CLASSIFICATION	PRODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE	PAGE 1 of	41
CUSTOMER'S COD PAN1315	E PANASONIC'S CODE ENW89818C2JF	DATE 23.05.2	011

Specification for Production

- P	
Applicant / Manufacturer Hardware	Panasonic Electronic Devices Europe GmbH Zeppelinstrasse 19 21337 Lüneburg Germany
Applicant / Manufacturer Software	Not applicable
Software Version	Not applicable
Contents	Approval for Mass Production
Customer	

By signing this document, you acknowledge that you are the legal representative for your company and that you understand and accept the validity of the contents herein. Customer acknowledges that **engineering samples** may deviate from this specification and may contain defects due to their development status.

Panasonic rejects any liability or product warranty for engineering samples. In particular, Panasonic disclaims liability for damages caused by

- the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in an other product to be sold by Customer,
- · deviation or lapse in function of engineering sample,
- improper use of engineering samples.

Panasonic disclaimes any liability for consequential and incidental damages.

CHECKED / APPROVED:

DATE:	NAME:	SIGNATURE:

HIGH FREQUENCY PRODUCTS DIVISION Module Business PANASONIC ELECTRONIC DEVICES EUROPE GmbH	APPROVED genehmigt	CHECKED geprüft	DESIGNED erstellt
--	--------------------	--------------------	----------------------

CLASSIFICATION	PRODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE	PAGE 2 of 4	1 1
CUSTOMER'S CODE PAN1315	PANASONIC'S CODE ENW89818C2JF	DATE 23.05.20	011

TABLE OF CONTENTS

1.	Scope of this Document	4
2.	Key Features	4
3.	Applications for the Module	5
4.	Description for the Module	5
5.	Detailed Description	
	5.1. PAN1315 Terminal Layout	6
	5.2. Pin Description	7
	5.3. Device Power Supply	
	5.4. Clock Inputs	9
6.	Bluetooth Features	10
7.	Block Diagram	
8.	Test Conditions	12
9.	General Device Requirements and Operation	
	9.1. Absolute Maximum Ratings	12
	9.2. Recommended Operating Conditions	13
	9.3. Current Consumption	
	9.4. General Electrical Characteristics	
	9.5. nSHUTD Requirements	
	9.6. External Digital Slow Clock Requirements (–20°C to +70°C)	
10.	Host Controller Interface	
11.	Audio/Voice Codec Interface	15
	11.1. PCM Hardware Interface	
	11.2. Data Format	
	11.3. Frame Idle Period	16
	11.4. Clock-Edge Operation	18
	11.5. Two-Channel PCM Bus Example	
	11.6. Audio Encoding	
	11.7. Improved Algorithm For Lost Packets	
	11.8. Bluetooth/PCM Clock Mismatch Handling	
	11.9. Bluetooth Inter-IC Sound (I2S)	
	11.10. Current Consumption for Different Bluetooth Scenarios	19
12.	Bluetooth RF Performance (BT)	
	12.1. Bluetooth Characteristics	
13.	Soldering Temperature-Time Profile (for reflow soldering)	
	13.1. For lead solder	
	13.2. For leadfree solder	
14.	Module Dimension	
15.	PAN1315 FootPrint of the Module	
16.	Labeling Drawing	26

www.pedeu.pansonic.de

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIF	ICATION	PR	ODUCT SPECIFICATION	No. DS-1315-24	100-102	REV 1.03
SUBJEC	T CL	ASS 1 or	2 BLUETOOTH MODULE	PAGE	3 of 41	
	IER'S CODE		PANASONIC'S CODE	DATE		
PAN1315)		ENW89818C2JF		23.05.20	11
	16.1 Engineer	ing Sampl	es		26	3
	=					
17.			S			
18.			d Foot Pattern			
19.			ons			
10.						
20.						
21.						
21.						
			Notes			
			10.00			
22.						
	_	-	on			
23.						
24.	•					
25.	Data Sheet Sta				35	
26.	History for this	Documen	t		36	3
27.						
28.	General Inform	ation			37	7
29.	Regulatory Info	ormation			37	7
	29.1. FCC Not	ice			37	7
	29.2. Caution .				37	7
	29.3. Labeling	Requirem	ents		38	3
	29.4. Antenna	 Warning			38	3
		_	List			
			l315			
30.	Industry Canad	la Certifica	ation		39	}
31.			ation of Conformity			
32.	-		······································			

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-24	400-102	REV. 1.03
SUBJECT	CLASS 1 or	2 BLUETOOTH MODULE	PAGE	4 of 4	1
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20	011

SCOPE OF THIS DOCUMENT

This master product specification applies to Panasonic's HCI, Class 1 or 2 (depending on output power register values), Bluetooth®¹ module, series number: PAN1315 and their different versions. Different versions of the PAN1315 are available (refer to chapter 23 Ordering Information).

The Bluetooth chip used is the CC2560 from Texas Instruments (http://focus.ti.com/pdfs/wtbu/cc2560_slyt377.pdf).

2. KEY FEATURES

- Bluetooth specification v2.1 + EDR (Enhanced Data Rate)
- Surface mount type 6.5 x 9.0 x 1.8 mm³
- Up to 10.5dBm Tx power (typical) with transmit power control
- High sensitivity (-93 dBm typ.)
- Texas Instrument's CC2560 BlueLink 7.0 inside
- Fast Connection Setup
- Extended SCO Link
- Supports convenient direct connection to battery (2.2-4.8 V), or connect to DC/DC (1.7-1.98 V) for improved power efficiency
- Internal crystal oscillator (26MHz)
- Built-in shielding to be compliant to FCC
- Full Bluetooth data rate up to 2178kbps asymmetric
- Support for Bluetooth power saving modes (Sniff, Hold)
- Support for very low-power modes (deep sleep and power down)
- Optional support for ultra-low-power mode. Standby with Battery-Backup
- PCM Interface Master / Slave supporting 13 or 16 bit linear, 8 bit μ-law or A-law Codecs and CVSD transcoders on up to 3 SCO channels
- Full 8- to 128-bit encryption
- UART, I²C and PCM Interface
- IO operating voltage = 1.8 V nominal
- 3 Channel ADC and 1 Channel DAC
- Bluetooth profiles such as SPP, HDP are available. Refer to Panasonic's RF module website for a listing of the most current releases.
- Manufactured in conformance with RoHS

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

¹ Bluetooth is a registered trademark of the Bluetooth Special Interest Group.

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or	2 BLUETOOTH MODULE	PAGE 5 of 4	1 1
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE 23.05.2	011

3. APPLICATIONS FOR THE MODULE

All Embedded Wireless Applications

- Access Points
- Industrial Control
- Medical
- Scanners
- Wireless Sensors
- Low Power

- Cable Replacement
- Personal Digital Assistants (PDAs)
- Access Points
- Computers and Peripherals
- Printer Adapters
- Printers

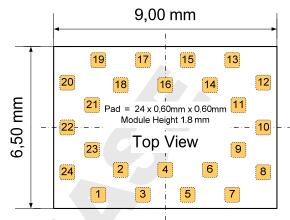
4. DESCRIPTION FOR THE MODULE

The PAN1315 is a short-range Class 1 or 2 HCl module for implementing Bluetooth functionality into various electronic devices. A block diagram can be found in chapter 7.

Communication between the module and the host controller is carried out via UART.

Embedded software solutions, based on TI's MSP430 platform, using TI's part number MSP430BT5190, developed by Mindtree Ltd.

Software solutions for other processors is available from other Panasonic software partners.


Please contact your local sales office for further details on additional options and services, by visiting www.panasonic.com/rfmodules or write an e-mail to wireless@eu.panasonic.com/rfmodules or write an e-mail to wireless@eu.panasonic.com/ground-com/rfmodules or write an e-mail to wireless@eu.panasonic.com/ground-com/rfmodules or write an e-mail to wireless@eu.panasonic.com/ground-com/rfmodules or write an e-mail to wireless@eu.panasonic.com/ground-co

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PRO	DUCT SPECIFICATION	No. DS-1315-2400-102	2	REV. 1.03
SUBJECT	CLASS 1 or 2	BLUETOOTH MODULE	PAGE	6 of 4	1
CUSTOMER'S COD PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE 23	3.05.20	11

5. DETAILED DESCRIPTION

5.1. PAN1315 TERMINAL LAYOUT

Please note that the ES samples with HW Revision 01 have 0.5mm pads!

No	Pin Name	Pull at Reset	Def. Dir. ²	I/O Type ³	Description of Options (Common)	
1	GND				Connect to Ground	
2	TX_DBG	PU	0	2 mA	Logger output	
3	HCI_CTS	PU	1	8 mA	HCI UART clear-to-send.	
4	HCI_RTS	PU	0	8 mA	HCI UART request-to-send.	
5	HCI_RX	PU	I	8 mA	HCI UART data receive	
6	HCI_TX	PU	0	8 mA	HCI UART data transmit	
7	AUD_FSYNC	PD	10	4 mA	PCM frame synch. (NC if not used) Fail sa	afe ⁴
8	SLOW_CLK_IN	,	1		32.768-kHz clock in Fail sa	afe
9	NC		10		Not connected	
10	MLDO_OUT		0		Main LDO output (1.8 V nom.)	
11	CL1.5_LDO_IN		I		PA LDO input	
12	GND				Connect to Ground	
13	RF		10		Bluetooth RF IO	
14	GND				Connect to Ground	
15	MLDO_IN		I		Main LDO input	
16	nSHUTD	PD	I		Shutdown input (active low).	
17	AUD_OUT	PD	0	4 mA	PCM data output. (NC if not used) Fail sa	afe
18	AUD_IN	PD	1	4 mA	PCM data input. (NC if not used) Fail sa	afe
19	AUD_CLK	PD	10	HY, 4 mA	PCM clock. (NC if not used) Fail sa	afe
20	GND				Connect to Ground	
21	NC				EEPROM I ² C SDA (Internal)	
22	VDD_IO		PI		I/O power supply 1.8 V Nom	
23	NC				EEPROM I ² C SCL (Internal)	
24	NC		10		Not connected	

² I = input; O = output; IO = bidirectional; P = power; PU = pulled up; PD = pulled down

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

³ I/O Type: Digital I/O cells. HY = input hysteresis, current = typ. output current

⁴ No signals are allowed on the IO pins if no VDD_IO (Pin 22) power supplied, except pin 7, 8, 17-20.

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-2400	-102	REV. 1.03
SUBJECT	CLASS 1 or	2 BLUETOOTH MODULE	PAGE	7 of 4	1
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

5.2. PIN DESCRIPTION

Pin Name	No	ESD ⁵ (V)	Pull at Reset	Def. Dir. ⁶	I/O Type ⁷	Description of Options			
Bluetooth IO SIG	NALS								
HCI_RX	5	750	PU	I	8 mA	HCI UART data receive			
HCI_TX	6	750	PU	0	8 mA	HCI UART data transmit			
HCI_RTS	4	750	PU	0	8 mA	HCI UART request-to-send.			
HCI_CTS	3	750	PU	I	8 mA	HCI UART clear-to-send.			
AUD FYSNC	7	500	PD	Ю	4 mA	PCM frame synch (NC if not used) Fail safe			
AUD_CLK	19	500	PD	10	HY, 4 mS	PCM clock (NC if not used) Fail safe			
AUD_IN	18	500	PD	1	4 mA	PCM data input (NC if not used) Fail safe			
AUD_OUT	17	500	PD	0	4 mA	PCM data output (NC if not used) Fail safe			
TV DD0		1000	DI			Logger output			
TX_DBG	2	1000	PU	0	2 mA	OPTION: nTX_DBG – logger out (low = 1)			
CLOCK SIGNALS	S				I				
SLOW CLK IN	8	1000		I/		32.768-kHz clock in Fail safe			
Bluetooth ANALC	G SIG	SNALS							
RF	13	1000		10		Bluetooth RF IO			
nSHUTD	16	1000	PD	I		Shutdown input (active low).			
Bluetooth POWE	R AND	GND SI	IGNALS						
VDD_IO	22	1000		PI		I/O power supply 1.8 V Nom			
MLDO_IN	15	1000		I		Main LDO input Connect directly to battery or to a pre-regulated 1.8-V supply			
MLDO_OUT	10	1000		0		Main LDO output (1.8 V nom.)			
CL1.5_LDO_IN	11	1000		I		PA LDO input Connect directly to battery or to a pre-regulated 1.8-V supply			
GND	1			Р		Connect to Ground			
GND	12			Р		Connect to Ground			
GND	14			Р		Connect to Ground			
GND	20			Р		Connect to Ground			
EEPROM IO SIG	NALS	(EEPRO	M is option	al in PA	N13x product	t line)			
NC	23	1000	PU/PD	I	HY, 4mA	EEPROM I ² C SCL (Internal)			
NC	21	1000	PU/PD	Ю	HY, 4mA	EEPROM I ² C IRQ (Internal)			
Remark:									

Remark:

HCI_CTS is an input signal to the CC2560 device:

- When HCI_CTS is low, then CC2560 is allowed to send data to Host device.
- When HCI_CTS is high, then CC2560 is not allowed to send data to Host device.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

⁵ ESD: Human Body Model (HBM). JEDEC 22-A114

 $^{^{6}}$ I = input; O = output; IO = bidirectional; P = power; PU = pulled up; PD = pulled down

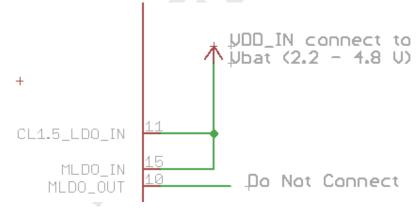
⁷ I/O Type: Digital I/O cells. HY = input hysteresis, current = typ output current

CLASSIFICATION	PR	ODUCT SPECIFICATION	No. DS-1315-2400-1	02	REV. 1.03
SUBJECT	CLASS 1 or 2	2 BLUETOOTH MODULE	PAGE	8 of 4	1
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

5.3. DEVICE POWER SUPPLY

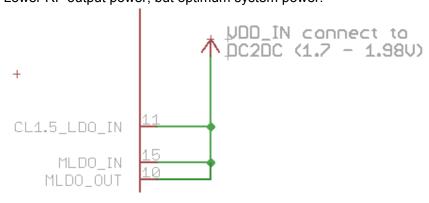
The PAN1315 Bluetooth radio solution is intended to work in devices with a limited power budget such as cellular phones, headsets, hand-held PC's and other battery-operated devices. One of the main differentiators of the PAN1315 is its power management – its ability to draw as little current as possible.

The PAN1315 device requires two kinds of power sources:


- Main power supply for the Bluetooth VDD_IN = V_{BAT}
- Power source for the 1.8 V I/O ring VDD IO

The PAN1315 includes several on-chip voltage regulators for increased noise immunity. The PAN1315 can be connected either directly to the battery or to an external 1.8-V DC to DC converter.

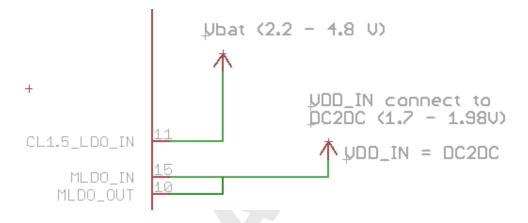
There are three ways to supply power:


Full-V_{BAT} system:

Maximum RF output power, but not optimum system power:

• Full-DC2DC system:

Lower RF output power, but optimum system power:



PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or	2 BLUETOOTH MODULE	PAGE 9 of 4	1 1
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE 23.05.2	011

• Mixed DC2DC-V_{BAT} system:

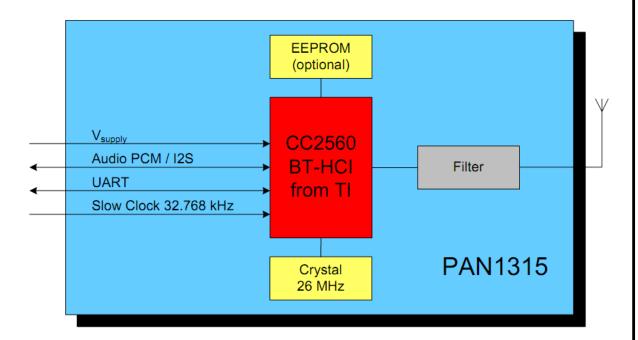
Maximum RF output power and optimum system power, but requires routing of V_{BAT}:

5.4. CLOCK INPUTS

The slow clock is always supplied from an external source. It is connected to the SLOW_CLK_IN pin number 8 and can be a digital signal with peak to peak of 0-1.8 V.

The slow clock's frequency accuracy must be 32.768 kHz \pm 250 ppm for Bluetooth usage (according to the Bluetooth specification).

PANASONIC ELECTRONIC DEVICES EUROPE GMBH


CLASSIFICATION	PRODUCT SPECIFIC	CATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH M	ODULE	PAGE 10 of	41
CUSTOMER'S CODI PAN1315	PANASONIC'S C ENW89818C2JF	ODE	DATE 23.05.2	011

6. BLUETOOTH FEATURES

- Support of Bluetooth2.1+EDR (Lisbon Release) up to HCI level.
- Very fast AFH algorithm for both ACL and eSCO.
- Supports typically 4 dBm Class 2 TX power w/o external PA, improving Bluetooth link robustness. Adjusting the host settings, the TX power can be increased to 10 dBm. However it is important, that the national regulations and Bluetooth specification are met.
- Digital Radio Processor (DRP) single-ended 50 ohm.
- Internal temperature detection and compensation ensures minimal variation in the RF performance over temperature.
- Flexible PCM and I2S digital audio/voice interfaces: Full flexibility of data-format (Linear, a-Law, μ-Law), data-width, data order, sampling and slot positioning, master/slave modes, high clock rates up to 15 MHz for slave mode (or 4.096 MHz for Master Mode). Lost packet concealment for improved audio.
- Proprietary low-power scan method for page and inquiry scans, achieves page and inquiry scans at 1/3rd normal power.

CLASSIFICATION	PRO	DUCT SPECIFICATION	No. DS-1315-2400-102	2	REV. 1.03
SUBJECT	CLASS 1 or 2	BLUETOOTH MODULE	PAGE 1	1 of 4	11
CUSTOMER'S COD PAN1315	-	'ANASONIC'S CODE :NW89818C2JF	DATE 23	.05.20	11

7. BLOCK DIAGRAM

The EEPROM could be used to store some calibration value for the 26 MHz crystal at room temperature, so the max. operating temperature could be increased to +85°C.

In addition, the start up time could be decrease, as the patch can be loaded from the EEPROM,. For details please contact your local sales office.

Note: The Slow Clock 32.768 kHz is mandatory, otherwise the module does not start up, please refer to chapter 5.4.

Note: The IO are 1.8V driven and might need external level shifter and LDO. The MLDO OUT PIN can not be used as reference due to RF internal connection.

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or	2 BLUETOOTH MODULE	PAGE 12 of	41
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE 23.05.20	011

8. TEST CONDITIONS

Measurements shall be made under room temperature and humidity unless otherwise specified.

9. GENERAL DEVICE REQUIREMENTS AND OPERATION

Temperature $25 \pm 10^{\circ}$ C Humidity 40 to 85%RH

SW-Patch V2.30 Supply Voltage 3.3V

All specifications are over temperature and process, unless indicated otherwise.

9.1. ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted).

Note

All parameters are measured as follows unless stated otherwise:

 $VDD_IN^8 = 3.3 \text{ V}, VDD_IO = 1.8 \text{ V}.$

No	See ⁹		Value	Unit
Rati	ngs Over Operatir			
1	VDD_IN	Supply voltage range	-0.5 to 5.5	V 10
2	VDDIO_1.8V		-0.5 to 2.145	V
3	Input voltage to I	RF (Pin 13)	-0.5 to 2.1	V
4	Operating ambie	nt temperature range	–20 to 70	°C
5	Storage tempera	ture range	-40 to 125	°C
6	Bluetooth RF inp	outs (Pin 13)	10	dBm
7	ESD: Human Bo	dy Model (HBM). JEDEC 22-A114	500	V

⁸ VDD_IN is supplied to MLDO_IN (Pin 15) and CL1.5_LDO_IN (Pin 11), other options are described in chapter 5.3 Device Power Supply.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

⁹ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

¹⁰ Maximum allowed depends on accumulated time at that voltage: VDD_IN is defined in Reference schematics. When DC2DC supply is used, maximum voltage into MLDO_OUT and LDO_IN = 2.145 V.

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-24	400-102	REV. 1.03
SUBJECT	CLASS 1 or	2 BLUETOOTH MODULE	PAGE	13 of 4	41
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

9.2. RECOMMENDED OPERATING CONDITIONS

No	Rating	Condition	Symbol	Min	Max	Unit	
1	Power supply voltage ¹¹		VDD_IN	1.7	4.8	V	
2	IO power supply voltage		VDD_IO	1.62	1.92	V	
3	High-level input voltage	Default	V _{IH}	0.65 x VDD_IO	VDD_IO	V	
4	Low-level input voltage	Default	V _{IL}	0	0.35 x VDD_IO	V	
5	IO Input rise/fall times, 10% to 90% 12		Tr/Tf	1	10	ns	
		0 to 0.1 MHz			60		
		0.1 to 0.5 MHz			50		
6	Maximum ripple on VDD_IN (Sine wave) for 1.8 V (DC2DC) mode	0.5 to 2.5 MHz			30	mVp-p	
	1.0 1 (2.022.0)000	2.5 to 3.0 MHz			15		
		> 3.0 MHz			5		
7	Voltage dips on VDD_IN (VBAT) (duration = 577 µs to 2.31 ms, period = 4.6 ms)				400	mV	
8	Maximum ambient operating temperature ¹³				70	°C	

9.3. CURRENT CONSUMPTION

No	Characteristics	Min 25°C	Typ 25°C	Max 25°C	Min -20°C	Typ -20°C	Max -20°C	Min +70°C	Typ +70°C	Max +70°C	Unit
1	Current consumption in shutdown mode ¹⁴		1	3						7	μΑ
2	Current consumption in deep sleep mode ¹⁵		40	105						700	μА
3	Total IO current consumption for active mode			1			1			1	mA
4	Current consumption during transmit DH5 full throughput		40								mA

¹¹ Excluding 1.98 < VDD_IN < 2.2 V range – not allowed.

¹² Asynchronous mode.

¹³ The device can be reliably operated for 7 years at T_{ambient} of 70°C, assuming 25% active mode and 75% sleep mode (15,400 cumulative active power-on hours).

¹⁴ Vbat + Vio

¹⁵ Vbat + Vio + Vsd (shutdown)

CLASSIFICATION	PROD	UCT SPECIFICATION - I	No. DS-1315-2400-102	RE 1.0	
SUBJECT	CLASS 1 or 2 B	LUETOOTH MODULE	PAGE 14	of 41	
CUSTOMER'S CODI PAN1315		NASONIC'S CODE W89818C2JF	DATE 23.	05.2011	

9.4. GENERAL ELECTRICAL CHARACTERISTICS

No	Rating			Condition	Min	Max	Value	
1	High lovel outp	ut voltago V		at 2/4/8 mA	0.8 x VDD_IO	VDD_IO	V	
	1 High-level output voltage, V _{он}			at 0.1 mA	VDD_IO - 0.2	VDD_IO	V	
2 Low-level output voltage, V _{OI}				at 2/4/8 mA	0	0.2 x VDD_IO	V	
	Low-level outpu	it voitage, vol	ıtage, v _{o∟}		0	0.2	V	
3	3 IO input impedance			Resistance	1		ΜΩ	
3	10 input impeda	ance		Capacitance		5	pF	
4	Output rise/fall	times,10% to 90°	% (Digital pins)	C _L = 20 pF		10	Ns	
		TX_DBG,	PU	typ = 6.5	3.5	9.7		
5	IO pull	PCM bus	PD	typ = 27	9.5	55	μΑ	
3	currents	All others	PU	typ = 100	100	300		
		All others	PD	typ = 100	100	360	μΑ	

9.5. NSHUTD REQUIREMENTS

No	Parameter	Symbol	Min	Max	Unit
1	Operation mode level ¹⁶	V _{IH}	1.42	1.98	V
2	Shutdown mode level	V _{IL}	0	0.4	٧
3	Minimum time for nSHUT_DOWN low to reset the device		5		ms
4	Rise/fall times	Tr/Tf		20	μs

9.6. EXTERNAL DIGITAL SLOW CLOCK REQUIREMENTS (-20°C TO +70°C)

No	Characteristics	Condition	Symbol	Min	Тур	Max	Unit
1	Input slow clock frequency				32768		Hz
2	Input slow clock accuracy (Initial + temp + aging)	Bluetooth				±250	Ppm
3	Input transition time Tr/Tf – 10% to 90%		Tr/Tf			100	Ns
4	Frequency input duty cycle			15%	50%	85%	
5	Phase noise	at 1 kHz				-125	dBc/Hz
6	Jitter	Integrated over 300 to 15000 Hz				1	Hz
7	7 Slow clock input voltage limits		V _{IH}	0.65 x VDD_IO		VDD_IO	V peak
,			V _{IL}	0		0.35 x VDD_IO	у реак
8	Input impedance			1			ΜΩ
9	Input capacitance					5	pF

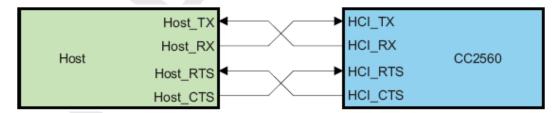
¹⁶ Internal pull down retains shut down mode when no external signal is applied to this pin.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION		No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE			PAGE 15 of	41	
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF		DATE 23.05.2	011

10. HOST CONTROLLER INTERFACE

The CC2560 incorporates one UART module dedicated to the host controller interface (HCI) transport layer. The HCI interface transports commands, events, ACL, and synchronous data between the Bluetooth device and its host using HCI data packets.


The UART module supports H4 (4-wires) protocol with maximum baud rate of 4 Mbps for all fast clock frequencies.

After power up the baud rate is set for 115.2 kbps, irrespective of fast clock frequency. The baud rate can thereafter be changed with a vendor specific command. The CC2560 responds with a Command Complete Event (still at 115.2 kbps), after which the baud rate change takes place. HCI hardware includes the following features:

- · Receiver detection of break, idle, framing, FIFO overflow, and parity error conditions
- Transmitter underflow detection
- CTS/RTS hardware flow control

The interface includes four signals: TXD, RXD, CTS, and RTS. Flow control between the host and the CC2560 is byte-wise by hardware.

Flow control is obtained by the following:

When the UART RX buffer of the CC2560 passes the "flow control" threshold, it will set the UART RTS signal high to stop transmission from the host.

When the UART_CTS signal is set high, the CC2560 will stop its transmission on the interface. In case HCI_CTS is set high in the middle of transmitting a byte, the CC2560 will finish transmitting the byte and stop the transmission.

11. AUDIO/VOICE CODEC INTERFACE

The codec interface is a fully-dedicated programmable serial port that provides the logic to interface to several kinds of PCM or I2S codecs. PAN1315 supports all voice coding schemes required by Bluetooth specification – Log PCM (A-Law or μ -Law) and Linear (CVSD). In addition, module also supports transparent scheme:

- Two voice channels
- Master / slave modes
- μ-Law, A-Law, Linear, Transparent coding schemes
- · Long and short frames
- Different data sizes, order, and positions.
- High rate PCM interface for EDR

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION		No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE			PAGE 16 of	41	
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF		DATE 23.05.2	011

- Enlarged interface options to support a wider variety of codecs
- PCM bus sharing

11.1. PCM HARDWARE INTERFACE

The PCM interface is one implementation of the codec interface. It contains the following four lines:

- Clock—configurable direction (input or output)
- Frame Sync—configurable direction (input or output)
- Data In—Input
- Data Out—Output/3-state

The Bluetooth device can be either the master of the interface where it generates the clock and the frame-sync signals, or slave where it receives these two signals. The PCM interface is fully configured by a vendor specific command.

For slave mode, clock input frequencies of up to 16 MHz are supported. At clock rates above 12 MHz, the maximum data burst size is 32 bits. For master mode, the CC2560 can generate any clock frequency between 64 kHz and 6 MHz.

11.2. DATA FORMAT

The data format is fully configurable:

- The data length can be from 8 to 320 bits, in 1-bit increments, when working with two channels, or up to 640 bits when using 1 channel. The Data length can be set independently for each channel.
- The data position within a frame is also configurable in with 1 clock (bit) resolution and can be set independently (relative to the edge of the Frame Sync signal) for each channel.
- The Data_In and Data_Out bit order can be configured independently. For example; Data_In can start with the MSB while Data_Out starts with LSB. Each channel is separately configurable. The inverse bit order (that is, LSB first) is supported only for sample sizes up to 24 bits.
- It is not necessary for the data in and data out size to be the same length.
- The Data_Out line is configured to 'high-Z' output between data words. Data_Out can also be set for permanent high-Z, irrespective of data out. This allows the CC2560 to be a bus slave in a multi-slave PCM environment. At powerup, Data Out is configured as high-Z.

11.3. FRAME IDLE PERIOD

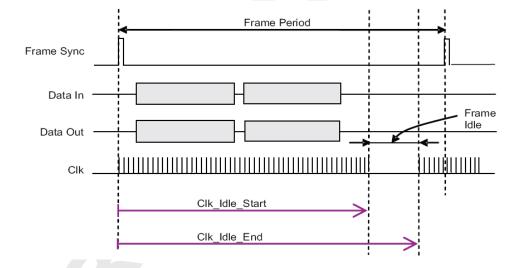
The codec interface has the capability for frame idle periods, where the PCM clock can "take a break" and become '0' at the end of the PCM frame, after all data has been transferred.

The CC2560 supports frame idle periods both as master and slave of the PCM bus.

When CC2560 is the master of the interface, the frame idle period is configurable. There are two configurable parameters:

• Clk_Idle_Start – Indicates the number of PCM clock cycles from the beginning of the frame until the beginning of the idle period. After Clk_Idle_Start clock cycles, the clock will become '0'.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

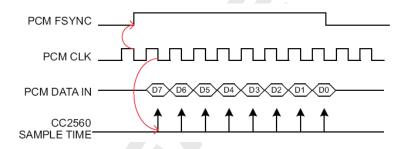

CLASSIFICATION	PR	RODUCT SPECIFICATION	No. DS-1315-2400	-102	REV. 1.03
SUBJECT	SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE	17 of 4	41
CUSTOMER'S CODI PAN1315	Ξ	PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

• Clk_Idle_End – Indicates the time from the beginning of the frame till the end of the idle period. This time is given in multiples of PCM clock periods.

The delta between Clk_Idle_Start and Clk_Idle_End is the clock idle period.

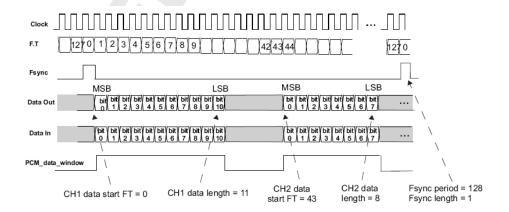
For example, for PCM clock rate = 1 MHz, frame sync period = 10 kHz, Clk_Idle_Start = 60, Clk_Idle_End = 90.

Between each two frame syncs there are 70 clock cycles (instead of 100). The clock idle period starts 60 clock cycles after the beginning of the frame, and lasts 90 - 60 = 30 clock cycles. This means that the idle period ends 100 - 90 = 10 clock cycles before the end of the frame. The data transmission must end prior to the beginning of the idle period.



CLASSIFICATION	PRODUCT SPECI	FICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE			PAGE 18 of	41
CUSTOMER'S CODI PAN1315	PANASONIC'S ENW89818C2		DATE 23.05.2	011

11.4. CLOCK-EDGE OPERATION


The codec interface of the CC2560 can work on the rising or the falling edge of the clock. It also has the ability to sample the frame sync and the data at inversed polarity.

This is the operation of a falling-edge-clock type of codec. The codec is the master of the PCM bus. The frame sync signal is updated (by the codec) on the falling clock edge and therefore shall be sampled (by the CC2560) on the next rising clock. The data from the codec is sampled (by the CC2560) on the clock falling edge.

11.5. TWO-CHANNEL PCM BUS EXAMPLE

In Figure 4-8, a 2-channel PCM bus is shown where the two channels have different word sizes and arbitrary positions in the bus frame. (FT stands for Frame Timer)

11.6. AUDIO ENCODING

The CC2560 codec interface can use one of four audio-coding patterns:

- A-Law (8-bit)
- µ-Law (8-bit)
- Linear (8- or 16-bit)

11.7. IMPROVED ALGORITHM FOR LOST PACKETS

The CC2560 features an improved algorithm for improving voice quality when received voice data packets are lost. There are two options:

• Repeat the last sample – possible only for sample sizes up to 24 bits. For sample sizes >24 bits, the last byte is repeated.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PR	RODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE 19 o	f 41	
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE 23.05.	2011

• Repeat a configurable sample of 8 to 24 bits (depends on the real sample size), in order to simulate silence (or anything else) in the PCM bus. The configured sample will be written in a specific register for each channel.

The choice between those two options is configurable separately for each channel.

11.8. BLUETOOTH/PCM CLOCK MISMATCH HANDLING

In Bluetooth RX, the CC2560 receives RF voice packets and writes these to the codec I/F. If the CC2560 receives data faster than the codec I/F output allows, an overflow will occur. In this case, the Bluetooth has two possible behaviour modes: 'allow overflow' and 'don't allow overflow'.

- If overflow is allowed, the Bluetooth will continue receiving data and will overwrite any data not yet sent to the codec.
- If overflow is not allowed, RF voice packets received when buffer is full will be discarded.

11.9. BLUETOOTH INTER-IC SOUND (I2S)

The CC2560 can be configured as an Inter-IC Sound (I2S) serial interface to a I2S codec device. In this mode, the CC2560 audio codec interface is configured as a bi-directional, full-duplex interface, with two time slots per frame: Time slot 0 is used for the left channel audio data and time slot 1 for the right channel audio data. Each time slot is configurable up to 40 serial clock cycles in length and the frame is configurable up to 80 serial clock cycles in length.

11.10. CURRENT CONSUMPTION FOR DIFFERENT BLUETOOTH SCENARIOS
The following table gives average current consumption for different Bluetooth scenarios.
Conditions: VDD_IN = 3.6 V, 25°C, 26-MHz fast clock, nominal unit, 4 dBm output power.

Mode Description	Master/Slave	Average Current	Unit
Idle current (ARM off)	Master/Slave	2.5	mA
SCO link HV3	Master/Slave	12	mA
eSCO link EV3 64 kbps, no retransmission	Master/Slave	11.5	mA
eSCO link 2-EV3 64 kbps, no retransmission	Master/Slave	8.3	mA
GFSK full throughput: TX = DH1, RX = DH5	Master/Slave	38.5	mA
EDR full throughput: TX = 2-DH1, RX = 2-DH5	Master/Slave	39.2	mA
EDR full throughput: TX = 3-DH1, RX = 3-DH5	Master/Slave	39.2	mA
Sniff, 1 attempt, 1.28 s	Master/Slave	76/100	μА
Page or Inquiry Scan 1.28 s, 11.25 ms	Master/Slave	300	μА
Page (1.28 s) and Inquiry (2.56 s) scans, 11.25 ms	Master/Slave	430	μА
Low power scan, 1.28-s interval, quiet environment	Master/Slave	135	μА

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PRODUC	O SPECIFICATION I	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE 20 0	of 41	
CUSTOMER'S CODI PAN1315		ASONIC'S CODE 89818C2JF	DATE 23.05	5.2011

12. BLUETOOTH RF PERFORMANCE (BT)

12.1. BLUETOOTH CHARACTERISTICS

No	Characteristics	Тур	BT Spec Max	BT Spec Min
			Class1	Class1
1	Average Power Hopping DH5 [dBm] 18,19	7.2	20	4
2	Average Power: Ch0 [dBm] 18, 19	7.5	20	4
3	Peak Power: Ch0 [dBm] 18, 19	7.7	23	
4	Average Power: Ch39 [dBm] 18, 19	7.0	20	4
5	Peak Power: Ch39 [dBm] 18, 19	7.2	23	
6	Average Power: Ch78 [dBm] 18, 19	6.7	20	4
7	Peak Power: Ch78 [dBm] 18, 19	7.0	23	
8	Max. Frequency Tolerance: Ch0 [kHz]	-2.6	75	-75
9	Max. Frequency Tolerance: Ch39 [kHz]	-2.2	75	-75
10	Max. Frequency Tolerance: Ch78 [kHz]	-2.1	75	-75
11	Max. Drift: Ch0_DH1 [kHz]	3.6	25	-25
12	Max. Drift: Ch0_DH3 [kHz]	3.7	40	-40
13	Max. Drift: Ch0_DH5 [kHz]	4.0	40	-40
14	Max. Drift Rate: Ch0_DH1 [kHz]	-2.6	20	-20
15	Max. Drift Rate: Ch0_DH3 [kHz]	-3.2	20	-20
16	Max. Drift Rate: Ch0_DH5 [kHz]	-3.3	20	-20
17	Max. Drift: Ch39_DH1 [kHz]	4.0	25	-25
18	Max. Drift: Ch39_DH3 [kHz]	4.3	40	-40
19	Max. Drift: Ch39_DH5 [kHz]	4.3	40	-40
20	Max. Drift Rate: Ch39_DH1 [kHz]	-3.1	20	-20
21	Max. Drift Rate: Ch39_DH3 [kHz]	-3.6	20	-20
22	Max. Drift Rate: Ch39_DH5 [kHz]	-3.7	20	-20
23	Max. Drift: Ch78_DH1 [kHz]	4.1	25	-25
24	Max. Drift: Ch78_DH3 [kHz]	4.5	40	-40
25	Max. Drift: Ch78_DH5 [kHz]	4.4	40	-40
26	Max. Drift Rate: Ch78_DH1 [kHz]	-3.4	20	-20
27	Max. Drift Rate: Ch78_DH3 [kHz]	-3.9	20	-20
28	Max. Drift Rate: Ch78_DH5 [kHz]	-4.1	20	-20
29	Delta F1 Avg: Ch0 [kHz]	159.5	175	140
30	Delta F2 Max.: Ch0 [%]	100.0		99.9
31	Delta F2 Avg/Delta F1 Avg: Ch0	0.9		0.8
32	Delta F1 Avg: Ch39 [kHz]	159.8	175	140
33	Delta F2 Max.: Ch39 [%]	100.0		99.9
34	Delta F2 Avg/Delta F1 Avg: Ch39	0.9		0.8
35	Delta F1 Avg: Ch78 [kHz]	159.1	175	140
36	Delta F2 Max.: Ch78 [%]	100.0		99.9
37	Delta F2 Avg/Delta F1 Avg: Ch78	0.9		0.8
45	Sensitivity	-93.0		-81
46	f(H)-f(L): Ch0 [kHz]	918.4	1000	
47	f(H)-f(L): Ch39 [kHz]	918.3	1000	

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PRODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03		
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE	PAGE 21 of	PAGE 21 of 41		
CUSTOMER'S COD PAN1315	PANASONIC'S CODE ENW89818C2JF	DATE 23.05.2	011		

No	Characteristics	Тур	BT Spec Max	BT Spec Min
			Class1	Class1
48	f(H)-f(L): Ch78 [kHz]	918.2	1000	
49	ACPower -3: Ch3 [dBm]	-51.5	-40	
50	ACPower -2: Ch3 [dBm]	-50.4	-40	
51	ACPower -1: Ch3 [dBm]	-18.5		
52	ACPower Center: Ch3 [dBm]	8.1	20	4
53	ACPower +1: Ch3 [dBm]	-19.2		
54	ACPower +2: Ch3 [dBm]	-50.7	-40	
55	ACPower +3: Ch3 [dBm]	-53.3	-40	
56	ACPower -3: Ch39 [dBm]	-51.6	-40	
57	ACPower -2: Ch39 [dBm]	-50.7	-40	
58	ACPower -1: Ch39 [dBm]	-19.0		
59	ACPower Center: Ch39 [dBm]	7.7	20	4
60	ACPower +1: Ch39 [dBm]	-19.7		
61	ACPower +2: Ch39 [dBm]	-50.9	-40	
62	ACPower +3: Ch39 [dBm]	-53.2	-40	
63	ACPower -3: Ch75 [dBm]	-51.7	-40	
64	ACPower -2: Ch75 [dBm]	-50.7	-40	
65	ACPower -1: Ch75 [dBm]	-19.2		
66	ACPower Center: Ch75 [dBm]	7.5	20	4
67	ACPower +1: Ch75 [dBm]	-20.0		
68	ACPower +2: Ch75 [dBm]	-51.0	-40	
69	ACPower +3: Ch75 [dBm]	-53.4	-40	
70	omega i 2-DH5: Ch0 [kHz]	-4.7	75	-75
71	omega o + omega i 2-DH5: Ch0 [kHz]	-6.0	75	-75
72	omega o 2-DH5: Ch0 [kHz]	-1.5	10	-10
73	DEVM RMS 2-DH5: Ch0 [%]	0.0	0.2	
74	DEVM Peak 2-DH5: Ch0 [%]	0.1	0.35	
75	DEVM 99% 2-DH5: Ch0 [%]	100.0		99
76	omega i 3-DH5: Ch0 [kHz]	-3.7	75	-75
77	omega o + omega i 3-DH5: Ch0 [kHz]	-5.8	75	-75
78	omega o 3-DH5: Ch0 [kHz]	-2.6	10	-10
79	DEVM RMS 3-DH5: Ch0 [%]	0.0	0.13	
80	DEVM Peak 3-DH5: Ch0 [%]	0.1	0.25	
81	DEVM 99% 3-DH5: Ch0 [%]	100.0		99
82	omega i 2-DH5: Ch39 [kHz]	-4.8	75	-75
83	omega o + omega i 2-DH5: Ch39 [kHz]	-6.1	75	-75
84	omega o 2-DH5: Ch39 [kHz]	-1.4	10	-10
85	DEVM RMS 2-DH5: Ch39 [%]	0.0	0.2	
86	DEVM Peak 2-DH5: Ch39 [%]	0.1	0.35	
87	DEVM 99% 2-DH5: Ch39 [%]	100.0		99
88	omega i 3-DH5: Ch39 [kHz]	-3.8	75	-75
89	omega o + omega i 3-DH5: Ch39 [kHz]	-5.9	75	-75
90	omega o 3-DH5: Ch39 [kHz]	-2.6	10	-10
91	DEVM RMS 3-DH5: Ch39 [%]	0.0	0.13	
92	DEVM Peak 3-DH5: Ch39 [%]	0.1	0.25	

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PR	RODUCT SPECIFICATION	No. DS-1315-2	400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE		PAGE	22 of 4	41
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

No	Characteristics	Тур	BT Spec Max	BT Spec Min
			Class1	Class1
93	DEVM 99% 3-DH5: Ch39 [%]	100.0		99
94	omega i 2-DH5: Ch78 [kHz]	-4.9	75	-75
95	omega o + omega i 2-DH5: Ch78 [kHz]	-6.2	75	-75
96	omega o 2-DH5: Ch78 [kHz]	-1.4	10	-10
97	DEVM RMS 2-DH5: Ch78 [%]	0.0	0.2	
98	DEVM Peak 2-DH5: Ch78 [%]	0.1	0.35	
99	DEVM 99% 2-DH5: Ch78 [%]	100.0		99
100	omega i 3-DH5: Ch78 [kHz]	-3.8	75	-75
101	omega o + omega i 3-DH5: Ch78 [kHz]	-6.0	75	-75
102	omega o 3-DH5: Ch78 [kHz]	-2.7	10	-10
103	DEVM RMS 3-DH5: Ch78 [%]	0.0	0.13	
104	DEVM Peak 3-DH5: Ch78 [%]	0.1	0.25	
105	DEVM 99% 3-DH5: Ch78 [%]	100.0		99

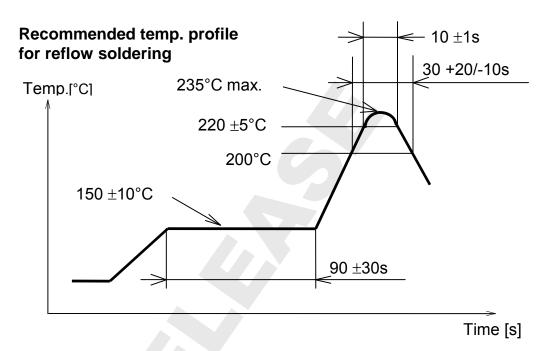
No	Characteristics	Condition	Min	Тур	Max	BT Spec	Unit
1	Operation frequency range		2402		2480		MHz
2	Channel spacing			1			MHz
3	Input impedance			50			Ω
		GFSK, BER = 0.1%		-93.0		-70	
4	Sensitivity, Dirty Tx on	Pi/4-DQPSK, BER = 0.01%		-92.5		-70	dBm
	8DPSK, BER = 0.01%		-85.5		-70		

No	Characteristics	Condition	Тур	Max	Unit	
1	Tx and Rx out-of-band emissions	30 kHz to 1 GHz ¹⁷ , ¹⁸ , ¹⁹		-30	dBm	
	Output signal = 7dBm	1 to 12.75 GHz ^{17, 18, 19}		-30	UBIII	
2	2nd harmonic	at 7dBm output power 17, 18, 19		-30	dBm	
3	3rd harmonic	at 7dBm output power 17, 18, 19		-30	dBm	

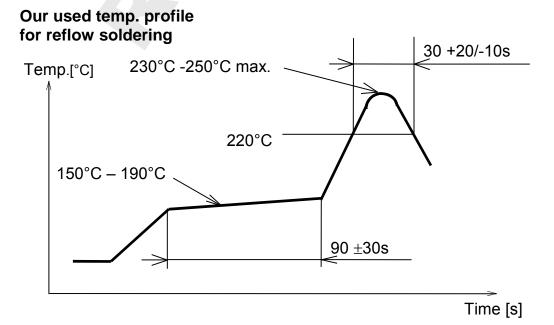
The values are measured conducted. Therefore we expect even better suppression of the spurious emissions at customer application with antenna. Usual antennas have band pass filter characteristics.

By using a different filter design, Panasonic is working active on an improved pin and function compatible module, to comply with the out of band emissions also with higher output power (+10dBm). This will NOT affect the FCC ID, please refer to chapter 29.1.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH


¹⁷ Includes effects of frequency hopping

¹⁸ Average according FCC, IC and ETSI requirements. Above +7dBm output power (refer also to 19) the customer has to verify the final product against national regulations.


¹⁹ +7dBm related to power register value 18, according to TI service pack 2.30

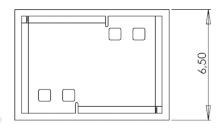
CLASSIFICATION	PR	RODUCT SPECIFICATION	No. DS-1315-2	400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE		PAGE	23 of 4	41
CUSTOMER'S CODI PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

13. SOLDERING TEMPERATURE-TIME PROFILE (FOR REFLOW SOLDERING) 13.1. FOR LEAD SOLDER

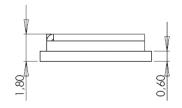
13.2. FOR LEADFREE SOLDER

Reflow permissible cycle: 2
Opposite side reflow is prohibited due to module weight.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH


CLASSIFICATION	PRODUCT SPEC	CIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE			PAGE 24 of	41
CUSTOMER'S CODE PAN1315	PANASONIC' ENW89818C2		DATE 23.05.	2011

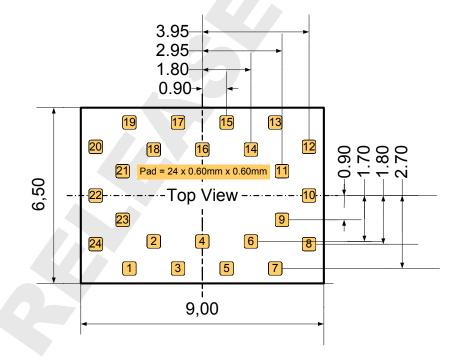
14. MODULE DIMENSION


No.	Item	Dimension	Tolerance	Remark
1	Width	6.50	± 0.20	
2	Lenght	9.00	± 0.20	
3	Height	1.80	± 0.20	With case

PAN1315 Module Drawing

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

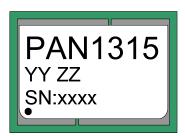
CLASSIFICATION	PR	RODUCT SPECIFICATION	No. DS-1315-2	400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE		PAGE	25 of 4	41
CUSTOMER'S CODI PAN1315	Ξ	PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11


15. PAN1315 FOOTPRINT OF THE MODULE

All dimensions are in millimeters.

The outer dimensions have a tolerance of \pm 0.2mm.

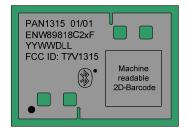
The layout is symetric to center. The inner pins (2,4,6,9,11,14,16,18,21,23) are shifted to the center by 1mm.


Please note that the ES samples with HW Revision 01 have 0.5mm pads!

CLASSIFICATION	PRODU	CT SPECIFICATION - I	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE 26 c	f 41	
CUSTOMER'S CODI PAN1315		ASONIC'S CODE '89818C2JF	DATE 23.05	.2011

16. LABELING DRAWING

16.1. ENGINEERING SAMPLES


Above white carbon label is suitable for reflow soldering and designed for the engineering sample status.

The point on the label (below left) is the identifier for pin 1 of the module.

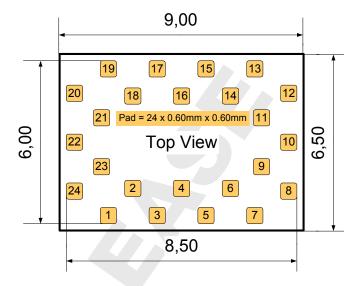
As a summary:

Print	Description			
XXXX	Serial Number	Serial Number		
YY	Hardware Ider	Hardware Identifier:		
	EE	With EEPROM		
	00	Without EEPROM		
ZZ	Software Identifier:			
	01	first identifier for the software version		

16.2. MASS PRODUCTION

This will be a laser marking on the top case, drawing is only an example.

17. MECHANICAL REQUIREMENTS


No.	Item	Limit	Condition
1	Solderability	More than 75% of the soldering area shall be coated by solder	Reflow soldering with recommendable temperature profile
2	Resistance to soldering heat	It shall be satisfied electrical requirements and not be mechanical damage	See chapter 13.2

PANASONIC ELECTRONIC DEVICES EUROPE GMBH <u>www.pedeu.pansonic.de</u>

CLASSIFICATION	PF	RODUCT SPECIFICATION		No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE		PAGE 27 of	41	
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF		DATE 23.05.2	2011

18. PAN1315 RECOMMENDED FOOT PATTERN

Dimensions in mm.

The land pattern dimensions above are meant to serve only as a guide. This information is provided without any legal liability.

For the solder paste screen, use the same screen for the module. Solder paste screen cutouts (with slightly different dimensions) might be optimum depending on your soldering process. For example, the solder paste screen thickness chosen might have an effect. The solder screen thickness depends on your production standard -- $120\mu m$ to $150\mu m$ is recommended.

IMPORTANT:

Although the bottom side of PAN1315 is fully coated, no copper such as through hole vias, planes or tracks on the board component layer should be located below the PAN1315 to avoid creating a short. In cases where a track or through hole via has to be located under the module, please make a note that it has to be kept away from PAN1315 bottom pads. The PAN1315 multilayer pcb contains an inner RF shielding plane, therefore no pcb shielding plane below the module is needed.

When using an onboard ceramic antenna, please place the antenna on the edge of your carrier board (if allowable).

If you have any questions on these points, please contact your local Panasonic representative.

Before releasing the layout, we recommend to sent the schematic and layout for final check to <u>wireless@eu.panasonic.com</u>.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PROD	UCT SPECIFICATION - I	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE 28	of 41	
CUSTOMER'S CODI PAN1315		NASONIC'S CODE W89818C2JF	DATE 23.	05.2011

19. DEVELOPMENT OF APPLICATIONS

Mindtree Ltd. has developed Bluetooth software, including some profiles, for TIs MSP430 and Panasonics PAN1315. A detailed documentation will be available in the next revision of this document, in Related Documents, Chapter 25. Also refer to www.panasonic.com/rfmodules

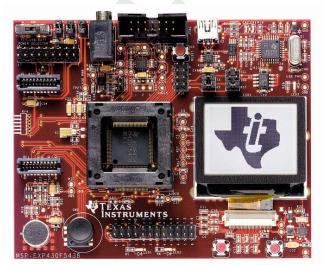
19.1. TOOLS TO BE NEEDED

MSP-EXP430F5438 - Experimenter Board, which can be ordered here:

http://focus.ti.com/docs/toolsw/folders/print/msp-exp430f5438.html

MSP-FET430UIF430 - Debugging Interface, which can be ordered here:

http://focus.ti.com/docs/toolsw/folders/print/msp-fet430uif.html


PAN1315EMK - Bluetooth Evaluation Module Kit for MSP430, which can be ordered here:

TI link:

http://focus.ti.com/docs/toolsw/folders/print/pan1315emk.html?DCMP=wtbu_ecs&HQS=EVM+OT+pan1315emk

Panasonic link:

http://www.panasonic.com/industrial/electronic-components/rfmodules/bluetooth/pan1315etu.aspx

PAN1315ETU

In addition you need the software development environment, e.g. IAR Embedded Workbench, please refer to **Fehler! Verweisquelle konnte nicht gefunden werden.**.

For a detailed description of the usage for the tools refer to:

http://wiki.msp430.com/index.php/MSP430 Bluetooth Platform

Evaluation kits and modules are available through Panasonic's network of authorized distributors. For additional information visit www.panasonic.com/rfmodules.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION		No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE 29 of	41		
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF		DATE 23.05.2	011

20. RELIABILITY TESTS

The measurement should be done after being exposed to room temperature and humidity for 1 hour.

No.	Item	Limit	Condition
1	Vibration test	Electrical parameter should be in specification	a) Freq.:10~50Hz,Amplitude:1.5mm a) 20min. / cycle,1hrs. each of XYZ axis b) Freq.:30~100Hz, 6G b) 20min. / cycle,1hrs. each of XYZ axis
2	Shock test	the same as above	Dropped onto hard wood from height of 50cm for 3 times
3	Heat cycle test	the same as above	-40°C for 30min. and +85°C for 30min.; each temperature 300 cycles
4	Moisture test	the same as above	+60°C, 90% RH, 300h
5	Low temp. test	the same as above	-40°C, 300h
6	High temp. test	the same as above	+85°C, 300h

21. CAUTIONS

Failure to follow the guidelines set forth in this document may result in degrading of the product's functions and damage to the product.

21.1. DESIGN NOTES

- (1) Follow the conditions written in this specification, especially the control signals of this module.
- (2) The supply voltage has to be free of AC ripple voltage (for example from a battery or a low noise regulator output). For noisy supply voltages, provide a decoupling circuit (for example a ferrite in series connection and a bypass capacitor to ground of at least 47uF directly at the module).
- (3) This product should not be mechanically stressed when installed.
- (4) Keep this product away from heat. Heat is the major cause of decreasing the life of these products.
- (5) Avoid assembly and use of the target equipment in conditions where the products' temperature may exceed the maximum tolerance.
- (6) The supply voltage should not be exceedingly high or reversed. It should not carry noise and/or spikes.
- (7) Keep this product away from other high frequency circuits.

21.2. INSTALLATION NOTES

- (1) Reflow soldering is possible twice based on the conditions in chapter 15. Set up the temperature at the soldering portion of this product according to this reflow profile.
- (2) Carefully position the products so that their heat will not burn into printed circuit boards or affect the other components that are susceptible to heat.
- (3) Carefully locate these products so that their temperatures will not increase

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PR	ODUCT SPECIFICATION	No. DS-1315-2	400-102	REV. 1.03
SUBJECT	CLASS 1 or	2 BLUETOOTH MODULE	PAGE	30 of 4	41
CUSTOMER'S CODI PAN1315	Ξ	PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

- due to the effects of heat generated by neighboring components.
- (4) If a vinyl-covered wire comes into contact with the products, then the cover will melt and generate toxic gas, damaging the insulation. Never allow contact between the cover and these products to occur.
- (5) This product should not be mechanically stressed or vibrated when reflowed.
- (6) If you want to repair your board by hand soldering, please keep the conditions of this chapter.
- (7) Do not wash this product.
- (8) Refer to the recommended pattern when designing a board.
- (9) Pressing on parts of the metal cover or fastening objects to the metal will cause damage to the unit.

21.3. USAGE CONDITIONS NOTES

- (1) Take measures to protect the unit against static electricity. If pulses or other transient loads (a large load applied in a short time) are applied to the products, check and evaluate their operation befor assembly on the final products.
- (2) Do not use dropped products.
- (3) Do not touch, damage or soil the pins.
- (4) Follow the recommended condition ratings about the power supply applied to this product.
- (5) Electrode peeling strength: Do not add pressure of more than 4.9N when soldered on PCB.
- (6) Pressing on parts of the metal cover or fastening objects to the metal cover will cause damage.
- (7) These products are intended for general purpose and standard use in general electronic equipment, such as home appliances, office equipment, information and communication equipment.

21.4. STORAGE NOTES

- (1) The module should not be stressed mechanically during storage.
- (2) Do not store these products in the following conditions or the performance characteristics of the product, such as RF performance will be adversely affected:
 - Storage in salty air or in an environment with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NOX
 - Storage in direct sunlight
 - Storage in an environment where the temperature may be outside the range of 5°C to 35°C range, or where the humidity may be outside the 45 to 85% range.
 - Storage of the products for more than one year after the date of delivery Storage period: Please check the adhesive strength of the embossed tape and soldering after 6 months of storage.
- (3) Keep this product away from water, poisonous gas and corrosive gas.
- (4) This product should not be stressed or shocked when transported.
- (5) Follow the specification when stacking packed crates (max. 10).

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION		No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE 31 of	41		
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF		DATE 23.05.2	011

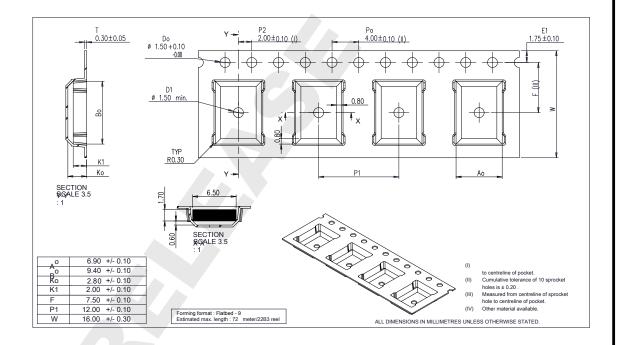
21.5. SAFETY CAUTIONS

These specifications are intended to preserve the quality assurance of products and individual components.

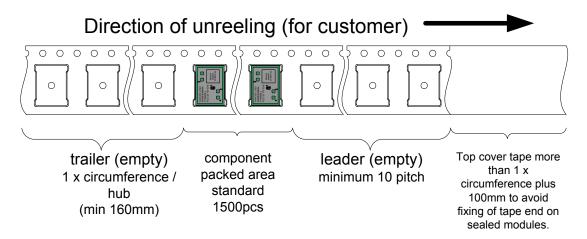
Before use, check and evaluate the operation when mounted on your products. Abide by these specifications, without deviation when using the products. These products may short-circuit. If electrical shocks, smoke, fire, and/or accidents involving human life are anticipated when a short circuit occurs, then provide the following failsafe functions, as a minimum.

- (1) Ensure the safety of the whole system by installing a protection circuit and a protection device.
- (2) Ensure the safety of the whole system by installing a redundant circuit or another system to prevent a single fault causing an unsafe status.

21.6. OTHER CAUTIONS


- (1) This specification sheet is copyrighted. Please do not disclose it to a third party.
- (2) Please do not use the products for other purposes than those listed.
- (3) Be sure to provide an appropriate fail-safe function on your product to prevent an additional damage that may be caused by the abnormal function or the failure of the product.
- (4) This product has been manufactured without any ozone chemical controlled under the Montreal Protocol.
- (5) These products are not intended for other uses, other than under the special conditions shown below. Before using these products under such special conditions, check their performance and reliability under the said special conditions carefully to determine whether or not they can be used in such a manner.
 - In liquid, such as water, salt water, oil, alkali, or organic solvent, or in places where liquid may splash.
 - In direct sunlight, outdoors, or in a dusty environment
 - In an environment where condensation occurs.
 - In an environment with a high concentration of harmful gas (e.g. salty air, HCl, Cl2, SO2, H2S, NH3, and NOX)
- (6) If an abnormal voltage is applied due to a problem occurring in other components or circuits, replace these products with new products because they may not be able to provide normal performance even if their electronic characteristics and appearances appear satisfactory.
- (7) When you have any question or uncertainty, contact Panasonic.

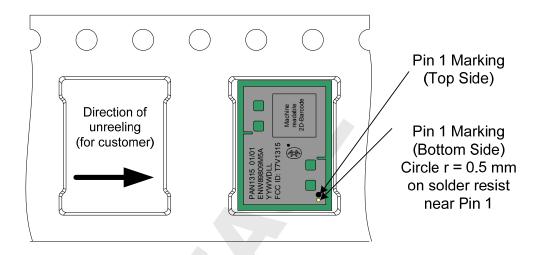
CLASSIFICATION	PROI	DUCT SPECIFICATION - I	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 l	BLUETOOTH MODULE	PAGE 32	of 41
CUSTOMER'S COD PAN1315		ANASONIC'S CODE NW89818C2JF	DATE 23.0	05.2011


22. PACKAGING

If the product has mass production status, indicated in chapter 25, we will deliver the module in the package which are described below.

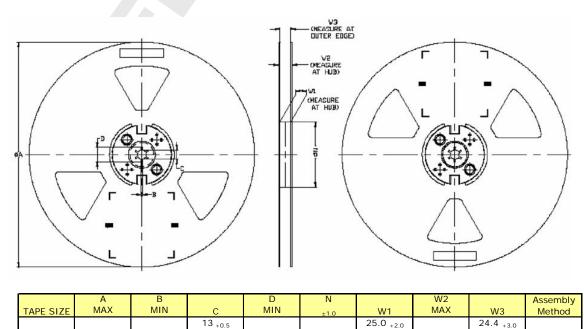
22.1. TAPE DIMENSION

22.2. PACKING IN TAPE


Empty spaces in component packed area shall be less than two per reel and those spaces shall not be consecutive.

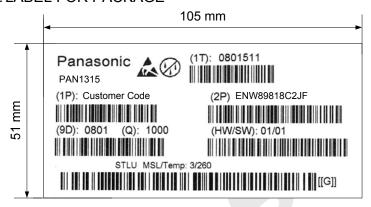
Top cover tape shall not be found on reel holes and shall not stick out from reel.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

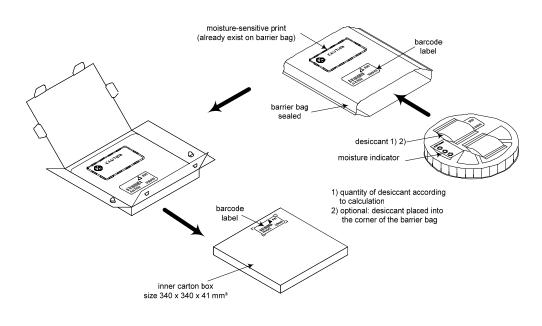

CLASSIFICATION	PRODU	ICT SPECIFICATION - I	No. DS-1315-2400-102	2	REV. 1.03
SUBJECT	CLASS 1 or 2 BL	UETOOTH MODULE	PAGE 3	33 of 4	.1
CUSTOMER'S COD PAN1315		NASONIC'S CODE V89818C2JF	DATE 23	3.05.20	11

22.3. COMPONENT DIRECTION

Please refer also to chapter 16. Labeling Drawing.


22.4. REEL DIMENSION

24mm 330.0 1.5 .0.2 20.2 100.0 30.


CLASSIFICATION	PRODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT	CLASS 1 or 2 BLUETOOTH MODULE	PAGE 34 of	41
CUSTOMER'S COD PAN1315	E PANASONIC'S CODE ENW89818C2JF	DATE 23.05.20)11

22.5. LABEL FOR PACKAGE

(1T)	Lotcode [YYWWDLL]	Example from above:
	YY year	printed 08
	WW normal calendar week	printed 01
	D day	printed 5 (Friday)
	L line identifier, if more as one	printed 1
	L lot identifier per day	printed 1
(1P)	Customer Order Code, if any, otherwise of	company name will be printed
(2P)	Panasonic Order Code fix as ENW89818	C2JF
(9D)	Datecode as [YYWW]	
(Q)	Quantity [XXXX], variable max. 1500	
(HW/SW)	Hardware /Software Release	actual 01/01
	Hardware 01 first digit 1 is 70°C,	second digit is Revision.
	Software 01 In case of EEPRON	1

22.6. TOTAL PACKAGE

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION		No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE 35 of	41		
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF		DATE 23.05.2	011

23. ORDERING INFORMATION

Ordering part number	Description	MOQ (1)
ENW89818C2JF (2)	PAN1315 CLASS 2 Bluetooth HCl Module (Standard 2.1),without ceramic antenna, 50 Ω bottom pad, operating temperature 70°C.	1500
ENW89818A2JF ⁽³⁾	PAN1325 CLASS 2 Bluetooth HCl Module (Standard 2.1), with ceramic antenna, operating temperature 70°C. Refer to AN-1325-2420-111.	1500

Notes:

- (1) Abbreviation for Minimum Order Quantity (MOQ). The standard MOQ for mass production are 1500 pieces, fewer only on customer demand. Samples for evaluation can be delivered at any quantity.
- (2) Samples available
- (3) Samples will be available on customer demand

24. ROHS DECLARATION

Declaration of environmental compatibility for supplied products:

Hereby we declare to our best present knowledge based on declaration of our suppliers that this product do not contain by now the following substances which are banned by Directive 2002/95/EC (RoHS) or if contain a maximum concentration of 0,1% by weight in homogeneous materials for

- Lead and lead compounds
- Mercury and mercury compounds
- Chromium (VI)
- PBB (polybrominated biphenyl) category
- PBDE (polybrominated biphenyl ether) category

And a maximum concentration of 0,01% by weight in homogeneous materials for

Cadmium and cadmium compounds

25. DATA SHEET STATUS

This data sheet contains the final specification (RELEASE).

Panasonic reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Supplementary data will be published at a later date.

Please consult the most recently issued data sheet before initiating or completing a design.

If there is an update, please download under: PAN1315 Latest Data Sheet!

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-131	5-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLUETOOTH MODULE		PAGE	36 of 4	41	
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20	011

26. HISTORY FOR THIS DOCUMENT

Revision	Date	Modification / Remarks
0.90	18.12.2009	1 st preliminary version
0.95	01.03.2010	Updated chapter 15 and 23.
0.96	Not released	Change ESD Information on foot note 5 (page 6)
0.97	25.03.2010	Various updates. Deleted links to TI Datasheet.
0.98	21.04.2010	Updated Links Some minor changes in chapter 8 and 9.1 and change the base for the values in chapter 9.
0.99	22.10.2010	Adopted changes according to CC2560 Datasheet. Included Interface Description, performance values. Not released.
1.00	04.11.2010	1 st internal Release.
1.01	03.12.2010	Included reference to PAN1325 Application Note. AN-1325-2420-111.pdf
1.02	10.01.2011	Changed wording in chapter 30 "Industry Canada Certification".
1.03	23.05.2011	Included DOC for PAN1315 series. Included PAN13xx ANT and BLE Addendum Rev1.x.pdf reference. Included Note for IO voltage and MLD_OUT pin.

27. RELATED DOCUMENTS

For an update, please search in the suitable homepage.

- [1] PAN1315ETU Design-Guide: http://www.panasonic.com/industrial/includes/pdf/PAN1315ETU_design-guide.pdf
- [2] CC2560 Product Bulletin: http://focus.ti.com/pdfs/wtbu/cc2560 slyt377.pdf
- [3] Bluetooth SW for MSP430 is supported by IAR IDE service pack 5.10.6 and later. You must use IAR full version edition (you cannot use kick-start version). You can find info on IAR at http://www.iar.com/website1/1.0.1.0/3/1/ and www.MSP430.com. Please note, that there is an option for a 30-days free version of IAR evaluation edition.
- [4] AN-1325-2420-111. Application Note for PAN1325 Antenna Version.
- [5] PAN13xx ANT and BLE Addendum Rev1.x.pdf

CLASSIFICATION	PRO	DUCT SPECIFICATION	No. DS-1315-2400-10	02	REV. 1.03
SUBJECT CLASS 1 or		BLUETOOTH MODULE	PAGE	37 of 4	1 1
CUSTOMER'S CODE PAN1315		ANASONIC'S CODE NW89818C2JF	DATE	23.05.20	111

28. GENERAL INFORMATION

© Panasonic Electronic Devices Europe GmbH 2010.

All rights reserved.

This product description does not lodge the claim to be complete and free of mistakes.

Please contact the related product manager in every case.

If we deliver ES samples to the customer, these samples have the status Engineering Samples. This means, the design of this product is not yet concluded. Engineering Samples may be partially or fully functional, and there may be differences to be published Data Sheet.

Engineering Samples are not qualified and are not to be used for reliability testing or series production.

Disclaimer:

Customer acknowledges that samples may deviate from the Data Sheet and may bear defects due to their status of development and the lack of qualification mentioned above. Panasonic rejects any liability or product warranty for Engineering Samples. In particular, Panasonic disclaims liability for damages caused by

- the use of the Engineering Sample other than for Evaluation Purposes, particularly the installation or integration in an other product to be sold by Customer,
- deviation or lapse in function of Engineering Sample,
- improper use of Engineering Samples.

Panasonic disclaimes any liability for consequential and incidental damages.

In case of any questions, please contact your local sales partner or the related product manager.

29. REGULATORY INFORMATION

29.1. FCC NOTICE

The device PAN1325, including the ceramic antenna (ENW89818A2JF) and also the SMD type PAN1315 (ENW89818C2JF), including with the antennas, which are listed in 29.5, complies with Part 15 of the FCC Rules. The device meets the requirements for modular transmitter approval as detailed in FCC public Notice DA00-1407.transmitter Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

29.2. CAUTION

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Panasonic Electronic Devices Europe GmbH may void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or		2 BLUETOOTH MODULE	PAGE 38 of	41
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE 23.05.2	011

communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help

29.3. LABELING REQUIREMENTS

The Original Equipment Manufacturer (OEM) must ensure that FCC labeling requirements are met. This includes a clearly visible label on the outside of the OEM enclosure specifying the appropriate Panasonic FCC identifier for this product as well as the FCC Notice above. The FCC identifier are **FCC ID: T7V1315**. This FCC identifier is valid for both versions (PAN1315 and PAN1325), for details, please see the chapter 23. Ordering Information.

In any case the end product must be labelled exterior with "Contains FCC ID: T7V1315"

29.4. ANTENNA WARNING

The related part number for this device is ENW89818C2JF (PAN1315 with SMD pad). For details, please see the chapter 23. Ordering Information. This device is tested with a standard SMA connector and with the antennas listed below. When integrated in the OEMs product, these fixed antennas require installation preventing end-users from replacing them with non-approved antennas. Any antenna not in the following table must be tested to comply with FCC Section 15.203 for unique antenna connectors and Section 15.247 for emissions. The FCC identifier for this device with the antenna listed in item 1 are the same (FCC ID: T7V1315).

29.5. APPROVED ANTENNA LIST

Note: We are able to qualify your antenna and will add to this list as that process is completed.

Item	Part Number	Manufacturer	Frequency Band	Туре	Gain (dBi)
1	2450AT43B100	Johanson Technologies	2.4GHz	Chip-Antenna	+1.3
2	LDA212G3110K	Murata	2.4GHz	Chip-Antenna	+0.9
3	4788930245	Würth Elektronik	2.4GHz	Chip-Antenna	+0.5

29.6. RF EXPOSURE PAN1315

To comply with FCC RF Exposure requirements, the Original Equipment Manufacturer (OEM) must ensure that the approved antenna in the previous table must be installed.

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PF	RODUCT SPECIFICATION	No. DS-1315-24	400-102	REV. 1.03
SUBJECT CLASS 1 or		2 BLUETOOTH MODULE	PAGE	39 of 4	41
CUSTOMER'S CODE PAN1315		PANASONIC'S CODE ENW89818C2JF	DATE	23.05.20)11

The preceding statement must be included as a CAUTION statement in manuals for products operating with the approved antennas in the previous table to alert users on FCC RF Exposure compliance.

Any notification to the end user of installation or removal instructions about the integrated radio module is not allowed.

The radiated output power of PAN1315 with mounted ceramic antenna (FCC ID: T7V1315) is far below the FCC radio frequency exposure limits. Nevertheless, the PAN1315 shall be used in such a manner that the potential for human contact during normal operation is minimized.

End users may not be provided with the module installation instructions. OEM integrators and end users must be provided with transmitter operating conditions for satisfying RF exposure compliance.

30. INDUSTRY CANADA CERTIFICATION

PAN1315 is licensed to meet the regulatory requirements of Industry Canada (IC), license: IC: 216Q-1315

Manufacturers of mobile, fixed or portable devices incorporating this module are advised to clarify any regulatory questions and ensure compliance for SAR and/or RF exposure limits. Users can obtain Canadian information on RF exposure and compliance from www.ic.gc.ca.

This device has been designed to operate with the antennas listed in Table 20 above, having a maximum gain of 1.3 dBi. Antennas not included in this list or having a gain greater than 1.3 dBi are strictly prohibited for use with this device. The required antenna impedance is 50 ohms. The antenna used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. due to the model size the IC identifier is displayed in the installation instruction.

31. EUROPEAN R&TTE DECLARATION OF CONFORMITY

Hereby, Panasonic Electronic Devices Europe GmbH, declares that the Bluetooth module PAN1315 and their versions is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC. As a result of the conformity assessment procedure described in Annex III of the Directive 1999/5/EC, the end-customer equipment should be labelled as follows:

UniStone in the specified reference design can be used in the following countries: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, The Netherlands, the United Kingdom, Switzerland, and Norway.

CLASSIFICATION	PROD	UCT SPECIFICATION - I	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or 2 BLU		LUETOOTH MODULE	PAGE 40 of	41
CUSTOMER'S CODE PAN1315		NASONIC'S CODE W89818C2JF	DATE 23.05.2	011

Declaration of Conformity (DoC) 1999/5/EC

We, _	Panasonic Electronic Devices Europe GmbH		
	High Frequency Products Business Group		
	Zeppelinstrasse 19, 21337 Lueneburg, Germany		

declare under our sole responsibility that the product:

 Type of equipment:
 Bluetooth Module

 Brand name:
 PAN1315, PAN1316, PAN1325, PAN1326

 Model name:
 ENW89818C2JF, ENW89823C2JF

 ENW89818A2JF, ENW89823A2JF

to which this declaration relates, is in compliance with all the applicable essential requirements, and other provisions of the European Council Directive:

1999/5/EC	Radio and Telecommunications Terminal Equipment Directive (R&TTE)
-----------	---

The conformity assessment procedure used for this declaration is Annex IV of this Directive.

Product compliance has been demonstrated on the basis of:

- EN 60950-1: 2006 - EN 50371: 2002	For article 3.1 (a): Health and Safety of the User
- EN 301 489-1 V1.8.1 - EN 301 489-17 V2.1.1	For article 3.1 (b): Electromagnetic Compatibility
- EN 300 228 V1.7.1	For article 3.2: Effective use of spectrum allocated

The technical contruction file is kept available at:

Panasonic Electronic Devices Europe GmbH, Zeppelinstrasse 19, 21337 Lueneburg, Germany

Issued on: 04 th of November 2010

Signed by the manufacturer:

(Company name) Panasonic Electronic Devices Europe GmbH

(Signature)

Pahasonic Electronic
Devices Europe GmbH
Technology Center - Module Bu
Zeppolinstraße 19

 (Printed name)
 Heino Kaehler
 D - 21337 Lüneburg

 Tel. +45 (0)41317 899 - 304

(Title) Manager Wireless Modules

PANASONIC ELECTRONIC DEVICES EUROPE GMBH

CLASSIFICATION	PROD	DUCT SPECIFICATION - I	No. DS-1315-2400-102	REV. 1.03
SUBJECT CLASS 1 or		BLUETOOTH MODULE	PAGE 41 o	f 41
CUSTOMER'S CODE PAN1315		ANASONIC'S CODE NW89818C2JF	DATE 23.05.	2011

32. LIFE SUPPORT POLICY

This Panasonic product is not designed for use in life support appliances, devices, or systems where malfunction can reasonably be expected to result in a significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Panasonic customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panasonic for any damages resulting.