C is the load capacitance of the SO1 output line.

(b) Serial interface (2-wire serial mode)

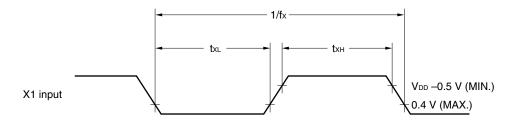
(i) 2-wire serial mode (SCK3...Internal clock output)

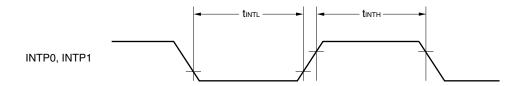
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tксүз		800			ns
SCK3 high-/low-level	tкнз		tксүз/2 — 50			ns
width	tкLз					
Delay time from	tкsоз	C = 100 pF ^{Note}			300	ns
SCK3↓ to SO3 output						

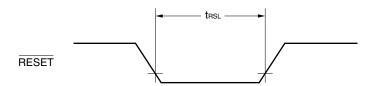
Note C is the load capacitance of the $\overline{SCK3}$ and SO3 output lines.

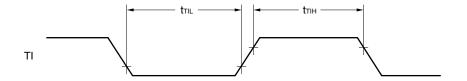

(ii) 2-wire serial mode (SCK3...External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tkcy4		800			ns
SCK3 high-/low-	t _{KH4}		400			ns
level width	tĸL4					
Delay time from	tkso4	C = 100 pF ^{Note}			300	ns
SCK3↓ to SO3 output						
SCK3 rise/fall time	t _{R4}				1	μs
	t _{F4}					

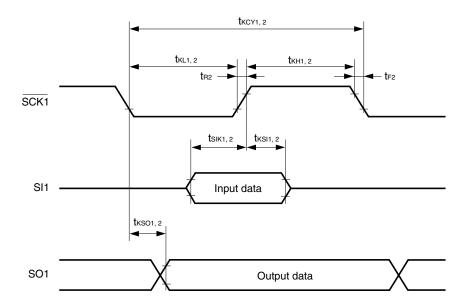

Note C is the load capacitance of the SO3 output line.

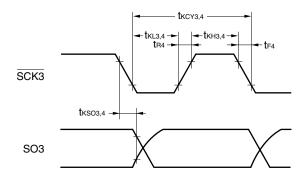

AC Timing Test Points (Excluding X1 input)


Clock Timing


Interrupt Request Input Timing

RESET Input Timing


TI Timing



Serial Transfer Timing

3-wire serial mode:

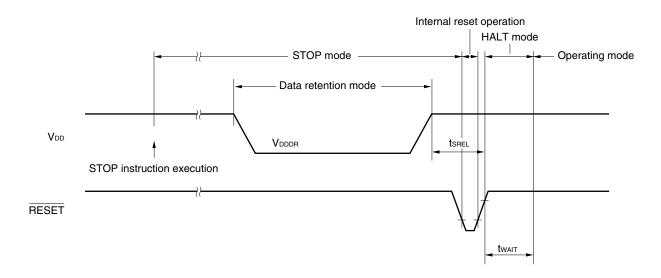
2-wire serial mode:

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, AVDD = VDD = 4.0 to 5.5 V, AVss = Vss = 0 V)

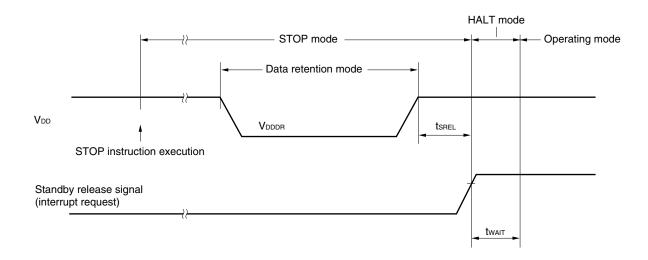
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Overall errorNote 1					±1.0	%
Conversion timeNote 2	tconv		14			μs
Analog input voltage	VIAN		AVss		AV _{DD}	٧

Notes 1. Excludes quantization error ($\pm 1/2$ LSB). It is indicated as a ratio to the full-scale value.

2. Set the A/D conversion time to 14 μs or more.



Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

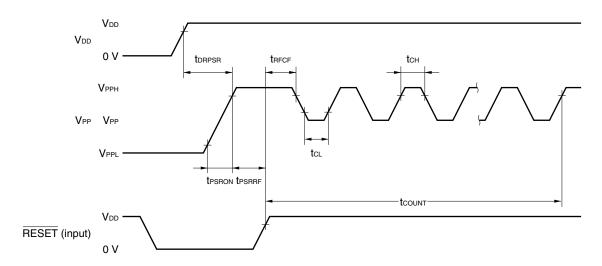

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		2.0		5.5	٧
Data retention supply current	IDDDR			0.1	30	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabili-	twait	Release by RESET		2 ¹⁷ /fx		ms
zation wait time		Release by interrupt request		Note		ms

Note Selection of 2^{12} /fx and 2^{14} /fx to 2^{17} /fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

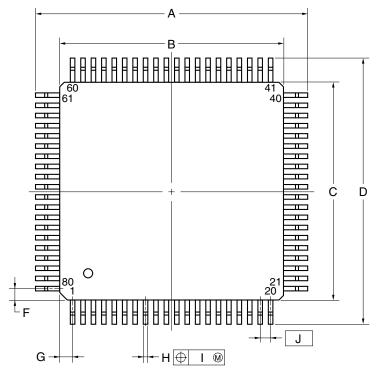
Flash Memory Programming Characteristics (VDD = 4.5 to 5.5 V, Vss = 0 V, VPP = 9.7 to 10.3 V)

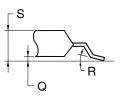

(1) Basic characteristics

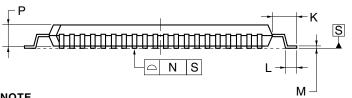
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx		1.0		5.0	MHz
Supply voltage	V _{DD}	Operation voltage when writing	4.5		5.5	V
	V _{PP}	Upon VPP high-level detection	0.8V _{DD}	V _{DD}	1.2V _{DD}	V
	VPPH	Upon VPP high-voltage detection	9.7	10.0	10.3	V
V _{DD} supply current	IDD				10	mA
VPP supply current	IPP	V _{PP} =10.0 V		75	100	mA
Write time (per byte)	Twrt		50		500	μs
Number of rewrites	Cwrt				20	Times
Erase time	TERASE		1		20	s
Programming temperature	TPRG		+10		+40	°C

(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{PP} set time	tpsron	V _{PP} high voltage	1.0			μs
Set time from V _{DD} ↑ to V _{PP} ↑	torpsr	V _{PP} high voltage	1.0			μs
Set time from V _{PP} ↑ to RESET↑	tpsrrf	V _{PP} high voltage	1.0			μs
V _{PP} count start time from RESET↑	trece		1.0			μs
Count execution time	tcount				2.0	ms
VPP counter high-level width	tсн		8.0			μs
VPP counter low-level width	tcL		8.0			μs
V _{PP} counter noise elimination width	tnfw			40		ns


Flash Memory Write Mode Set Timing




8. PACKAGE DRAWING

80-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
ı	0.13
J	0.65 (T.P.)
K	1.60±0.20
L	0.80±0.20
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3°+7°
S	1.70 MAX.

P80GC-65-8BT-1

★ 9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F0233 should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 9-1. Surface Mounting Type Soldering Conditions

 μ PD78F0233GC-8BT: 80-pin plastic QFP (14 imes 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Twice Preheating temperature: 120°C max. (package surface temperature)	WS60-00-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0233. Also refer to **(6) Notes on using development tools**.

(1) Software Package

SP78K0	78K/0 Series common software package	
--------	--------------------------------------	--

(2) Language Processing Software

RA78K0	78K/0 Series common assembler package	
CC78K0	78K/0 Series common C compiler package	
DF780233	μ PD780232 Subseries device file	
CC78K0-L	78K/0 Series common C compiler library source file	

(3) Flash Memory Writing Tools

*	Flashpro III (FL-PR3, GP-FP3)	Dedicated flash programmer for on-chip flash memory microcontrollers
	FA-80GC	Adapter for flash memory writing
		Used by connecting to Flashpro III
For 80-pin plastic QFP (GC-8BT type)		• For 80-pin plastic QFP (GC-8BT type)

(4) Debugging Tools

• When in-circuit emulator IE-78K0-NS (-A) is used

IE-78K0-NS (-A)	In-circuit emulator common to 78K/0 Series	
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS	
IE-78K0-NS-PA	Performance board that enhances and expands the IE-78K0-NS functions	
IE-70000-98-IF-C	Adapter required when PC-9800 series (except notebook type) is used as host machine (C bus supported)	
IE-70000-CD-IF-A	PC card and interface cable required when notebook type PC is used as host machine (PCMCIA socket supported)	
IE-70000-PC-IF-C	Adapter required when IBM PC/AT™ or compatible is used as host machine	
IE-70000-PCI-IF-A	Adapter required when PC incorporating PCI bus is used as host machine	
IE-780233-NS-EM4, IE-78K0-NS-P01	Emulation board and I/O board to emulate the μ PD780232 Subseries	
NP-80GC NP-80GC-TQ NP-H80GC-TQ	Emulation probe for 80-pin plastic QFP (GC-8BT type)	
EV-9200GC-80	Conversion socket to connect the NP-80GC and the target system board on which 80-pin plastic QFP (GC-8BT type) can be mounted	
TGC-080SBP	Conversion adapter to connect the NP-80GC-TQ or NP-H80GC-TQ and a target system board on which an 80-pin plastic QFP (GC-8BT type) can be mounted	
ID78K0-NS	Integrated debugger for IE-78K0-NS	
SM78K0	System simulator common to 78K/0 Series	
DF780233	Device file for μ PD780232 Subseries	

• When in-circuit emulator IE-78001-R-A is used

	IE-78001-R-A	In-circuit emulator common to 78K/0 Series
*	IE-70000-98-IF-C	Adapter required when PC-9800 series (except notebook type) is used as host machine (C bus supported)
*	IE-70000-PC-IF-C	Adapter required when IBM PC/AT or compatible is used as host machine (ISA bus supported)
*	IE-70000-PCI-IF-A	Adapter required when PC incorporating PCI bus is used as host machine
	IE-70000-R-SV3	Interface adapter and cable required when EWS is used as host machine
*	IE-780233-NS-EM4,	Emulation board and I/O board to emulate the μPD780232 Subseries
	IE-78K0-NS-P01	
	IE-78K0-R-EX1	Emulation probe conversion board required when using IE-780232-NS-EM1 on IE-78001-R-A
	EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
	EV-9200GC-80	Conversion socket to connect the EP-78230GC-R and the target system board on which 80-pin
		plastic QFP (GC-8BT type) can be mounted
	ID78K0	Integrated debugger for IE-78001-R-A
	SM78K0	System simulator common to 78K/0 Series
*	DF780233	Device file for μ PD780232 Subseries

(5) Real-Time OSs

RX78K0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

★ (6) Notes on using development tools

- The ID78K0-NS, ID78K0, and SM78K0 in combination with the DF780233.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and DF780233.
- FL-PR3, FA-80GC, NP-80GC, NP-80GC-TQ, and NP-H80GC-TQ are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
- TGK-080SBP is a product made by TOKYO ELETECH CORPORATION.
 For further information, contact Daimaru Kogyo, Ltd.

Tokyo Electronics Department (+81-3-3820-7112)

Osaka Electronics Department (+81-6-6244-6672)

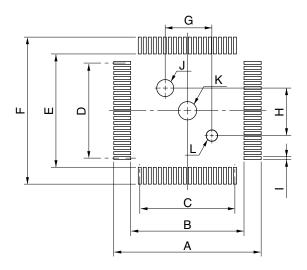
- For third-party development tools, refer to Single-Chip Microcontroller Selection Guide (U11069E).
- The host machines and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT or compatibles	SPARCstation™ [SunOS™, Solaris™]
Software	[Japanese/English Windows]	
RA78K0	√Note	√
CC78K0	√Note	√
ID78K0-NS	V	_
ID78K0	√	_
SM78K0	√	_
RX78K0	√Note	V
MX78K0	√Note	V

Note DOS-based software

CONVERSION SOCKET (EV-9200GC-80) DRAWING AND RECOMMENDED BOARD MOUNTING PATTERN

No.1 pin index


Figure A-1. EV-9200GC-80 Drawing (for reference only)

|--|

ITEM	MILLIMETERS	INCHES
Α	18.0	0.709
В	14.4	0.567
С	14.4	0.567
D	18.0	0.709
E	4-C 2.0	4-C 0.079
F	0.8	0.031
G	6.0	0.236
Н	16.0	0.63
I	18.7	0.736
J	6.0	0.236
K	16.0	0.63
L	18.7	0.736
М	8.2	0.323
N	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	φ2.3	φ0.091
S	ø1.5	φ0.059

Figure A-2. EV-9200GC-80 Recommended Board Mounting Pattern (for reference only)

EV-9200GC-80-P1E

	LV-9200GO-00-1 1			
ITEM	MILLIMETERS	INCHES		
Α	19.7	0.776		
В	15.0	0.591		
С	0.65±0.02 × 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$		
D	0.65±0.02 × 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$		
Е	15.0	0.591		
F	19.7	0.776		
G	6.0±0.05	$0.236^{+0.003}_{-0.002}$		
Н	6.0±0.05	$0.236^{+0.003}_{-0.002}$		
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$		
J	φ2.36±0.03	ϕ 0.093 $^{+0.001}_{-0.002}$		
K	φ2.3	φ0.091		
L	φ1.57±0.03	ϕ 0.062 $^{+0.001}_{-0.002}$		

Caution

Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

★ Documents Related to Device

Document Name	Document No.
μPD780232 Subseries User's Manual	U13364E
μPD780232 Data Sheet	U13415E
μPD78F0233 Data Sheet	This manual
78K/0 Series User's Manual - Instructions	U12326E

★ Documents Related to Development Tool (User's Manual)

Document Nam	Document No.	
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
IE-78K0-NS In-Circuit Emulator	U13731E	
IE-78K0-NS-A In-Circuit Emulator	U14889E	
IE-78001-R-A In-Circuit Emulator	U14142E	
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared	
IE-780233-NS-EM4 Emulation Board	U14666E	
EP-78230 Emulation Probe		EEU-1515
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS Integrated Debugger Ver. 2.00 or Later Windows Based	Operation	U14379E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 or Later Windows Based	Operation	U14910E
ID78K0 Integrated Debugger Windows Based	Reference	U11539E
	Guide	U11649E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Data Sheet U13322EJ2V0DS 35

Documents Related to Embedded Software (User's Manuals)

Document Name	Document No.	
78K/0 Series Real-Time OS	Fundamental	U11537E
	Installation	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257E

Other Related Documents

Document Name

Document No.

**

SEMICONDUCTOR SELECTION GUIDE - Products & Packages - (CD-ROM)

Semiconductor Device Mounting Technology Manual

C10535E

Quality Guides on NEC Semiconductor Devices

NEC Semiconductor Device Reliability and Quality Control

Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)

C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei. Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

.101.2

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

- The information in this document is current as of February, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).