

T-1³/₄(5mm) Bi-Color Indicator LED Lamp

LTL- 293SJW AlGaAs Red-Green


Features

- Ultra-brightness chips are matched for uniform light output.
- T-13/4 type package.
- · Long life solid state reliability.
- · Low power consumption.
- · I.C. compatible.

Description

The Red/Green LTL-293SJW bicolor lamp is a white diffused, wide viewing angle, dual chips, utilizing Gallium Aluminum Arsenide Ultra-brightness Red Light Emitting Diode and Gallium Phosphide on Gallium Phosphide Green Light Emitting Diode. The dual chips operating dependently of each other.

Package Dimensions

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm (.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Devices

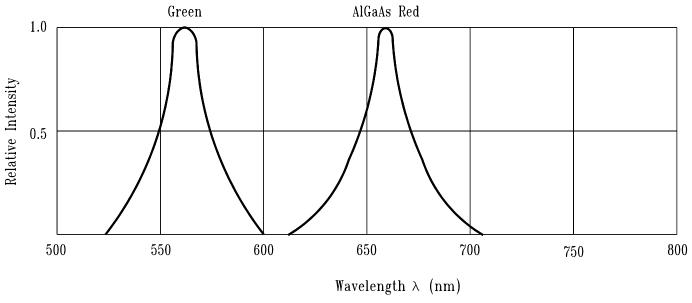
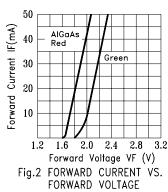
Part No. LTL-	Lens	Source Color
293SJW	White Diffused	AlGaAs Red
		Green

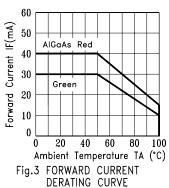
HROUGH HOLE LAMPS

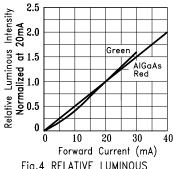
7-107

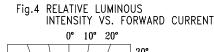
Absolute Maximum Ratings at Ta=25℃

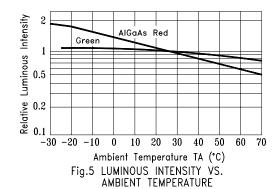
Parameter	Green	AlGaAs Red	Unit		
Power Dissipation	100	100	mW		
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	120	200	mA		
Continuous Forward Current	30	40	mA		
Derating Linear From 50°C	0.4	0.5	mA/℃		
Operating Temperature Range	-55°C to +100°C				
Storage Temperature Range	-55°C to +100°C				
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260°C for 5 Seconds				


Fig.1 Relative Intensity vs. Wavelength


Parameter	Symbol	Part No. LTL-293SJW	Min.	Тур.	Max.	Unit.	Test Condition.
Luminous Intensity	Iv	AlGaAs Red Green	29 12.6	90 40		mcd	Ir=20mA Note 1,4
Viewing Angle	2 θ ½	AlGaAs Red Green		60		deg	Note 2 (Fig. 6)
Peak Emission Wavelength	λР	AlGaAs Red Green		660 565		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	AlGaAs Red Green		638 569		nm	Note 3
Spectral Line Half Width	Δλ	AlGaAs Red Green		20 30		nm	
Forward Voltage	VF	AlGaAs Red Green		1.8 2.1	2.4 2.6	V	IF=20mA
Reverse Current		AlGaAs Red Green		100	100	μΑ	VR=4V,Note 5
	l R				100		VR=5V,Note 5
Capacitance	С	AlGaAs Red Green		30 35		pF	VF=0 , f=1MHz


Notes:1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.


- 2. $\theta^{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. Iv need \pm 15% additionary for guaranteed limits.
- 5. Reverse current is controlled by dice source.

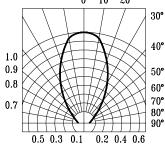


Fig. 6 SPATIAL DISTRIBUTION

ROUGH HOLE LAMPS

7-109